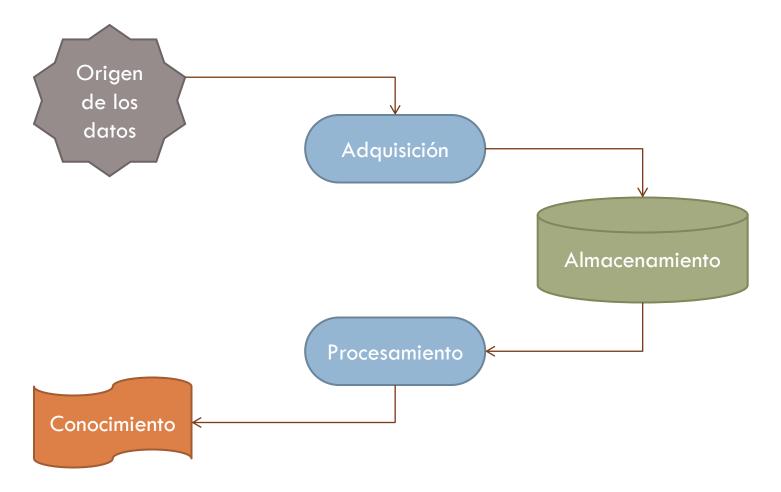
Tecnologías Grid Gestión de datos

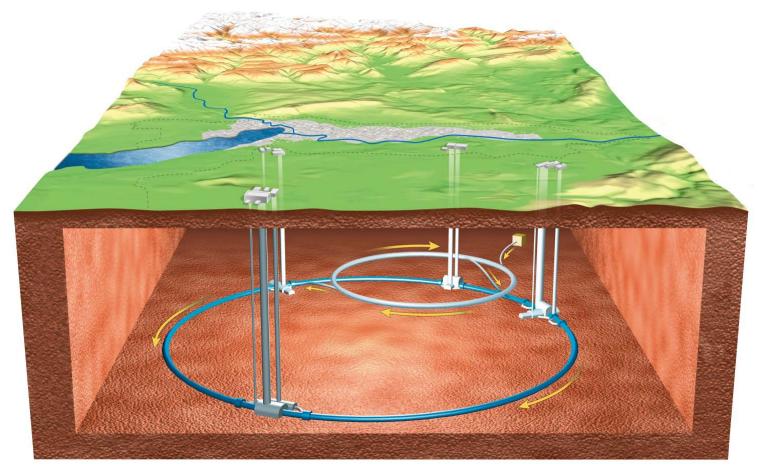
Curso de Doctorado 2008-2009 Área de Arquitectura y Tecnología de Computadores Universidad de Oviedo


Gestion de datos

Conceptos previos

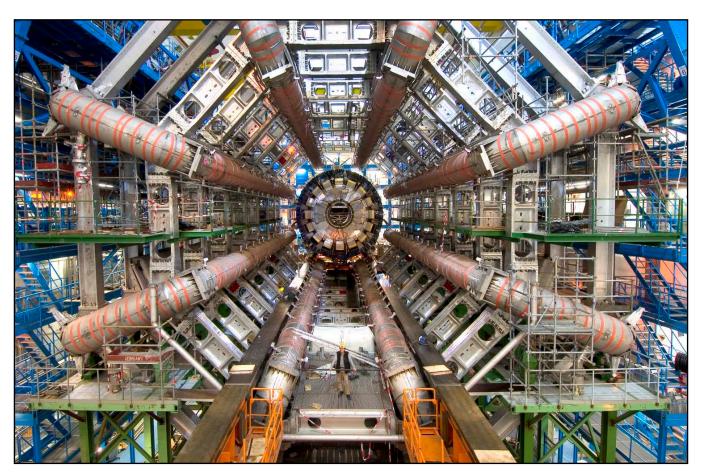
- Origen de los datos:
 - Intrumentación
 - Sensores
 - Simulación
 - Física, química, etc
 - Imágenes
 - Video, imágenes médicas, renderización
 - Otros
 - Documentos, ...

□ Escenario de procesamiento de datos típico:

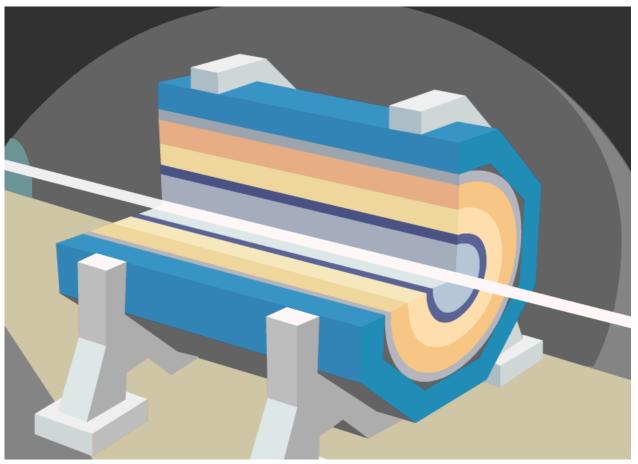


- Un ejemplo: Large Hadron Collider (LHC)
 - Objetivo
 - Explorar los orígenes del universo
 - Funcionamiento
 - Acelera partículas (haces de hadrones, partículas subatómicas)
 - Las hace colisionar cuando alcanzan el 99% de la velocidad de la luz
 - La colisión produce altísimas energías que permiten simular algunos eventos ocurridos durante o inmediatamente después del big bang

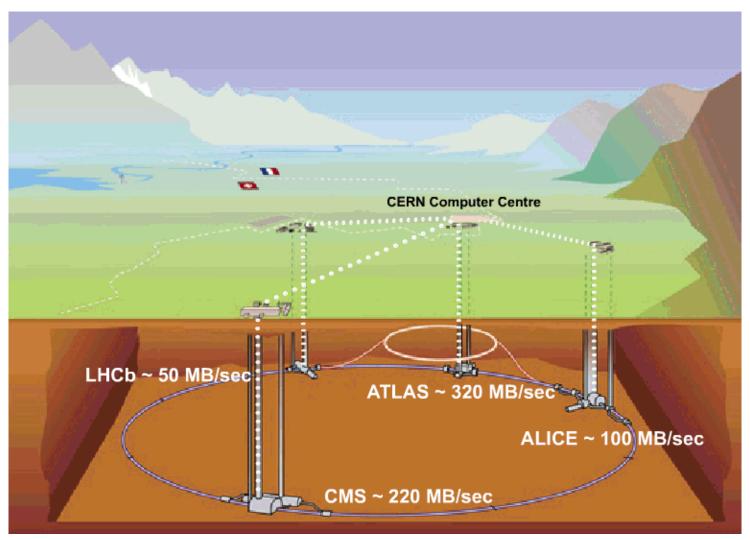
□ Large Hadron Collider (LHC)



