

Ayuda sobre Funciones de la API
Win32

CreateProcess
The CreateProcess function creates a new process and its primary thread. The new process runs the
specified executable file in the security context of the calling process.

If the calling process is impersonating another user, the new process uses the token for the calling process,
not the impersonation token. To run the new process in the security context of the user represented by the
impersonation token, use the CreateProcessAsUser or CreateProcessWithLogonW function.

BOOL CreateProcess(
 LPCTSTR lpApplicationName,
 LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Parameters

lpApplicationName
[in] Pointer to a null-terminated string that specifies the module to execute. The specified module can be
a Windows-based application. It can be some other type of module (for example, MS-DOS or OS/2) if the
appropriate subsystem is available on the local computer.

The string can specify the full path and file name of the module to execute or it can specify a partial
name. In the case of a partial name, the function uses the current drive and current directory to complete
the specification. The function will not use the search path. If the file name does not contain an extension,
.exe is assumed. Therefore, if the file name extension is .com, this parameter must include the .com
extension.

The lpApplicationName parameter can be NULL. In that case, the module name must be the first white
space-delimited token in the lpCommandLine string. If you are using a long file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments begin; otherwise, the
file name is ambiguous. For example, consider the string "c:\program files\sub dir\program name". This
string can be interpreted in a number of ways. The system tries to interpret the possibilities in the
following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

If the executable module is a 16-bit application, lpApplicationName should be NULL, and the string
pointed to by lpCommandLine should specify the executable module as well as its arguments.

To run a batch file, you must start the command interpreter; set lpApplicationName to cmd.exe and set
lpCommandLine to the name of the batch file.

lpCommandLine
[in, out] Pointer to a null-terminated string that specifies the command line to execute. The maximum
length of this string is 32K characters.

Windows 2000: The maximum length of this string is MAX_PATH characters.

The Unicode version of this function, CreateProcessW, will fail if this parameter is a const string.

The lpCommandLine parameter can be NULL. In that case, the function uses the string pointed to by
lpApplicationName as the command line.

If both lpApplicationName and lpCommandLine are non-NULL, the null-terminated string pointed to by
lpApplicationName specifies the module to execute, and the null-terminated string pointed to by
lpCommandLine specifies the command line. The new process can use GetCommandLine to retrieve the
entire command line. Console processes written in C can use the argc and argv arguments to parse the
command line. Because argv[0] is the module name, C programmers generally repeat the module name
as the first token in the command line.

If lpApplicationName is NULL, the first white-space – delimited token of the command line specifies the
module name. If you are using a long file name that contains a space, use quoted strings to indicate
where the file name ends and the arguments begin (see the explanation for the lpApplicationName
parameter). If the file name does not contain an extension, .exe is appended. Therefore, if the file name
extension is .com, this parameter must include the .com extension. If the file name ends in a period (.)
with no extension, or if the file name contains a path, .exe is not appended. If the file name does not

 Platform SDK: DLLs, Processes, and ThreadsPlatform SDK: DLLs, Processes, and ThreadsPlatform SDK: DLLs, Processes, and ThreadsPlatform SDK: DLLs, Processes, and Threads

Página 1 de 4CreateProcess (10 Parameters) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

contain a directory path, the system searches for the executable file in the following sequence:

1. The directory from which the application loaded.

2. The current directory for the parent process.

3. The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of
this directory.

Windows Me/98/95: The Windows system directory. Use the
GetSystemDirectory function to get the path of this directory.

4. The 16-bit Windows system directory. There is no function that obtains the path of this directory,
but it is searched. The name of this directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

The system adds a null character to the command line string to separate the file name from the
arguments. This divides the original string into two strings for internal processing.

lpProcessAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be
inherited by child processes. If lpProcessAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the new process. If
lpProcessAttributes is NULL or lpSecurityDescriptor is NULL, the process gets a default security
descriptor. The ACLs in the default security descriptor for a process come from the primary token of the
creator.

Windows XP/2000/NT: The ACLs in the default security descriptor for a process come
from the primary or impersonation token of the creator. This behavior changed with
Windows XP SP2 and Windows Server 2003.

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be
inherited by child processes. If lpThreadAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the main thread. If
lpThreadAttributes is NULL or lpSecurityDescriptor is NULL, the thread gets a default security
descriptor. The ACLs in the default security descriptor for a thread come from the process token.

Windows XP/2000/NT: The ACLs in the default security descriptor for a thread come
from the primary or impersonation token of the creator. This behavior changed with
Windows XP SP2 and Windows Server 2003.

bInheritHandles
[in] If this parameter TRUE, each inheritable handle in the calling process is inherited by the new process.
If the parameter is FALSE, the handles are not inherited. Note that inherited handles have the same value
and access rights as the original handles.

dwCreationFlags
[in] Flags that control the priority class and the creation of the process. For a list of values, see Process
Creation Flags.

This parameter also controls the new process's priority class, which is used to determine the scheduling
priorities of the process's threads. For a list of values, see GetPriorityClass. If none of the priority class
flags is specified, the priority class defaults to NORMAL_PRIORITY_CLASS unless the priority class of the
creating process is IDLE_PRIORITY_CLASS or BELOW_NORMAL_PRIORITY_CLASS. In this case, the child
process receives the default priority class of the calling process.

lpEnvironment
[in] Pointer to an environment block for the new process. If this parameter is NULL, the new process uses
the environment of the calling process.

An environment block consists of a null-terminated block of null-terminated strings. Each string is in the
form:

name=value

Because the equal sign is used as a separator, it must not be used in the name of an environment
variable.

An environment block can contain either Unicode or ANSI characters. If the environment block pointed to
by lpEnvironment contains Unicode characters, be sure that dwCreationFlags includes
CREATE_UNICODE_ENVIRONMENT.

Note that an ANSI environment block is terminated by two zero bytes: one for the last string, one more
to terminate the block. A Unicode environment block is terminated by four zero bytes: two for the last
string, two more to terminate the block.

lpCurrentDirectory

Página 2 de 4CreateProcess (10 Parameters) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

[in] Pointer to a null-terminated string that specifies the full path to the current directory for the process.
The string can also specify a UNC path.