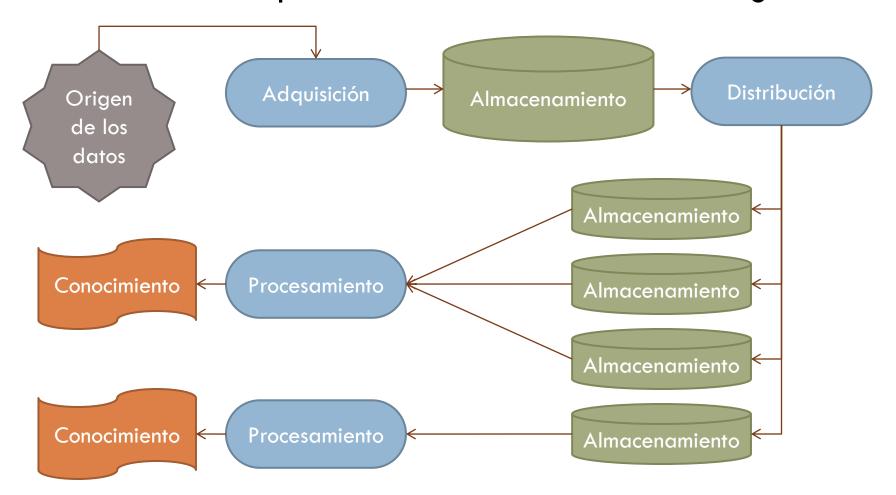
□ Detectores en el LHC



□ Detector del LHC Atlas

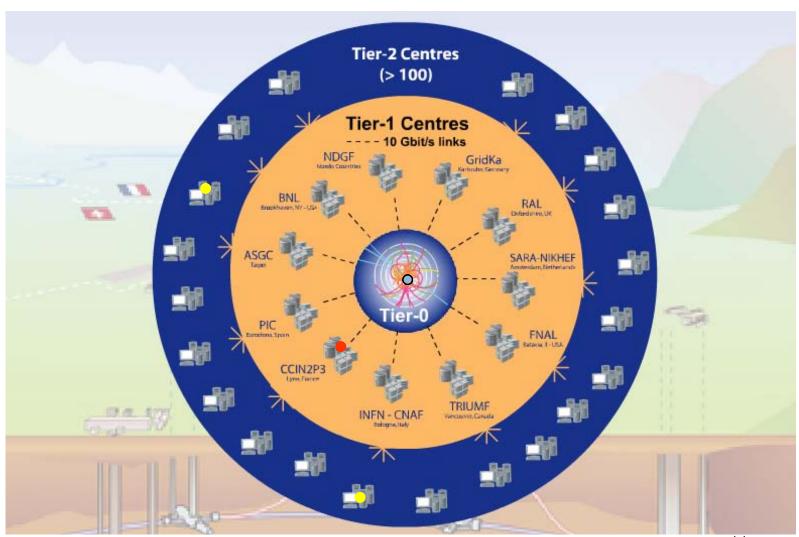


Colisiones



- □ Datos en el LHC:
 - Varios detectores convierten la física en datos
 - Se generan aproximadamente 15 petabytes al año
 - 500 megabytes/segundo de media
 - 1000-1600 megabytes/segundo cuando el LHC está funcionando
 - Miles de científicos alrededor del mundo quieren acceder y analizar los datos

No es posible un escenario de procesamiento de los datos típico


Escenario de procesamiento de datos en un grid:

- Grid de datos en el LHC:
 - El almacenamiento primario está en el Tier-O en el CERN
 - Del Tier-O se transfire a los Tier-1
 - Alemania, Francia, Italia, España, USA, Canada, Paises nordicos, Taipei
 - Los Tier-1 hacen que los datos estén disponibles a los Tier-2 (centros de investigación)
 - Los científicos pueden acceder a los datos del LHC en un ordenador o cluster cercano

- Otros ejemplos:
 - Distributed Aircraft Maintenance Environment (DAME)
 - Procesamiento de datos obtenidos de los aviones durante el vuelo
 - Earth Systems Grid (ESG)
 - Procesamiento de datos sobre el clima
 - Network for Earthquake Engineering Simulation (NEES)
 - Procesamiento de datos sobre terremotos
 - Grid for Ocean Diagnostics, Interactive Visualisation and Analyis (GODIVA)
 - Procesamiento de datos sobre el oceano

- Necesidades:
 - Seguridad y control de acceso
 - Descubrimiento de los datos
 - Transferencia de los datos
 - Gestión de replicas
 - Gestión de caches
 - Reserva de recursos
- Soluciones
 - No hay una solución para todo
 - Diversas tecnologías solucionan problemas concretos

Gestion de datos

Definición:

- Sistema que permite compartir información entre múltiples máquinas proporcionando un interfaz de acceso homogéneo
 - La información puede estar
 - Centralizada en una máquina (Network attached storage)
 - Distribuida, incluso de forma redundante, entre muchas máquinas (Cluster filesystems)
- Características deseadas:
 - Transparencia, Productividad
 - Escalabilidad, Tolerancia a fallos

Distributed File System (DFS)

- □ Network File System (NFS):
 - Origen:
 - Desarrollado por SUN
 - Actualmente por Internet Engineering Task Force (IETF)
 - Características.
 - Permite compartir ficheros a través de la red
 - El servidor exporta directorios
 - Los clientes montan los directorios
 - Los usuarios utilizan los directorios montados como si fueran locales
 - NFSv4 (influenciado por AFS)
 - 4.1 Añade WAN y paralelismo (pNFS)
 - Aún no hay implementaciones completas

NFS es similar a SMB/CIFS (Samba)

- □ Andrew File System (AFS):
 - Origen:
 - Desarrollado por la Carnegie Mellon University en 1983
 - Posteriormente comprado por IBM y liberado como código abierto en 2000 como OpenAFS
 - Características:
 - Respecto a NFS, mejora la seguridad y escalabilidad (hasta 5000 máquinas)
 - Hace gran uso de cachés
 - Evita tener que acceder al servidor
 - Junto con NFS se considera el ejemplo clásico de DFS

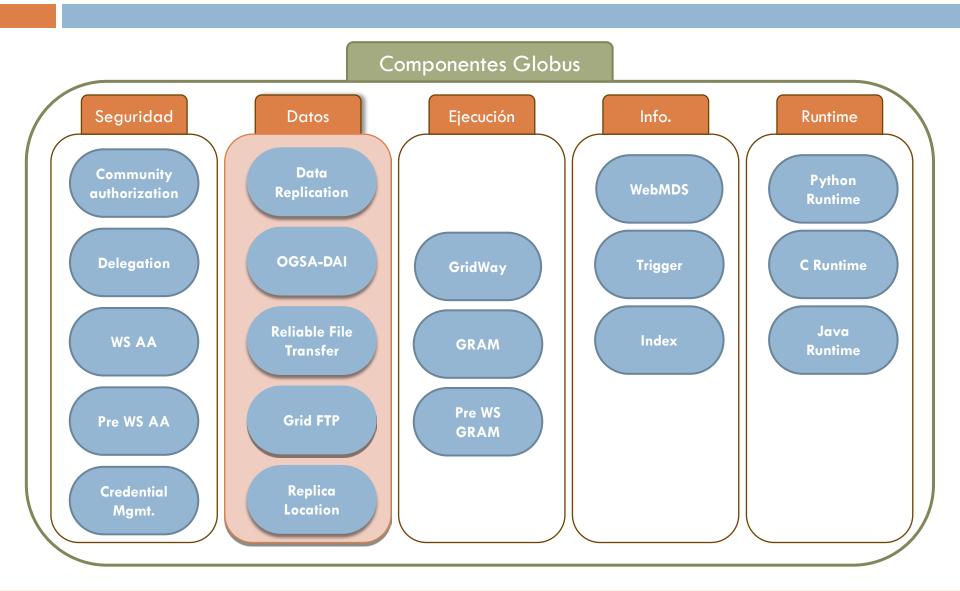
- □ Parallel Virtual File System (PVFS):
 - Origen:
 - Proyecto GPL
 - Características:
 - Paralelismo (~RAID)
 - Distribuye los ficheros en múltiples servidores
 - Gran velocidad de acceso para acceder a grandes cantidades de datos de forma concurrente
 - No está diseñado para proporcionar almacenamiento persistente sino para dar soporte a aplicaciones HPC (MPI)

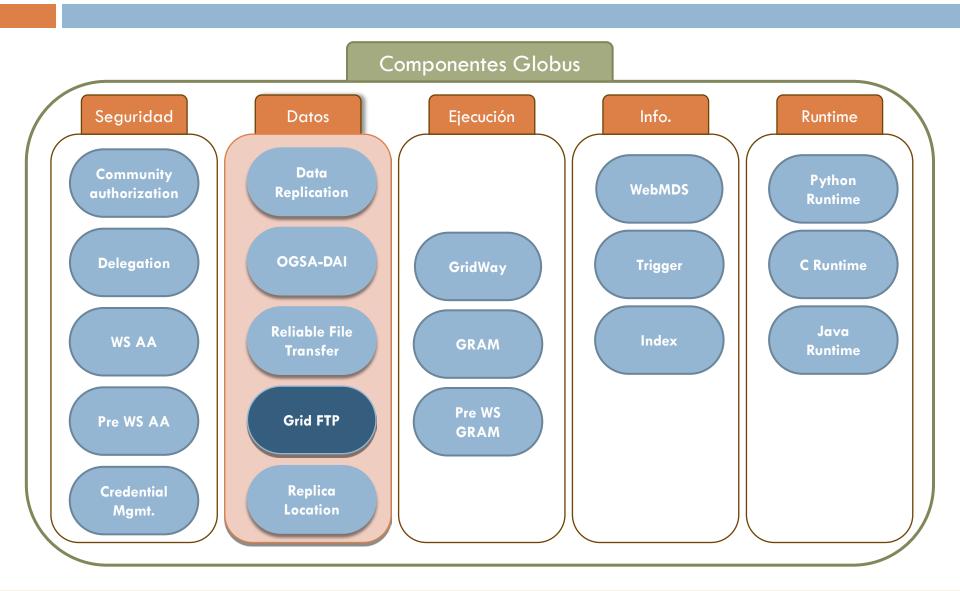
Disponible en Clusters Rocks

Lustre:

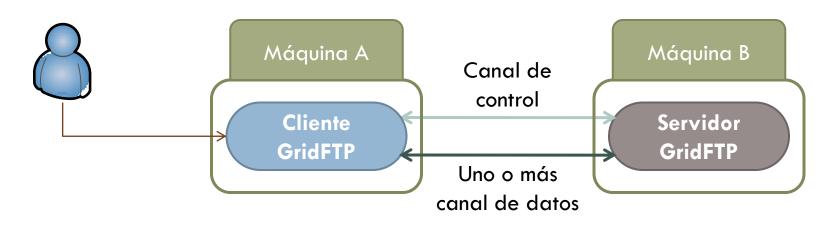
- Origen:
 - Desarrollado por Cluster File Systems Inc.
 - Posteriormente comprado por SUN y liberado con licencia GPL
- Características:
 - Almacenamiento paralelo orientado a objetos
 - Escala a decenas de miles de nodos con petabytes de almacenamiento y con una transferencia de gigabytes por segundo
 - 15 de los 30 mayores super computadores usan Lustre
 - Muy utilizado en Data-Centers

- General Parallel File System (GPFS):
 - Origen:
 - IBM (de pago)
 - Características:
 - Es el más maduro de los sistemas paralelos (no orientado a objetos)
 - Muy usado en HPC
 - Tolerante a fallos (distribuye los metadatos)
 - Disponible en Unix y Windows (2008)


- Haddop File System (HDFS):
 - Origen:
 - Proyecto de Apache Inspirado en GFS (Google File System)
 - Características:
 - Desarrollado para dar soporte a tareas Map/Reduce
 - Desarrollado en Java
 - Pensado para para grandes ficheros cuyo acceso sigue un patrón de una escritura y muchas lecturas
 - Tolerante a fallos gracias a la replica de información en los nodos
 - No permite montar el sistema de ficheros (si con FUSE)
 - Aún en desarrollo (Probado en Yahoo con 10000 nodos)


- Problemas de los DFS:
 - En mayor o menor medida aparecen problemas de escalabilidad
 - No funcionan de forma adecuada ante hardware heterogeneo
 - Están diseñados principalmente para ser usados en LAN de alta velocidad, no en WAN
 - Disponen de una administración centralizada

Gestion de datos


GridFTP

- Protocolo de transferencia de información diseñado para transferir gran cantidad de datos a gran velocidad
- Extiende el protocolo FTP
 - Autenticación y encriptación basada en Globus GSI
 - Permite utilizar múltiples canales de datos
 - Permite ajustar parámetros de la transferencia para mejorar el ancho de banda (Ej: tamaño de bloque TCP)
 - Permite transferir partes de un fichero
 - Permite usar multicasting
- Al igual que el FTP, no es firewall friendly

□ GridFTP

- Canal de control
 - Se intercambian comandos y respuestas
- Canal de datos
 - Se transfiere la información (ficheros y listados de directorios)

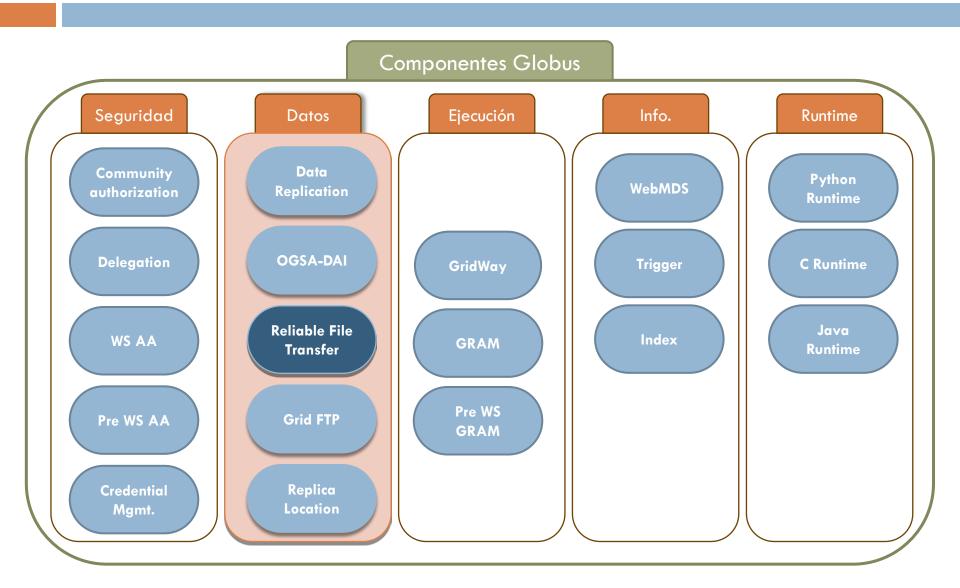
GridFTP En FTP se Third party transfer denomina FXP Máquina A Cliente **GridFTP** Canal de control Canal de control Máquina B Máquina C

Canales de datos

Servidor

GridFTP

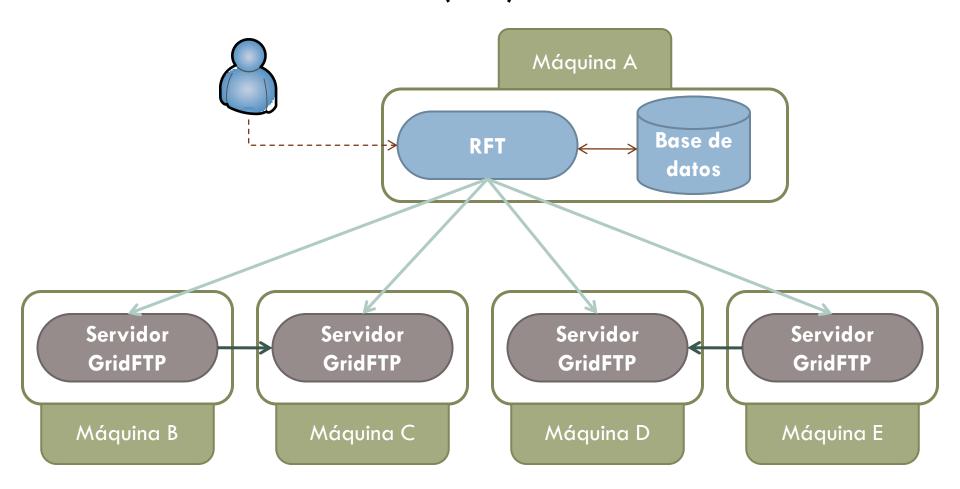
Servidor


GridFTP

- GridFTP
 - □ Forma de usarlo más habitual:
 - globus-url-copy <fuente> <destino>

```
$ globus-url-copy gsiftp://remote.host/path/file file:///path/file
```