If this parameter is NULL, the new process will have the same current drive and directory as the calling
process. (This feature is provided primarily for shells that need to start an application and specify its
initial drive and working directory.)

lpStartupInfo
[in] Pointer to a STARTUPINFO structure that specifies the window station, desktop, standard handles,
and appearance of the main window for the new process.

lpProcessInformation
[out] Pointer to a PROCESS_INFORMATION structure that receives identification information about the
new process.

Handles in PROCESS_INFORMATION must be closed with CloseHandle when they are no longer
needed.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The process is assigned a process identifier. The identifier is valid until the process terminates. It can be used
to identify the process, or specified in the OpenProcess function to open a handle to the process. The initial
thread in the process is also assigned a thread identifier. It can be specified in the OpenThread function to
open a handle to the thread. The identifier is valid until the thread terminates and can be used to uniquely
identify the thread within the system. These identifiers are returned in the PROCESS_INFORMATION
structure.

The name of the executable in the command line that the operating system provides to a process is not
necessarily identical to that in the command line that the calling process gives to the CreateProcess
function. The operating system may prepend a fully qualified path to an executable name that is provided
without a fully qualified path.

The calling thread can use the WaitForInputIdle function to wait until the new process has finished its
initialization and is waiting for user input with no input pending. This can be useful for synchronization
between parent and child processes, because CreateProcess returns without waiting for the new process to
finish its initialization. For example, the creating process would use WaitForInputIdle before trying to find a
window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function, because this function sends
notification of approaching termination to all DLLs attached to the process. Other means of shutting down a
process do not notify the attached DLLs. Note that when a thread calls ExitProcess, other threads of the
process are terminated without an opportunity to execute any additional code (including the thread
termination code of attached DLLs). For more information, see Terminating a Process.

A parent process can directly alter the environment variables of a child process during process creation. This
is the only situation when a process can directly change the environment settings of another process. For
more information, see Changing Environment Variables.

If an application provides an environment block, the current directory information of the system drives is not
automatically propagated to the new process. For example, there is an environment variable named =C:
whose value is the current directory on drive C. An application must manually pass the current directory
information to the new process. To do so, the application must explicitly create these environment variable
strings, sort them alphabetically (because the system uses a sorted environment), and put them into the
environment block. Typically, they will go at the front of the environment block, due to the environment block
sort order.

One way to obtain the current directory information for a drive X is to call GetFullPathName("X:",. .). That
avoids an application having to scan the environment block. If the full path returned is X:\, there is no need
to pass that value on as environment data, since the root directory is the default current directory for drive X
of a new process.

When a process is created with CREATE_NEW_PROCESS_GROUP specified, an implicit call to
SetConsoleCtrlHandler(NULL,TRUE) is made on behalf of the new process; this means that the new process
has CTRL+C disabled. This lets shells handle CTRL+C themselves, and selectively pass that signal on to sub-
processes. CTRL+BREAK is not disabled, and may be used to interrupt the process/process group.

Security Remarks

The first parameter, lpApplicationName, can be NULL, in which case the executable name must be in the
white space-delimited string pointed to by lpCommandLine. If the executable or path name has a space in it,
there is a risk that a different executable could be run because of the way the function parses spaces. The
following example is dangerous because the function will attempt to run "Program.exe", if it exists, instead of
"MyApp.exe".

Página 3 de 4CreateProcess (10 Parameters) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

If a malicious user were to create an application called "Program.exe" on a system, any program that
incorrectly calls CreateProcess using the Program Files directory will run this application instead of the
intended application.

To avoid this problem, do not pass NULL for lpApplicationName. If you do pass NULL for lpApplicationName,
use quotation marks around the executable path in lpCommandLine, as shown in the example below.

Example Code

For an example, see Creating Processes.

Requirements

See Also

CloseHandle, CreateProcessAsUser, CreateProcessWithLogonW, ExitProcess, GetCommandLine,
GetEnvironmentStrings, GetExitCodeProcess, GetFullPathName, GetStartupInfo, OpenProcess,
Process and Thread Functions, PROCESS_INFORMATION, Processes, SECURITY_ATTRIBUTES,
SetErrorMode, STARTUPINFO, TerminateProcess, WaitForInputIdle

CreateProcess(NULL, "C:\\Program Files\\MyApp", ...)

CreateProcess(NULL, "\"C:\\Program Files\\MyApp.exe\" -L -S", ...)

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

Unicode

Implemented as CreateProcessW (Unicode) and CreateProcessA
(ANSI). Note that Unicode support on Windows Me/98/95 requires
Microsoft Layer for Unicode.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

Página 4 de 4CreateProcess (10 Parameters) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

ExitProcess
The ExitProcess function ends a process and all its threads.

VOID ExitProcess(
 UINT uExitCode
);

Parameters

uExitCode
[in] Exit code for the process and all threads terminated as a result of this call. Use the
GetExitCodeProcess function to retrieve the process's exit value. Use the GetExitCodeThread function
to retrieve a thread's exit value.

Return Values

This function does not return a value.

Remarks

Exiting a process causes the following:

1. All of the object handles opened by the process are closed.

2. All of the threads in the process, except the calling thread, terminate their execution. The entry-point
functions of all loaded dynamic-link libraries (DLLs) are called with DLL_PROCESS_DETACH. After all
attached DLLs have executed any process termination code, this function terminates the current
process, including the calling thread.

3. The state of the process object becomes signaled, satisfying any threads that had been waiting for the
process to terminate.

4. The states of all threads of the process become signaled, satisfying any threads that had been waiting
for the threads to terminate.

5. The termination status of the process changes from STILL_ACTIVE to the exit value of the process.

If one of the terminated threads in the process holds a lock and the DLL detach code in one of the loaded
DLLs attempts to acquire the same lock, then calling ExitProcess results in a deadlock. In contrast, if a
process terminates by calling TerminateProcess, the DLLs that the process is attached to are not notified of
the process termination. Therefore, if you do not know the state of all threads in your process, it is better to
call TerminateProcess than ExitProcess. Note that returning from the main function of an application
results in a call to ExitProcess.