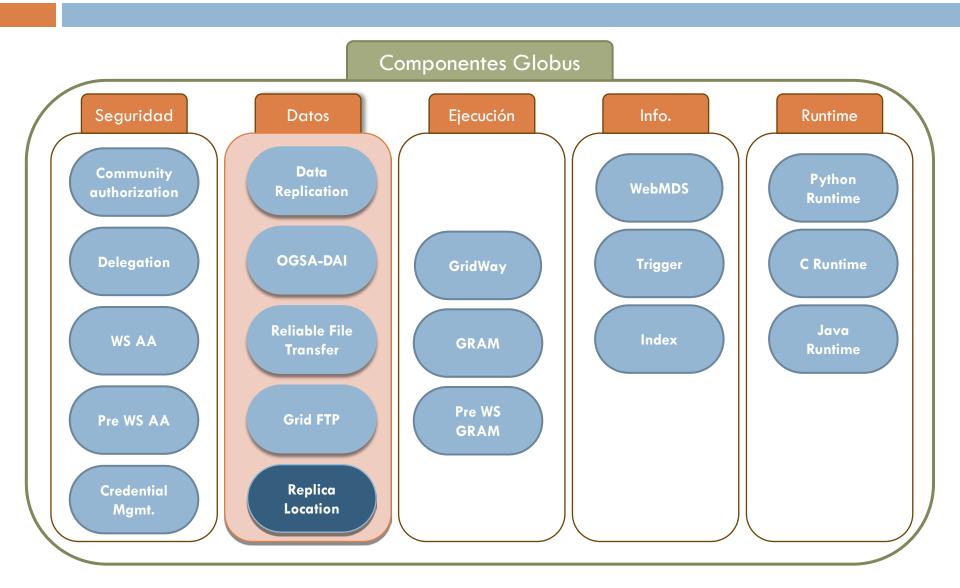
- Otras formas:
 - UberFTP
 - Cliente interactivo de consola
 - GridFTP GUI
 - Cliente en Java con interfaz



- Reliable File Transfer (RFT)
 - Servicio que proporciona fiabilidad y tolerancia de fallos a la transferencia de información
 - Actúa como un cliente de GridFTP
 - Convierte a la transferencia en un trabajo
 - Ventajas respecto a usar GridFTP directamente
 - Está diseñado como un servicio web WSRF
 - Otros programas lo pueden utilizar de forma simple
 - Se pueden especificar múltiples transferencias
 - Evita que el cliente tenga que mantener la conexión de control abierta durante la transferencia

Reliable File Transfer (RFT)

- Reliable File Transfer (RFT)
 - □ Forma de usarlo:


Diseñado principalmente para ser usado por otros programas

rft -file <fichero_EPR> -f <fichero_descr>

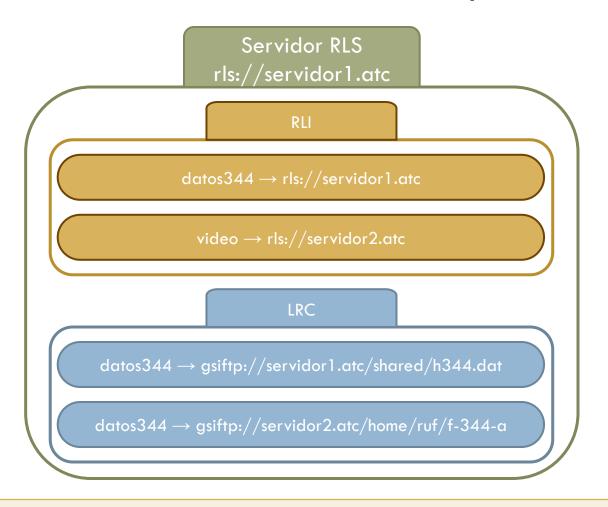
```
$ rft -file transfer.epr -f transfer.xfr
```

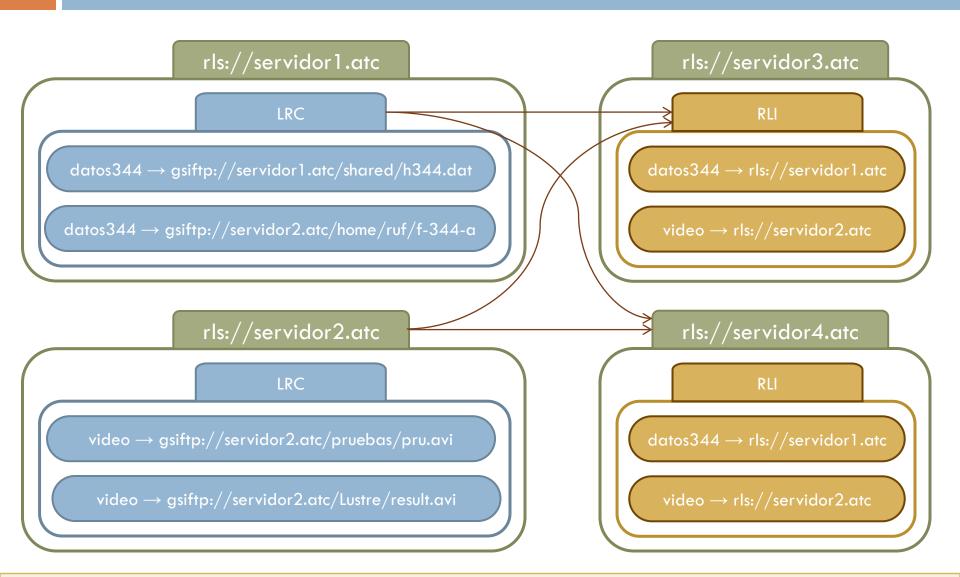
```
#true=binary false=ascii
True
#TCP Buffer size in bytes
16000
#Number of parallel streams
1
...
#Source/Dest URL Pairs
gsiftp://servidor1.atc:2811/data/file
gsiftp://servidor2.atc:2811/backup/file
transfer.xfr
```


- Reliable Locations Service (RLS)
 - Servicio que gestiona el registro y la búsqueda de información replicada
 - Elementos del RLS:
 - Local Replica Catalog (LRC)
 - Mantiene un catálogo de información replicada localmente
 - Replica Location Index (RLI)
 - Mantiene un catálogo de información replicada globalmente
 - Es una capa de nivel superior al LRC
 - Un servidor de RLS puede actuar como LRC, como RLI, o como ambos

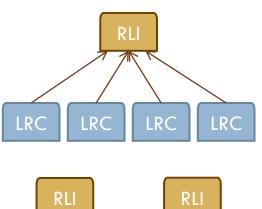
Se utilizan replicas por fiabilidad, disponibilidad, escalabilidad y durabilidad

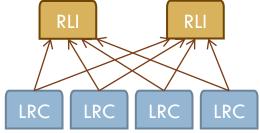
- Local Replica Catalog (LRC)
 - Mapea nombres de ficheros lógicos (LFNs) a nombre de ficheros físicos (PFNs)
 - Logical Filenames (LFN)
 - Es el nombre de un fichero
 - No se refiere a un lugar o máquina donde esté almacenado
 - Ej: datos344
 - Physical Filenames (PFN)
 - Se refiere a la ubicación física de un fichero
 - Ej: gsiftp://servidor1.atc/shared/h344.dat

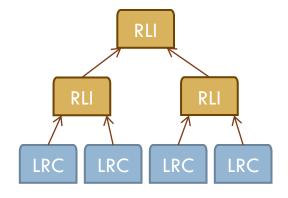

 Servidor de RLS actuando de LRC Es necesario hacerlo Servidor RLS distribuido rls://servidor1.atc RLI LRC $datos344 \rightarrow gsiftp://servidor1.atc/shared/h344.dat$ $datos344 \rightarrow gsiftp://servidor2.atc/home/ruf/f-344-a$

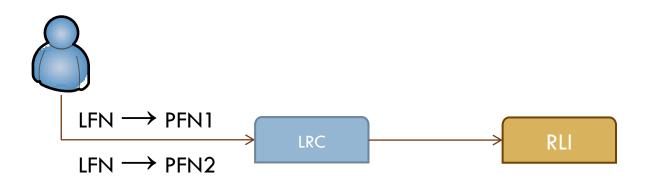

- Replica Location Index (RLI)
 - Mapea nombres de ficheros lógicos (LFNs) a LRCs que cotienen mapeos de esos LFNs a PFNs
 - Ventajas de usar RLI:
 - Los fallos en el RLI o en el LRC no provocan un fallo global
 - El RLI almacena una información sobre los mapeos reducida y por tanto puede almacenar más
 - Permite centralizar las búsquedas de la información replicada

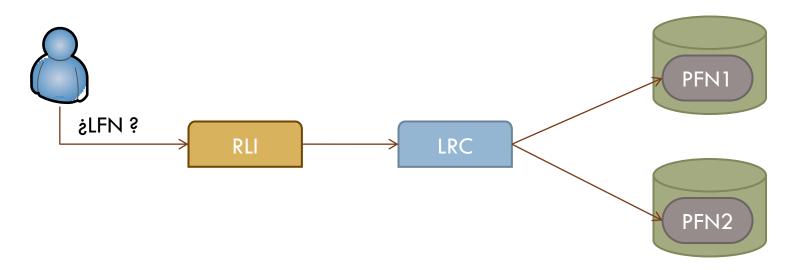
Servidor de RLS actuando de LRC y RLI








- Algunas posibles topologías:
 - Jerarquía simple
 - Configuración sencilla
 - Completamente conectado
 - Alta disponibilidad
 - Jerarquía en capas
 - Para gran cantidad de datos


- □ Creación de un mapeo
 - Se pide al LRC que cree un mapeo entre un LFN y un PFN1:
 - El LRC informa al RLI del mapeo
- Adición de un nuevo mapeo
 - Se pide al LRC que cree un nuevo mapeo entre el mismo LFN y PFN2

- Búsqueda de un LFN
 - Se pregunta al RLI:
 - Responde con una lista de LRCs
 - Se pregunta a un LRC:
 - Responde con una lista de PFNs

Escenario donde los datos no se modifican una vez creados, sólo se leen

- Utilización:
 - globus-rls-admin
 - Tareas administrativas
 - Ping a un servidor
 - Configurar la conexión entre el LRC y el RLI
 - □ globus-rls-cli
 - Tareas de usuario
 - Pedir información al RLC o al RLI
 - Crear y añadir mapeos

- Ejemplos de utilización:
 - □ Crear la conexión entre el LRC y el RLI:

```
$ globus-rls-admin -a rls://lrc-server rls://rli_server
```

□ Crear un mapeo:

```
$ globus-rls-cli create datos344 \
    gsiftp://servidor1.atc/shared/h344.dat rls://lrc_server
```

Buscar información:

```
$ globus-rls-cli query rli lfn datos344 rls://rli_server
```

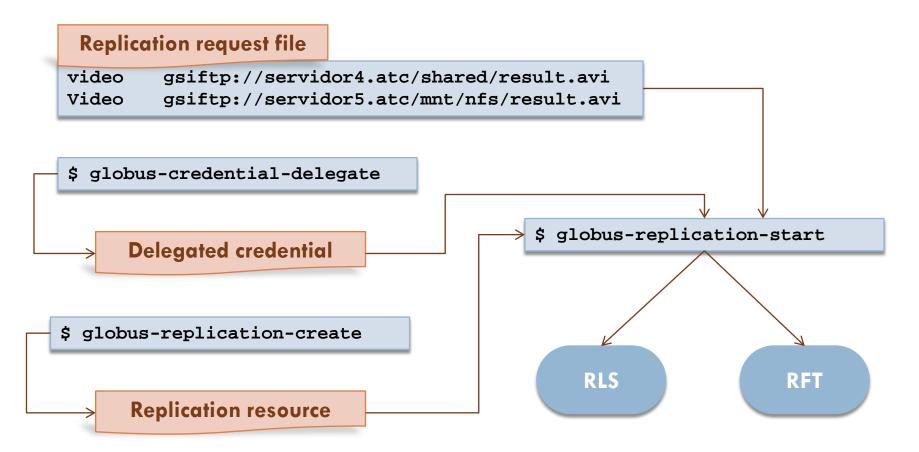

Data Replication:

- Conjunto de herramientas que permiten interactuar con GridFTP, RFT y RLS a un nivel de abtracción más alto
- Dos grupos de herramientas:
 - Replication Client:
 - Permite realizar operaciones sobre replicas (registrar, transferir, etc). Se utilizan los nombres lógicos de ficheros
 - Batch Replicator
 - Proporciona herramientas para localizar replicas, transferir los ficheros usando RFT y para su añadir nuevos mapeos una vez que los ficheros han llegado a su destino

- Replication Client:
 - Transferir un fichero local y registrarlo

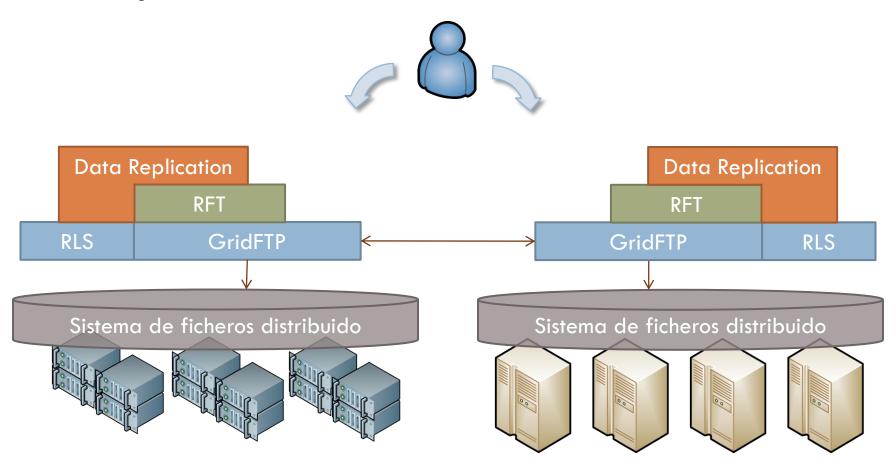
```
$ globus-replication-client -r rls://servidor1.atc put \
    ./video.avi video gsiftp://servidor2.atc/Lustre/result.avi
```

Crear una replica del fichero y registrarla


```
$ globus-replication-client -r rls://servidor1.atc replicate \
video gsiftp://servidor4.atc/shared/result.avi
```

Transferir una replica a un fichero local:

```
$ globus-replication-client -r rls://servidor1.atc get \
   video ./video.avi
```



Batch Replicator:

Integración:

Gestion de datos OGSA-DAI

- Open Grid Services Architecture Data Access and Integration
 - Framework basado en servicios web para flujos de trabajo (workflows) centrados en datos
 - Proporciona un interfaz comun para el acceso y manipulación de datos heterogénos
 - Sirve como base para servicios de más alto nivel
 - Federación de datos, minería de datos, visualización, ...
- OGSA-DAI es un middleware para "gridizar" bases de datos ya existentes

- □ Funciona junto a diversos middleware:
 - Globus

Unicore

gLite

Apache Axis/Tomcat

OGSA-DAI proporciona:

- Acceso a datos
 - Datos estructurados en recursos de almacenamiento heterogéneos
- Transformación de los datos
 - Permite transformar la forma en la que los datos están almacenados
- Integración de los datos
 - Permite exponer los datos de múltiples bases de datos como si estuvieran almacenados en una sóla base de datos virtual
- Envío de los datos
 - Permite enviar los datos a donde se necesite

- Acceso:
 - BD relacional: MySQL,Oracle DB2, SQLServer, Postgres,...
 - XML: Xindice, eXist
 - Ficheros: CSV, binarios,
 - • •
- □ Envío:
 - SOAP sobre HTTP
 - FTP, GridFTP
 - E-mail

- □ Transformación:
 - XSLT
 - ZIP, GZIP
- Seguridad:
 - Basada en certificadosX.509

- □ ¿Qué hace OGSA-DAI?
 - Ejecuta workflows
 - Conjunto de tareas con dependencias (DAG)
 - Los workflows contiene actividades
 - Una actividad
 - Recibe unos datos de entrada
 - Procesa los datos
 - Produce unos datos de salida
 - El workflow se diseña mediante un lenguaje de programación (java) + client toolkit (librería)
 - El programa se conecta al servicio web de OGSA-DAI y le envía el workflow como un documento XML

- □ Ejemplos de actividades
 - Ejecutar una query SQL
 - SQLQuery
 - Comprimir un conjunto de datos en un fichero ZIP
 - ZIPCompression
 - Listar los ficheros de un directorio
 - ListDirectory
 - □ Ejecutar una transformación XSL a un fichero XML
 - XSLTransformation
 - Enviar datos por correo electrónico
 - DeliverToSMTP

- Recursos de datos
 - Proporcionan una abstracción de los datos
 - Se deben dar de alta en el servidor OGSA-DAI
 - Recurso base de datos relacional
 - Recurso base de datos XML
 - Recurso sistema de ficheros
 - Recurso grupo (un conjunto de otros recursos de datos)
 - Recurso OGSA-DAI remoto
 - Los recursos de datos tienen asociados atributos:
 - Identificador, driver, usuario, contraseña, path, ...

Servidor OGSA-DAI

Recurso de datos

dai.resource.id=RecursoMySQL

dai.db.product=MySQL

dai.db.vendor=MySQL

dai.db.version=5

dai.db.uri=jdbc:mysql://servidor:3306

dai.db.driver=org.gjt.mm.mysql.Driver

dai.user=usuarioDAI

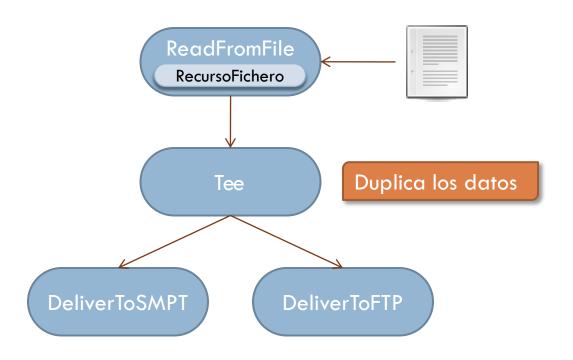
dai.password=secreto1234

Recurso de datos

dai.resource.id=RecursoFichero
dai.db.file.path=/shared

Recurso de datos

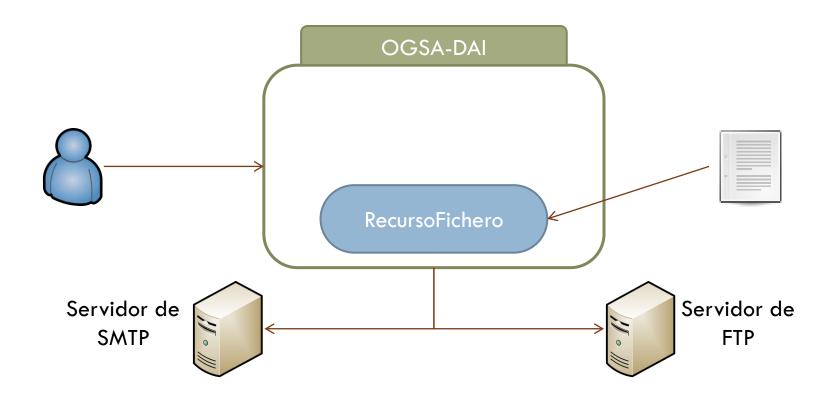
dai.resource.id=RecursoFichero2
dai.db.file.path=/home/data


Recurso de datos

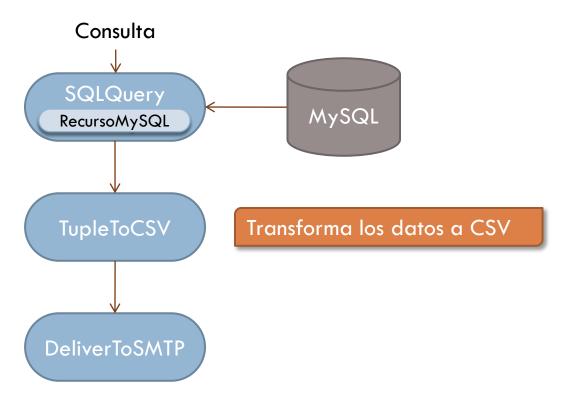
dai.data.resource.id=Recurso OGSA-DAI Remoto

dai.data.resource.uri=http://servidor:8080/wsrf/services/dai/

- □ Ejemplo simple de workflow
 - Leer un fichero y enviarlo a un servidor de FTP y por correo electrónico

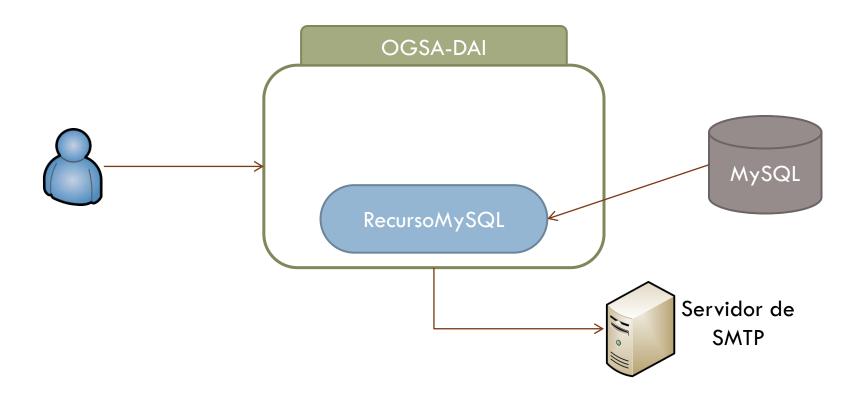



```
import uk.org.ogsadai.client.toolkit.activities.delivery.DeliverToFTP;
ServerProxy server = new ServerProxy();
server.setDefaultBaseServicesURL(new URL("http://servidor.atc/dai/services/"));
DataRequestExecutionResource drer =
         server.getDataRequestExecutionResource("DataRequestExecutionResource");
ReadFromFile readFromFile = new ReadFromFile();
readFromFile.setResourceID("RecursoFichero");
readFromFile.addFile("fichero.txt");
Tee tee = new Tee();
                                                                 Recurso dado de alta
tee.connectInput(readFromFile.getDataOutput());
                                                                    en el servidor
tee.setNumberOfOutputs(2);
deliverToFTP.connectDataInput(tee.getOutput(0));
deliverToSMTP.connectDataInput(tee.getOutput(1));
. . .
PipelineWorkflow pipeline = new PipelineWorkflow();
pipeline.add(readFromFile);
pipeline.add(tee);
RequestResource reqRes = drer.execute(pipeline, RequestExecutionType.SYNCHRONOUS);
. . .
                                                               WorkflowSimple.java
```