Calling ExitProcess in a DLL can lead to unexpected application or system errors. Be sure to call
ExitProcess from a DLL only if you know which applications or system components will load the DLL and that
it is safe to call ExitProcess in this context.

Exiting a process does not cause child processes to be terminated.

Exiting a process does not necessarily remove the process object from the operating system. A process object
is deleted when the last handle to the process is closed.

Example Code

For an example, see Creating a Child Process with Redirected Input and Output.

Requirements

See Also

CreateProcess, CreateRemoteThread, CreateThread, ExitThread, GetExitCodeProcess,
GetExitCodeThread, OpenProcess, Process and Thread Functions, Processes, TerminateProcess,
Terminating a Process

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

 Platform SDK: DLLs, Processes, and Threads

Página 1 de 2ExitProcess(UINT) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

Sleep
The Sleep function suspends the execution of the current thread for at least the specified interval.

To enter an alertable wait state, use the SleepEx function.

VOID Sleep(
 DWORD dwMilliseconds
);

Parameters

dwMilliseconds
[in] Minimum time interval for which execution is to be suspended, in milliseconds.

A value of zero causes the thread to relinquish the remainder of its time slice to any other thread of equal
priority that is ready to run. If there are no other threads of equal priority ready to run, the function
returns immediately, and the thread continues execution.

A value of INFINITE indicates that the suspension should not time out.

Return Values

This function does not return a value.

Remarks

This function causes a thread to relinquish the remainder of its time slice and become unrunnable for at least
the specified number of milliseconds, after which the thread is ready to run. In particular, if you specify zero
milliseconds, the thread will relinquish the remainder of its time slice but remain ready. Note that a ready
thread is not guaranteed to run immediately. Consequently, the thread may not run until some time after the
specified interval elapses. For more information, see Scheduling Priorities.

You have to be careful when using Sleep and code that directly or indirectly creates windows. If a thread
creates any windows, it must process messages. Message broadcasts are sent to all windows in the system.
If you have a thread that uses Sleep with infinite delay, the system will deadlock. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates
windows, use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than Sleep.

Example Code

For an example, see Using Thread Local Storage.

Requirements

See Also

MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, Process and Thread Functions, SleepEx,
Suspending Thread Execution, Threads

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

 Platform SDK: DLLs, Processes, and Threads

Página 1 de 2Sleep(DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

MessageBox Function

The MessageBox function creates, displays, and operates a message box. The message box contains an

application-defined message and title, plus any combination of predefined icons and push buttons.

Syntax

int MessageBox(
 HWND hWnd,
 LPCTSTR lpText,
 LPCTSTR lpCaption,
 UINT uType
);

Parameters

hWnd
[in] Handle to the owner window of the message box to be created. If this parameter is
NULL, the message box has no owner window.

lpText
[in] Pointer to a null-terminated string that contains the message to be displayed.

lpCaption
[in] Pointer to a null-terminated string that contains the dialog box title. If this parameter is
NULL, the default title Error is used.

uType
[in] Specifies the contents and behavior of the dialog box. This parameter can be a
combination of flags from the following groups of flags.

To indicate the buttons displayed in the message box, specify one of the following
values.
MB_ABORTRETRYIGNORE

The message box contains three push buttons: Abort, Retry, and Ignore.
MB_CANCELTRYCONTINUE

Microsoft Windows 2000/XP: The message box contains three push
buttons: Cancel, Try Again, Continue. Use this message box type instead
of MB_ABORTRETRYIGNORE.

MB_HELP
Windows 95/98/Me, Windows NT 4.0 and later: Adds a Help button to
the message box. When the user clicks the Help button or presses F1, the
system sends a WM_HELP message to the owner.

MB_OK
The message box contains one push button: OK. This is the default.

MB_OKCANCEL
The message box contains two push buttons: OK and Cancel.

MB_RETRYCANCEL
The message box contains two push buttons: Retry and Cancel.

MB_YESNO
The message box contains two push buttons: Yes and No.

MB_YESNOCANCEL
The message box contains three push buttons: Yes, No, and Cancel.

To display an icon in the message box, specify one of the following values.
MB_ICONEXCLAMATION

An exclamation-point icon appears in the message box.
MB_ICONWARNING

An exclamation-point icon appears in the message box.
MB_ICONINFORMATION

An icon consisting of a lowercase letter i in a circle appears in the message
box.

MB_ICONASTERISK
An icon consisting of a lowercase letter i in a circle appears in the message
box.

MB_ICONQUESTION
A question-mark icon appears in the message box. The question mark
message icon is no longer recommended because it does not clearly
represent a specific type of message and because the phrasing of a message
as a question could apply to any message type. In addition, users can
confuse the message symbol question mark with Help information. Therefore,
do not use this question mark message symbol in your message boxes. The

Página 1 de 4MessageBox Function

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/winui/win...

system continues to support its inclusion only for backward compatibility.
MB_ICONSTOP

A stop-sign icon appears in the message box.
MB_ICONERROR

A stop-sign icon appears in the message box.
MB_ICONHAND

A stop-sign icon appears in the message box.
To indicate the default button, specify one of the following values.
MB_DEFBUTTON1

The first button is the default button.

MB_DEFBUTTON1 is the default unless MB_DEFBUTTON2, MB_DEFBUTTON3,

or MB_DEFBUTTON4 is specified.

MB_DEFBUTTON2
The second button is the default button.

MB_DEFBUTTON3
The third button is the default button.

MB_DEFBUTTON4
The fourth button is the default button.

To indicate the modality of the dialog box, specify one of the following values.
MB_APPLMODAL

The user must respond to the message box before continuing work in the
window identified by the hWnd parameter. However, the user can move to
the windows of other threads and work in those windows.

Depending on the hierarchy of windows in the application, the user may be

able to move to other windows within the thread. All child windows of the

parent of the message box are automatically disabled, but popup windows

are not.

MB_APPLMODAL is the default if neither MB_SYSTEMMODAL nor

MB_TASKMODAL is specified.

MB_SYSTEMMODAL
Same as MB_APPLMODAL except that the message box has the
WS_EX_TOPMOST style. Use system-modal message boxes to notify the user
of serious, potentially damaging errors that require immediate attention (for
example, running out of memory). This flag has no effect on the user's ability
to interact with windows other than those associated with hWnd.

MB_TASKMODAL
Same as MB_APPLMODAL except that all the top-level windows belonging to
the current thread are disabled if the hWnd parameter is NULL. Use this flag
when the calling application or library does not have a window handle
available but still needs to prevent input to other windows in the calling
thread without suspending other threads.

To specify other options, use one or more of the following values.
MB_DEFAULT_DESKTOP_ONLY

Windows NT/2000/XP: Same as MB_SERVICE_NOTIFICATION except that
the system will display the message box only on the default desktop of the
interactive window station. For more information, see Window Stations.

Windows NT 4.0 and earlier: If the current input desktop is not the default

desktop, MessageBox fails.

Windows 2000/XP: If the current input desktop is not the default desktop,

MessageBox does not return until the user switches to the default desktop.

Windows 95/98/Me: This flag has no effect.

MB_RIGHT
The text is right-justified.

MB_RTLREADING
Displays message and caption text using right-to-left reading order on
Hebrew and Arabic systems.

MB_SETFOREGROUND
The message box becomes the foreground window. Internally, the system
calls the SetForegroundWindow function for the message box.

MB_TOPMOST
The message box is created with the WS_EX_TOPMOST window style.

MB_SERVICE_NOTIFICATION
Windows NT/2000/XP: The caller is a service notifying the user of an

Página 2 de 4MessageBox Function

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/winui/win...

event. The function displays a message box on the current active desktop,
even if there is no user logged on to the computer.

Terminal Services: If the calling thread has an impersonation token, the

function directs the message box to the session specified in the

impersonation token.

If this flag is set, the hWnd parameter must be NULL. This is so the message

box can appear on a desktop other than the desktop corresponding to the

hWnd.

For more information on the changes between Microsoft Windows NT 3.51

and Windows NT 4.0, see Remarks.

MB_SERVICE_NOTIFICATION_NT3X
Windows NT/2000/XP: This value corresponds to the value defined for
MB_SERVICE_NOTIFICATION for Windows NT version 3.51.

For more information on the changes between Windows NT 3.51 and

Windows NT 4.0, see Remarks.

Return Value

If a message box has a Cancel button, the function returns the IDCANCEL value if either the ESC

key is pressed or the Cancel button is selected. If the message box has no Cancel button,

pressing ESC has no effect.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the function succeeds, the return value is one of the following menu-item values.

Remarks

When you use a system-modal message box to indicate that the system is low on memory, the

strings pointed to by the lpText and lpCaption parameters should not be taken from a resource file,

because an attempt to load the resource may fail.

If you create a message box while a dialog box is present, use a handle to the dialog box as the

hWnd parameter. The hWnd parameter should not identify a child window, such as a control in a

dialog box.

Windows 95/98/Me: The system can support a maximum of 16,364 window handles.

Windows NT/2000/XP: The value of MB_SERVICE_NOTIFICATION changed starting with

Windows NT 4.0. Windows NT 4.0 provides backward compatibility for pre-existing services by

mapping the old value to the new value in the implementation of MessageBox. This mapping is

only done for executables that have a version number less than 4.0, as set by the linker.

To build a service that uses MB_SERVICE_NOTIFICATION, and can run on both Microsoft Windows

NT 3.x and Windows NT 4.0, you can do one of the following.

l At link-time, specify a version number less than 4.0

l At link-time, specify version 4.0. At run-time, use the GetVersionEx function to check the

IDABORT Abort button was selected.

IDCANCEL Cancel button was selected.

IDCONTINUE Continue button was selected.

IDIGNORE Ignore button was selected.

IDNO No button was selected.

IDOK OK button was selected.

IDRETRY Retry button was selected.

IDTRYAGAIN Try Again button was selected.

IDYES Yes button was selected.

Página 3 de 4MessageBox Function

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/winui/win...

system version. Then when running on Windows NT 3.x, use
MB_SERVICE_NOTIFICATION_NT3X; and on Windows NT 4.0, use MB_SERVICE_NOTIFICATION.

Windows 95/98/Me: Even though MessageBoxW exists, it is supported by the Microsoft Layer

for Unicode to give more consistent behavior across all Windows operating systems. To use this,

you must add certain files to your application, as outlined in .

Example

For an example, see Displaying a Message Box.

Function Information

See Also

Dialog Boxes Overview, FlashWindow, MessageBeep, MessageBoxEx, MessageBoxIndirect,
SetForegroundWindow

© 2005 Microsoft Corporation. All rights reserved.

Minimum DLL Version user32.dll

Header Declared in winuser.h, include windows.h

Import library user32.lib

Minimum operating systems Windows 95, Windows NT 3.1

Unicode Implemented as ANSI and Unicode versions.

Página 4 de 4MessageBox Function

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/winui/win...

GetLocalTime
The GetLocalTime function retrieves the current local date and time.

void GetLocalTime(
 LPSYSTEMTIME lpSystemTime
);

Parameters

lpSystemTime
[out] Pointer to a SYSTEMTIME structure to receive the current local date and time.

Return Values

This function does not return a value.

Requirements

See Also

Local Time, Time Functions, GetSystemTime, SetLocalTime, SYSTEMTIME

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

 Platform SDK: Windows System Information

Página 1 de 1GetLocalTime(LPSYSTEMTIME) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/sysinfo/b...

GetComputerName
The GetComputerName function retrieves the NetBIOS name of the local computer. This name is
established at system startup, when the system reads it from the registry.

GetComputerName retrieves only the NetBIOS name of the local computer. To retrieve the DNS host name,
DNS domain name, or the fully qualified DNS name, call the GetComputerNameEx function. Additional
information is provided by the IADsADSystemInfo interface.

The behavior of this function can be affected if the local computer is a node in a cluster. For more
information, see ResUtilGetEnvironmentWithNetName and UseNetworkName.