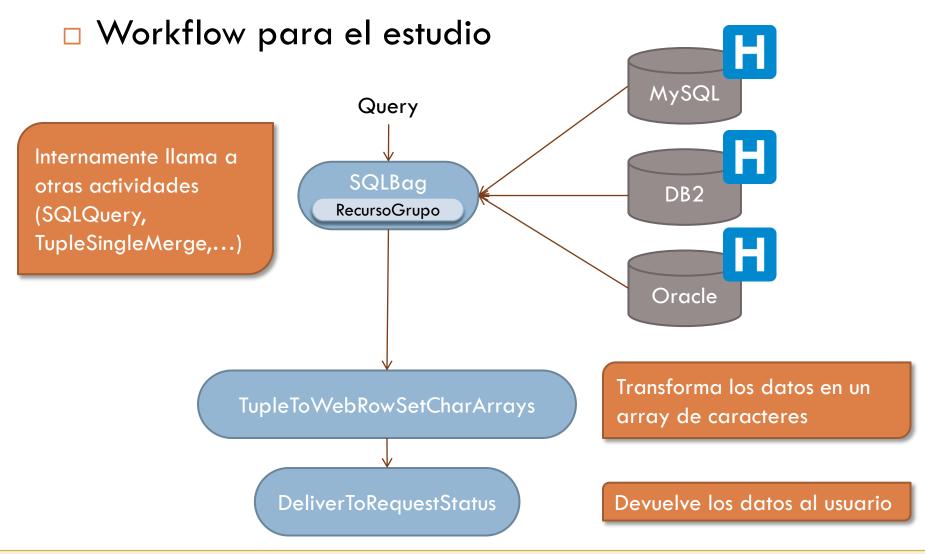
□ Diagrama de recursos

- Otro ejemplo simple
 - Realizar una consulta a una base de datos y enviar el resultado por correo en formato CSV




```
String expression = "SELECT * FROM BaseDeDatos";
SQLQuery query = new SQLQuery();
query.setResourceID("RecursoMySQL");
query.addExpression(expression);
TupleToCSV tupleToCSV = new TupleToCSV();
tupleToCSV.connectDataInput(query.getDataOutput());
DeliverToSMTP deliverToSMTP = new DeliverToSMTP();
deliverToSMTP.connectDataInput(tupleToCSV.getResultOutput());
deliverToSMTP.addFrom("senderName@SMTPserver.com");
deliverToSMTP.addSubject("Resultados de una query SQL");
List to = new ArrayList();
to.add("destinatario1@uniovi.es");
to.add("destinatario2@uniovi.es");
deliverToSMTP.addTo(to.iterator());
PipelineWorkflow pipeline = new PipelineWorkflow();
pipeline.add(query);
pipeline.add(tupleToCSV);
pipeline.add(deliverToSMTP);
RequestResource reqRes = drer.execute(pipeline, RequestExecutionType.SYNCHRONOUS);
. . .
                                                             WorkflowSimple2.java
```

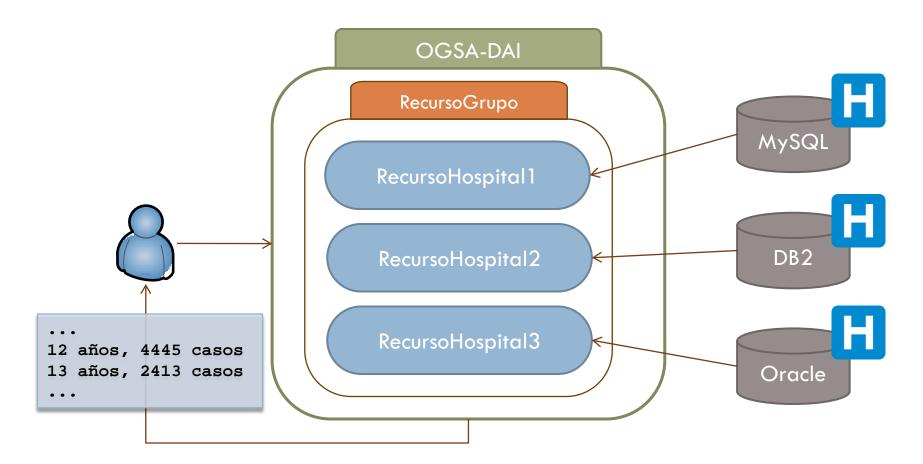

□ Diagrama de recursos



- Un ejemplo práctico
 - Un médico quiere realizar un estudio
 - Determinar la edad a la que los pacientes son diagnosticados con la varicela

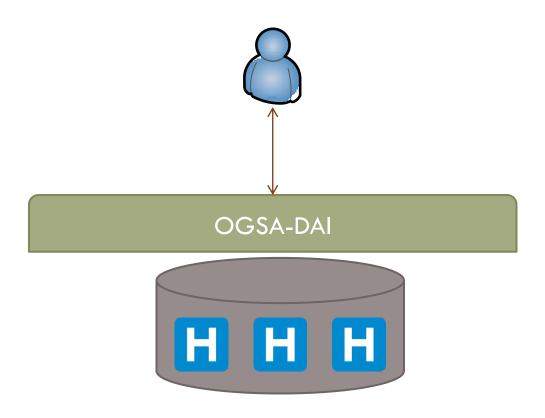
```
SELECT edad, count(*) as total
FROM Pacientes
WHERE Diagnostico = "Varicela"
GROUP BY edad
ORDER BY edad
```

- Problema:
 - Cada hospital tiene su base de datos
 - Cada base de datos utiliza una tecnología diferente

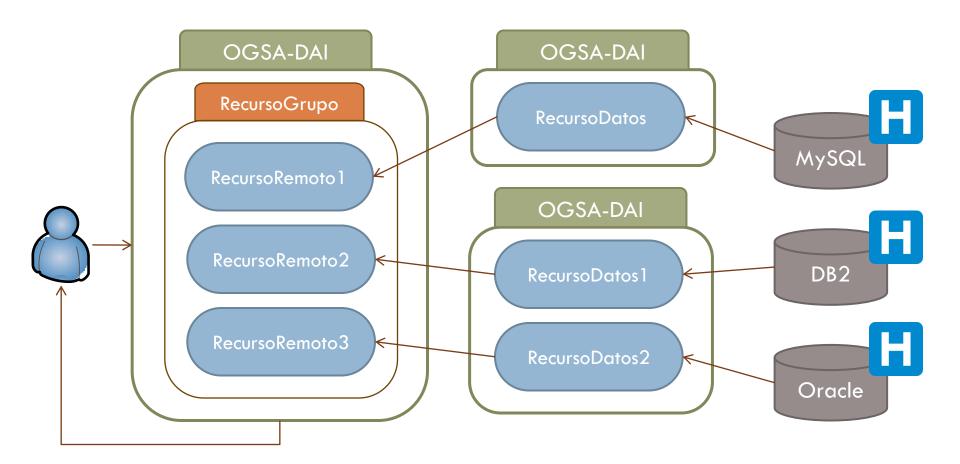



```
. . .
SQLBag query = new SQLBag();
query.setResourceID("RecursoGrupo");
query.addExpression("SELECT edad, count(*) ...");
TupleToWebRowSetCharArrays tupleToWebRowSet = new TupleToWebRowSetCharArrays();
tupleToWebRowSet.connectDataInput(query.getDataOutput());
DeliverToRequestStatus deliverToRequestStatus = new DeliverToRequestStatus();
deliverToRequestStatus.connectInput(tupleToWebRowSet.getResultOutput());
PipelineWorkflow pipeline = new PipelineWorkflow();
pipeline.add(query);
pipeline.add(tupleToWebRowSet);
pipeline.add(deliverToRequestStatus);
drer.execute(pipeline, RequestExecutionType.SYNCHRONOUS);
while (tupleToWebRowSet.hasNextResult()) {
    ResultSet rs = tupleToWebRowSet.nextResultAsResultSet();
   while (rs.next()) {
        ... // Hacer algo con los resultados
```