BOOL GetComputerName(
 LPTSTR lpBuffer,
 LPDWORD lpnSize
);

Parameters

lpBuffer
[out] Pointer to a buffer that receives a null-terminated string containing the computer name or the
cluster virtual server name. The buffer size should be large enough to contain
MAX_COMPUTERNAME_LENGTH + 1 characters.

lpnSize
[in, out] On input, specifies the size of the buffer, in TCHARs. On output, the number of TCHARs copied
to the destination buffer, not including the terminating null character.

If the buffer is too small, the function fails and GetLastError returns ERROR_BUFFER_OVERFLOW. The
lpnSize parameter specifies the size of the buffer required, not including the terminating null character.

Windows Me/98/95: GetComputerName fails if the input size is less than
MAX_COMPUTERNAME_LENGTH + 1.

Return Values

If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GetComputerName function retrieves the NetBIOS name established at system startup. Name changes
made by the SetComputerName or SetComputerNameEx functions do not take effect until the user
restarts the computer.

Example Code

For an example, see Getting System Information.

Requirements

See Also

Computer Names, System Information Functions, GetComputerNameEx, SetComputerName,
SetComputerNameEx

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

Unicode

Implemented as GetComputerNameW (Unicode) and
GetComputerNameA (ANSI). Note that Unicode support on Windows
Me/98/95 requires Microsoft Layer for Unicode.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD

 Platform SDK: Windows System Information

Página 1 de 2GetComputerName(LPTSTR,LPDWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/sysinfo/b...

GetUserName
The GetUserName function retrieves the name of the user associated with the current thread.

Use the GetUserNameEx function to retrieve the user name in a specified format. Additional information is
provided by the IADsADSystemInfo interface.

BOOL GetUserName(
 LPTSTR lpBuffer,
 LPDWORD nSize
);

Parameters

lpBuffer
[out] Pointer to the buffer to receive the null-terminated string containing the user's logon name. If this
buffer is not large enough to contain the entire user name, the function fails. A buffer size of (UNLEN +
1) characters will hold the maximum length user name including the terminating null character. UNLEN is
defined in Lmcons.h.

nSize
[in, out] On input, this variable specifies the size of the lpBuffer buffer, in TCHARs. On output, the
variable receives the number of TCHARs copied to the buffer, including the terminating null character.

If lpBuffer is too small, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER. This
parameter receives the required buffer size, including the terminating null character.

If this parameter is greater than 32767, the function fails and GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values

If the function succeeds, the return value is a nonzero value, and the variable pointed to by nSize contains
the number of TCHARs copied to the buffer specified by lpBuffer, including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

If the current thread is impersonating another client, the GetUserName function returns the user name of
the client that the thread is impersonating.

Example Code

For an example, see Getting System Information.

Requirements

See Also

System Information Functions, GetUserNameEx, LookupAccountName

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Advapi32.lib.

DLL Requires Advapi32.dll.

Unicode

Implemented as GetUserNameW (Unicode) and GetUserNameA
(ANSI). Note that Unicode support on Windows Me/98/95 requires
Microsoft Layer for Unicode.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

 Platform SDK: Windows System Information

Página 1 de 2GetUserName(LPTSTR,LPDWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/sysinfo/b...

VirtualAlloc
The VirtualAlloc function reserves or commits a region of pages in the virtual address space of the calling
process. Memory allocated by this function is automatically initialized to zero, unless MEM_RESET is specified.

To allocate memory in the address space of another process, use the VirtualAllocEx function.

LPVOID VirtualAlloc(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect
);

Parameters

lpAddress
[in] The starting address of the region to allocate. If the memory is being reserved, the specified address
is rounded down to the nearest multiple of the allocation granularity. If the memory is already reserved
and is being committed, the address is rounded down to the next page boundary. To determine the size
of a page and the allocation granularity on the host computer, use the GetSystemInfo function. If this
parameter is NULL, the system determines where to allocate the region.

dwSize
[in] The size of the region, in bytes. If the lpAddress parameter is NULL, this value is rounded up to the
next page boundary. Otherwise, the allocated pages include all pages containing one or more bytes in the
range from lpAddress to (lpAddress+dwSize). This means that a 2-byte range straddling a page boundary
causes both pages to be included in the allocated region.

flAllocationType
[in] Type of memory allocation. This parameter must contain one of the following values.

Value Meaning

MEM_COMMIT Allocates physical storage in memory or in the paging
file on disk for the specified region of memory pages.
The function initializes the memory to zero.

An attempt to commit a memory page that is already
committed does not cause the function to fail. This
means that you can commit a range of pages without
determining the current commitment state of each
page.

MEM_RESERVE Reserves a range of the process's virtual address space
without allocating any actual physical storage in
memory or in the paging file on disk.

Other memory allocation functions, such as malloc and
LocalAlloc, cannot use a reserved range of memory
until it is released.

You can commit reserved memory pages in subsequent
calls to the VirtualAlloc function.

MEM_RESET Specifies that the data in the memory range specified
by lpAddress and dwSize is no longer of interest. The
pages should not be read from or written to the paging
file. However, the memory block will be used again
later, so it should not be decommitted. This value
cannot be used with any other value.

Using this value does not guarantee that the range
operated on with MEM_RESET will contain zeroes. If
you want the range to contain zeroes, decommit the
memory and then recommit it.

When you specify MEM_RESET, the VirtualAlloc
function ignores the value of fProtect. However, you
must still set fProtect to a valid protection value, such
as PAGE_NOACCESS.

VirtualAlloc returns an error if you use MEM_RESET
and the range of memory is mapped to a file. A shared
view is only acceptable if it is mapped to a paging file.

 Platform SDK: Memory ManagementPlatform SDK: Memory ManagementPlatform SDK: Memory Management

Página 1 de 3VirtualAlloc(LPVOID,SIZE_T,DWORD,DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/memory/...

This parameter can also specify the following values as indicated.

flProtect
[in] Memory protection for the region of pages to be allocated. If the pages are being committed, you can
specify any one of the memory protection options, along with PAGE_GUARD or PAGE_NOCACHE as
needed.