WorkflowVaricela.java


Diagrama de recursos

OGSA-DAI

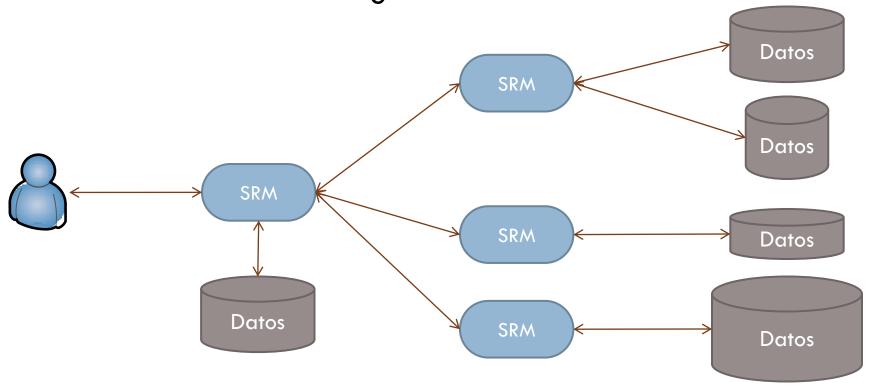

□ Desde el punto de vista del usuario

OGSA-DAI

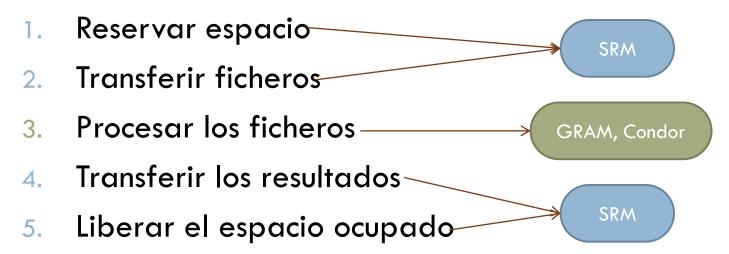
Otras posibilidades

OGSA-DAI

- Ventajas de OGSA-DAI respecto al acceso directo a los datos
 - Proporciona a los cliente un acceso homogeneo a datos heterogéneos
 - Permite realizar transformaciones de los datos en el servidor
 - Minimiza la comunicación con el cliente
 - Modelo de seguridad consistente
 - El acceso directo implica la distribución de usuarios y contraseñas para cada recurso
 - Ofrece sus servicios como un servidor WSRF
 - Su uso es independiente de plaforma y de lenguaje


Gestion de datos

- Estándar establecido por OGF (Open Grid Forum)
 - Define la interfaz de los recursos de almacenamiento
 - No define un protocolo de transferencia
- Funciones:
 - Reserva y liberación de espacio
 - Transferencia de información y negociación del protocolo utilizado
 - Gestión de ficheros, directorios y permisos
 - Interoperabilidad con otros SRM


□ SRM

 Capa consistente y homogénea sobre una infraestructura heterogénea

 Necesidades en un posible escenario de ejecución de un trabajo:

SRM gestiona los recursos de almacenamiento en un entorno multiusuario

- Parte del interfaz SRM
 - Gestión de ficheros y directorios
 - srmLs, srmMkdir, srmMv, srmRm, srmRmdir
 - Gestión de espacio
 - srmReserveSpace, srmReleaseSpace, srmUpdateSpace, srmGetSpaceTokens
 - Gestión de transferencias
 - srmPrepareToGet, srmPrepareToPut, srmCopy
 - Descubrimiento y permisos
 - srmPing, srmGetTransferProtocols, srmCheckPermission, srmSetPermission

- □ Ejemplos de uso de SRM
 - Reservar espacio

```
$ srm-sp-reserve -serviceurl servidor.atc -size 1000000 -lifetime 900
```

Copiar un fichero al espacio reservado

```
$ srm-copy file:///home/ruf/fich.dat \
    srm://servidor.atc/shared/fich.dat -spacetoken $SPTOKEN
```

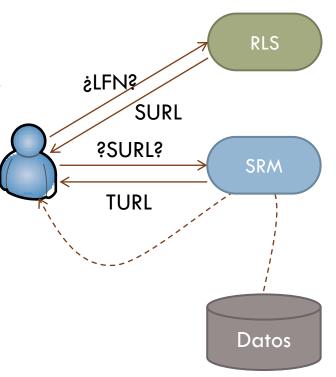
Copiar un ficheros entre SRMs

Liberar espacio

```
$ srm-sp-release -serviceurl servidor.atc -spacetoken $SPTOKEN
```


- Negociación de la transferencia
 - Los clientes y servidores exponen los protocolos de transferencia de información que soportan y sus preferencias
 - gsiftp, ftp, ssh,...
 - Se ponen de acuerdo en utilizar uno y lo usan para transferir la información
 - En caso de que falle se prueba con otro protocolo
 - Tolerancia a fallos

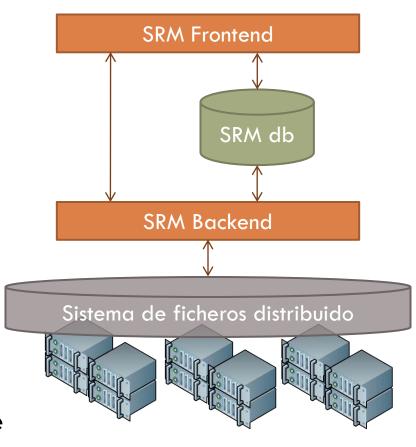
- Acceso a los ficheros
 - SRM proporciona una abstracción para el nombre de un fichero denominada SURL (Site URL)


```
srm://servidor.at/shared/fich.dat
```

- Un cliente debe indicar el SURL cuando quiere acceder a un fichero en un SRM
 - El SURL puede hace referencia a una o más localizaciones físicas
- El servidor responde con un TURL (Transfer URL) que se utilizará para acceder al fichero de forma temporal

```
gsiftp://mnt/lustre/fich.dat
```


- Integración de RLS y SRM
 - EL SURL se puede utilizar como PFN
 - Se pregunta al servidor RLS por un fichero utilizando el LFN
 - Responde con el SURL
 - Se pregunta al servidor SRM por el fichero utilizando el SURL
 - 4. Responde con el TURL
 - 5. Se realiza la transferencia


Una de las capas del EGEE

- □ Algunas herramientas que implementan SRM v2.2:
 - dCache
 - BeStMan (Berkeley Storage Manager)
 - CASTOR (CERN Advanced STORage manager)
 - DPM (Disk Pool Manager)
 - StoRM (Storage Resource Manager)
- □ SRM-Tester
 - Utilidad para comprobar que las herramientas cumplan con las especificaciones

- Un posible escenario:
 - SRM Frontend
 - Expone los servicios Web
 - Gestiona la seguridad
 - SRM db
 - Almacena las peticiones y el estado
 - Almacena información sobre el espacio disponible
 - SRM Backend
 - Ejecuta las operaciones sobre el sistema de ficheros