Return Values

If the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

Each page has an associated page state. VirtualAlloc can perform the following operations:

l Commit a region of reserved pages

l Reserve a region of free pages

l Simultaneously reserve and commit a region of free pages

VirtualAlloc cannot reserve a reserved page. It can commit a page that is already committed. This means
you can commit a range of pages, regardless of whether they have already been committed, and the function
will not fail.

You can use VirtualAlloc to reserve a block of pages and then make additional calls to VirtualAlloc to
commit individual pages from the reserved block. This enables a process to reserve a range of its virtual
address space without consuming physical storage until it is needed.

If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters to compute
the region of pages to be allocated. The current state of the entire range of pages must be compatible with
the type of allocation specified by the flAllocationType parameter. Otherwise, the function fails and none of
the pages are allocated. This compatibility requirement does not preclude committing an already committed
page, as mentioned previously.

To execute dynamically generated code, use VirtualAlloc to allocate memory and the VirtualProtect
function to grant PAGE_EXECUTE access.

The VirtualAlloc function can be used to reserve an Address Windowing Extensions (AWE) region of memory
within the virtual address space of a specified process. This region of memory can then be used to map
physical pages into and out of virtual memory as required by the application. The MEM_PHYSICAL and

Windows Me/98/95: This flag is not
supported.

Value Meaning

MEM_LARGE_PAGES Allocates memory using large page support.

The size and alignment must be a multiple of the large-
page minimum. To obtain this value, use the
GetLargePageMinimum function.

MEM_PHYSICAL Allocates physical memory with read-write access. This
value is solely for use with Address Windowing
Extensions (AWE) memory.

This value must be used with MEM_RESERVE and no
other values.

MEM_TOP_DOWN Allocates memory at the highest possible address.

Windows Me/98/95: This flag is not
supported.

MEM_WRITE_WATCH Causes the system to track pages that are written to in
the allocated region. If you specify this value, you must
also specify MEM_RESERVE.

To retrieve the addresses of the pages that have been
written to since the region was allocated or the write-
tracking state was reset, call the GetWriteWatch
function. To reset the write-tracking state, call
GetWriteWatch or ResetWriteWatch. The write-
tracking feature remains enabled for the memory
region until the region is freed.

Página 2 de 3VirtualAlloc(LPVOID,SIZE_T,DWORD,DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/memory/...

MEM_RESERVE values must be set in the AllocationType parameter. The MEM_COMMIT value must not be
set. The page protection must be set to PAGE_READWRITE.

The VirtualFree function can decommit a committed page, releasing the page's storage, or it can
simultaneously decommit and release a committed page. It can also release a reserved page, making it a free
page.

Example Code

For an example, see Reserving and Committing Memory.

Requirements

See Also

Virtual Memory Functions, Memory Management Functions, VirtualAllocEx, VirtualFree, VirtualLock,
VirtualProtect, VirtualQuery

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

Página 3 de 3VirtualAlloc(LPVOID,SIZE_T,DWORD,DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/memory/...

VirtualFree
The VirtualFree function releases, decommits, or releases and decommits a region of pages within the
virtual address space of the calling process.

To free memory allocated in another process by the VirtualAllocEx function, use the VirtualFreeEx
function.

BOOL VirtualFree(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD dwFreeType
);

Parameters

lpAddress
[in] A pointer to the base address of the region of pages to be freed.

If the dwFreeType parameter is MEM_RELEASE, this parameter must be the base address returned by the
VirtualAlloc function when the region of pages is reserved.

dwSize
[in] The size of the region of memory to be freed, in bytes.

If the dwFreeType parameter is MEM_RELEASE, this parameter must be 0 (zero). The function frees the
entire region that is reserved in the initial allocation call to VirtualAlloc.

If the dwFreeType parameter is MEM_DECOMMIT, the function decommits all memory pages that contain
one or more bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This means, for
example, that a 2-byte region of memory that straddles a page boundary causes both pages to be
decommitted. If lpAddress is the base address returned by VirtualAlloc and dwSize is 0 (zero), the
function decommits the entire region that is allocated by VirtualAlloc. After that, the entire region is in
the reserved state.

dwFreeType
[in] The type of free operation. This parameter can be one of the following values.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is 0 (zero). To get extended error information, call GetLastError.

Remarks

Value Meaning

MEM_DECOMMIT
0x4000

Decommits the specified region of committed pages.
After the operation, the pages are in the reserved
state.

The function does not fail if you attempt to decommit
an uncommitted page. This means that you can
decommit a range of pages without first determining
the current commitment state.

Do not use this value with MEM_RELEASE.

MEM_RELEASE
0x8000

Releases the specified region of pages. After this
operation, the pages are in the free state.

If you specify this value, dwSize must be 0 (zero), and
lpAddress must point to the base address returned by
the VirtualAlloc function when the region is reserved.
The function fails if even of the conditions is not met.

If any pages in the region are committed currently, the
function first decommits, and then releases them.

The function does not fail if you attempt to release
pages that are in different states, some reserved and
some committed. This means that you can release a
range of pages without first determining the current
commitment state.

Do not use this value with MEM_DECOMMIT.

 Platform SDK: Memory ManagementPlatform SDK: Memory Management

Página 1 de 2VirtualFree(LPVOID,SIZE_T,DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/memory/...

Each page of memory in a process virtual address space has a Page State. The VirtualFree function can
decommit a range of pages that are in different states, some committed and some uncommitted. This means
that you can decommit a range of pages without first determining the current commitment state of each
page. Decommitting a page releases its physical storage, either in memory or in the paging file on disk.

If a page is decommitted but not released, its state changes to reserved. Subsequently, you can call
VirtualAlloc to commit it, or VirtualFree to release it. Attempts to read from or write to a reserved page
results in an access violation exception.

The VirtualFree function can release a range of pages that are in different states, some reserved and some
committed. This means that you can release a range of pages without first determining the current
commitment state of each page. The entire range of pages originally reserved by the VirtualAlloc function
must be released at the same time.

If a page is released, its state changes to free, and it is available for subsequent allocation operations. After
memory is released or decommited, you can never refer to the memory again. Any information that may
have been in that memory is gone forever. Attempting to read from or write to a free page results in an
access violation exception. If you need to keep information, do not decommit or free memory that contains
the information.

The VirtualFree function can be used on an AWE region of memory, and it invalidates any physical page
mappings in the region when freeing the address space. However, the physical page is not deleted, and the
application can use them. The application must explicitly call FreeUserPhysicalPages to free the physical
pages. When the process is terminated, all resources are cleaned up automatically.

Example Code

For an example, see Reserving and Committing Memory.

Requirements

See Also

Memory Management Functions, VirtualFreeEx, Virtual Memory Functions

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Library Link to Kernel32.lib.

DLL Requires Kernel32.dll.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

Página 2 de 2VirtualFree(LPVOID,SIZE_T,DWORD) function [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/memory/...

Ayuda sobre tipos de estructuras
definidas en los ficheros de

cabecera del SDK

PROCESS_INFORMATION
The PROCESS_INFORMATION structure is used with the CreateProcess, CreateProcessAsUser,
CreateProcessWithLogonW, or CreateProcessWithTokenW function. This structure contains information
about the newly created process and its primary thread.

typedef struct _PROCESS_INFORMATION {
 HANDLE hProcess;
 HANDLE hThread;
 DWORD dwProcessId;
 DWORD dwThreadId;
} PROCESS_INFORMATION,
*LPPROCESS_INFORMATION;

Members

hProcess
Handle to the newly created process. The handle is used to specify the process in all functions that
perform operations on the process object.

hThread
Handle to the primary thread of the newly created process. The handle is used to specify the thread in all
functions that perform operations on the thread object.

dwProcessId
Value that can be used to identify a process. The value is valid from the time the process is created until
the time the process is terminated.

dwThreadId
Value that can be used to identify a thread. The value is valid from the time the thread is created until the
time the thread is terminated.

Remarks

If the function succeeds, be sure to call the CloseHandle function to close the hProcess and hThread
handles when you are finished with them. Otherwise, when the child process exits, the system cannot clean
up these handles because the parent process did not close them. However, the system will close these
handles when the parent process terminates, so they would be cleaned up at this point.

Requirements

See Also

CreateProcess, CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

 Platform SDK: DLLs, Processes, and Threads

Página 1 de 1PROCESS_INFORMATION structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

STARTUPINFO
The STARTUPINFO structure is used with the CreateProcess, CreateProcessAsUser, and
CreateProcessWithLogonW functions to specify the window station, desktop, standard handles, and
appearance of the main window for the new process.

typedef struct _STARTUPINFO {
 DWORD cb;
 LPTSTR lpReserved;
 LPTSTR lpDesktop;
 LPTSTR lpTitle;
 DWORD dwX;
 DWORD dwY;
 DWORD dwXSize;
 DWORD dwYSize;
 DWORD dwXCountChars;
 DWORD dwYCountChars;
 DWORD dwFillAttribute;
 DWORD dwFlags;
 WORD wShowWindow;
 WORD cbReserved2;
 LPBYTE lpReserved2;
 HANDLE hStdInput;
 HANDLE hStdOutput;
 HANDLE hStdError;
} STARTUPINFO,
*LPSTARTUPINFO;

Members

cb
Size of the structure, in bytes.

lpReserved
Reserved. Set this member to NULL before passing the structure to CreateProcess.

lpDesktop
Pointer to a null-terminated string that specifies either the name of the desktop, or the name of both the
desktop and window station for this process. A backslash in the string indicates that the string includes
both the desktop and window station names.

Windows Me/98/95: Desktops and window stations are not supported.

lpTitle
For console processes, this is the title displayed in the title bar if a new console window is created. If
NULL, the name of the executable file is used as the window title instead. This parameter must be NULL
for GUI or console processes that do not create a new console window.

dwX
If dwFlags specifies STARTF_USEPOSITION, this member is the x offset of the upper left corner of a
window if a new window is created, in pixels. Otherwise, this member is ignored.

The offset is from the upper left corner of the screen. For GUI processes, the specified position is used the
first time the new process calls CreateWindow to create an overlapped window if the x parameter of
CreateWindow is CW_USEDEFAULT.

dwY
If dwFlags specifies STARTF_USEPOSITION, this member is the y offset of the upper left corner of a
window if a new window is created, in pixels. Otherwise, this member is ignored.

The offset is from the upper left corner of the screen. For GUI processes, the specified position is used the
first time the new process calls CreateWindow to create an overlapped window if the y parameter of
CreateWindow is CW_USEDEFAULT.

dwXSize
If dwFlags specifies STARTF_USESIZE, this member is the width of the window if a new window is
created, in pixels. Otherwise, this member is ignored.

For GUI processes, this is used only the first time the new process calls CreateWindow to create an
overlapped window if the nWidth parameter of CreateWindow is CW_USEDEFAULT.

dwYSize
If dwFlags specifies STARTF_USESIZE, this member is the height of the window if a new window is
created, in pixels. Otherwise, this member is ignored.

For GUI processes, this is used only the first time the new process calls CreateWindow to create an
overlapped window if the nHeight parameter of CreateWindow is CW_USEDEFAULT.

 Platform SDK: DLLs, Processes, and ThreadsPlatform SDK: DLLs, Processes, and ThreadsPlatform SDK: DLLs, Processes, and Threads

Página 1 de 4STARTUPINFO structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

dwXCountChars
If dwFlags specifies STARTF_USECOUNTCHARS, if a new console window is created in a console process,
this member specifies the screen buffer width, in character columns. Otherwise, this member is ignored.

dwYCountChars
If dwFlags specifies STARTF_USECOUNTCHARS, if a new console window is created in a console process,
this member specifies the screen buffer height, in character rows. Otherwise, this member is ignored.

dwFillAttribute
If dwFlags specifies STARTF_USEFILLATTRIBUTE, this member is the initial text and background colors if
a new console window is created in a console application. Otherwise, this member is ignored.

This value can be any combination of the following values: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination of values
produces red text on a white background:

FOREGROUND_RED| BACKGROUND_RED| BACKGROUND_GREEN| BACKGROUND_BLUE

dwFlags
Bit field that determines whether certain STARTUPINFO members are used when the process creates a
window. This member can be one or more of the following values.

Value Meaning

STARTF_FORCEONFEEDBACK Indicates that the cursor is in feedback mode for two
seconds after CreateProcess is called. The Working in
Background cursor is displayed (see the Pointers tab in
the Mouse control panel utility).

If during those two seconds the process makes the first
GUI call, the system gives five more seconds to the
process. If during those five seconds the process shows
a window, the system gives five more seconds to the
process to finish drawing the window.

The system turns the feedback cursor off after the first
call to GetMessage, regardless of whether the process
is drawing.

STARTF_FORCEOFFFEEDBACK Indicates that the feedback cursor is forced off while
the process is starting. The Normal Select cursor is
displayed.

STARTF_RUNFULLSCREEN Indicates that the process should be run in full-screen
mode, rather than in windowed mode.

This flag is only valid for console applications running
on an x86 computer.

Windows Me/98/95: This value is
not supported.

STARTF_USECOUNTCHARS If this value is not specified, the dwXCountChars and
dwYCountChars members are ignored.

Windows Me/98/95: This value is
not supported.

STARTF_USEFILLATTRIBUTE If this value is not specified, the dwFillAttribute
member is ignored.

STARTF_USEPOSITION If this value is not specified, the dwX and dwY
members are ignored.

STARTF_USESHOWWINDOW If this value is not specified, the wShowWindow
member is ignored.

STARTF_USESIZE If this value is not specified, the dwXSize and
dwYSize members are ignored.

STARTF_USESTDHANDLES Sets the standard input, standard output, and standard
error handles for the process to the handles specified in
the hStdInput, hStdOutput, and hStdError members
of the STARTUPINFO structure. For this to work
properly, the handles must be inheritable and the
CreateProcess function's bInheritHandles parameter
must be set to TRUE. For more information, see Handle

Página 2 de 4STARTUPINFO structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

wShowWindow
If dwFlags specifies STARTF_USESHOWWINDOW, this member can be any of the SW_ constants defined
in Winuser.h. Otherwise, this member is ignored.

For GUI processes, wShowWindow specifies the default value the first time ShowWindow is called.
The nCmdShow parameter of ShowWindow is ignored. In subsequent calls to ShowWindow, the
wShowWindow member is used if the nCmdShow parameter of ShowWindow is set to
SW_SHOWDEFAULT.

cbReserved2
Reserved for use by the C Run-time; must be zero.

lpReserved2
Reserved for use by the C Run-time; must be NULL.

hStdInput
If dwFlags specifies STARTF_USESTDHANDLES, this member is a handle to be used as the standard
input handle for the process. Otherwise, this member is ignored.

hStdOutput
If dwFlags specifies STARTF_USESTDHANDLES, this member is a handle to be used as the standard
output handle for the process. Otherwise, this member is ignored.

hStdError
If dwFlags specifies STARTF_USESTDHANDLES, this member is a handle to be used as the standard
error handle for the process. Otherwise, this member is ignored.

Remarks

For graphical user interface (GUI) processes, this information affects the first window created by the
CreateWindow function and shown by the ShowWindow function. For console processes, this information
affects the console window if a new console is created for the process. A process can use the
GetStartupInfo function to retrieve the STARTUPINFO structure specified when the process was created.

If a GUI process is being started and neither STARTF_FORCEONFEEDBACK or STARTF_FORCEOFFFEEDBACK
is specified, the process feedback cursor is used. A GUI process is one whose subsystem is specified as
"windows."

Requirements

See Also

CreateProcess, CreateProcessAsUser, CreateProcessWithLogonW, GetStartupInfo

Inheritance.

If this value is not specified, the hStdInput,
hStdOutput, and hStdError members of the
STARTUPINFO structure are ignored.

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

Unicode
Implemented as STARTUPINFOW (Unicode) and STARTUPINFOA
(ANSI).

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

Página 3 de 4STARTUPINFO structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/dllproc/ba...

SYSTEMTIME
The SYSTEMTIME structure represents a date and time using individual members for the month, day, year,
weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME,
*PSYSTEMTIME;

Members

wYear
The year (1601 - 30827).

wMonth
The month.

January = 1
February = 2
March = 3
April = 4
May = 5
June = 6
July = 7
August = 8
September = 9
October = 10
November = 11
December = 12

wDayOfWeek
The day of the week.

Sunday = 0
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6

wDay
The day of the month (1-31).

wHour
The hour (0-23).

wMinute
The minute (0-59).

wSecond
The second (0-59).

wMilliseconds
The millisecond (0-999).

Remarks

It is not recommended that you add and subtract values from the SYSTEMTIME structure to obtain relative
times. Instead, you should

l Convert the SYSTEMTIME structure to a FILETIME structure.

l Copy the resulting FILETIME structure to a ULARGE_INTEGER structure.

l Use normal 64-bit arithmetic on the ULARGE_INTEGER value.

The system can periodically refresh the time by synchronizing with a time source. Because the system time
can be adjusted either forward or backward, do not compare system time readings to determine elapsed

 Platform SDK: Windows System InformationPlatform SDK: Windows System Information

Página 1 de 2SYSTEMTIME structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/sysinfo/b...

time. Instead, use one of the methods described in Windows Time.

Requirements

See Also

FILETIME, FileTimeToSystemTime, GetSystemTime, ULARGE_INTEGER, SetSystemTime

Client
Requires Windows XP, Windows 2000 Professional, Windows NT
Workstation, Windows Me, Windows 98, or Windows 95.

Server
Requires Windows Server 2003, Windows 2000 Server, or Windows NT
Server.

Header Declared in Winbase.h; include Windows.h.

 Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
 © Microsoft Corporation. All rights reserved. Terms of use.

Página 2 de 2SYSTEMTIME structure [Base]

21/01/2007ms-help://MS.MSDNQTR.v80.es/MS.MSDN.v80/MS.WIN32COM.v10.en/sysinfo/b...

