Lección 12 Seguridad y criptografía

Seguridad

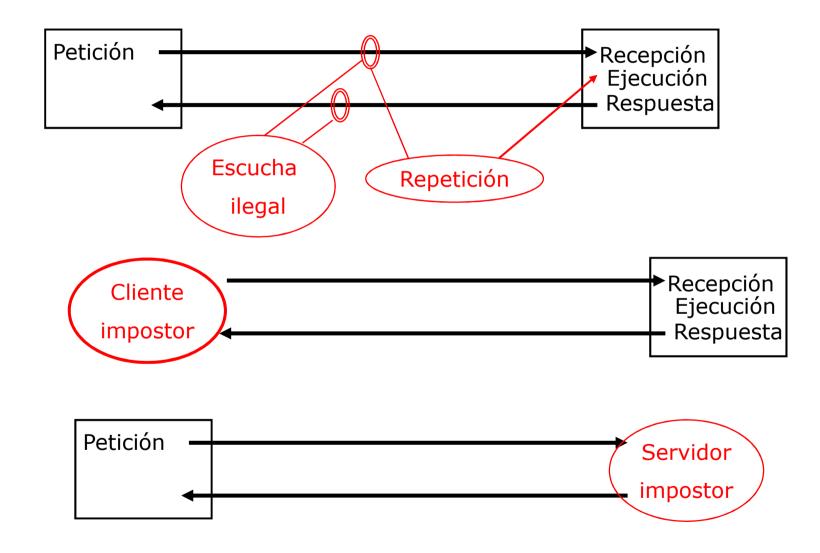
- Los sistemas distribuidos son más inseguros que los centralizados por que exponen más la información.
- Un sistema distribuido tiene más puntos atacables.
- Contrapartida: un sistema centralizado sólo hay que vencerlo una vez.
- En un sistema distribuido puede haber muchas "puertas", pero todas se tienen que abrir (caso ideal).

Amenazas

- Filtraciones. Adquisición de información por elementos no autorizados.
- Falsificaciones. Alteración no autorizada de información.
- Robo de recursos. Uso de recursos del sistema sin autorización.
- Vandalismo.- Interferencia en el correcto funcionamiento del sistema sin ganancia para el atacante.

Terminología:

 Principal: Elemento (persona o programa) autorizado para acceder a la información o los recursos del sistema. Identificado por nombre y clave.



Ataques

- Escuchas ilegales. Se puede realizar escuchando directamente la red o accediendo a almacenes mal protegidos.
- Suplantación.- Se envía y recibe información usando la identidad de un principal sin su autorización. Robo de identidad (nombre y clave) o bien usando elementos de identificación después de caducar.
- Falsificación de mensajes.- Interceptación de mensajes y alteración del contenido antes de reenviarlo.
- Repeticiones. Almacenamiento de mensajes para enviarlos en fechas posteriores.

Escenarios

Técnicas de seguridad

1. Criptografía. - Usos:

- 1. Mantener la información privada a salvo de escuchas ilegales. Se supone que un mensaje encriptado con una clave sólo podrá ser desencriptado por el que conozca la clave inversa.
- Autentificación entre principales: si el receptor de un mensaje lo descodifica usando una determinada clave y encuentra un valor determinado, puede suponer que el emisor es el esperado.
- Firma digital.- Garantiza que una determinada información proviene de un determinada fuente.
- 2. Autentificación.- En sistemas centralizados: nombre + clave. En sistemas distribuidos: claves de encriptación. La autentificación la hace un **servicio de autentificación**.
- 3. Listas de control de acceso (ACL).- Garantizan que unos determinados recursos sólo sean utilizados por los usuarios autorizados a hacerlo.

Criptografía

- Objetivo: Convertir texto claro en texto cifrado aplicando un regla. El receptor convierte el texto cifrado en texto claro aplicando la regla inversa.
- La encriptación y desencriptación se divide en dos partes:
 - La función.
 - La clave.
- La función define un algoritmo de encriptación dependiente de la clave.
- Notación:
 - M: Texto claro.
 - K: Clave.
 - {M}_K: Texto cifrado que se obtiene al aplicar a M la función de encriptación con la clave K

Criptografía. Tipos.

- La efectividad depende de la dificultad de descubrir M a partir de {M}_K o de descubrir K a partir de M y {M}_K.
- Tipos de criptografía:
 - Basada en clave secreta.
 - Basada en claves públicas.

Criptografía de clave secreta

- Modelo más antiguo.
- Como la clave es secreta, la función de encriptación y su inversa no necesitan serlo.
- Emisor y receptor DEBEN compartir la misma clave. Problema de adquisición de la clave.
- Secuencia de comunicación: $f(K,M) = \{M\}_K \rightarrow f^1(K,\{M\}_K) = M$
- Estándar inicial de clave secreta: DES (Data Encryption Standard) [IBM 1997].
 - Convierte 64 bits de texto claro en 64 bits de texto cifrado usando una clave de 56 bits.
- Debido a su inseguridad ha sido sustituido por el AES (Advanced Encryption Standard) en 2001. Utiliza claves de 128, 192 y 256 bits.

Ejemplos de aplicación

- La criptografía de clave secreta (o simétrica) se usa en muchos ámbitos, debido a su rapidez de ejecución y posibilidad de implementación en hardware
 - Cifrado de documentos o archivos para uso privado
 - Protecciones DRM
 - Cifrado de comunicaciones Wi-Fi (RC4)
 - Sistemas completos de autenticación y seguridad:
 Kerberos
 - Cifrado de canales seguros (SSH, SSL). En este caso se usa de forma mixta con la criptografía de clave pública.

Criptografía de clave pública

- Elimina el problema de tener que compartir una clave secreta entre los dos extremos de la comunicación.
- Se utiliza en sistemas de firma digital (FNMT, por ejemplo).
- Bases del sistema:
 - Existen dos funciones E y D, conocidas, que se usan para encriptar y desencriptar los mensajes.
 - Existen dos claves, Ks y Kp para cada una de las funciones. Ks se mantiene secreta y Kp se publica.
 - La relación entre las claves f(Ks)=Kp es una función que, aunque se conoce, es muy costoso (computacionalmente) de obtener.
 - La relación entre D y E es de simetría: E(D(x))=D(E(x))=x.

Criptografía de clave pública. Casos de Uso

Principales: Ana y Blas.

Ana genera
$$K_{S_A}$$
 y K_{P_A} publica K_{P_A}

Blas genera Ks_B y Kp_B publica Kp_B

Envío de Mensaje

Computa
$$E(Kp_B, M) = \{M\}_{Kp_B}$$
 Envío

 $D(Ks_{B_{i}} \{M\}_{Kp_{B}}) = M$ iSólo lo lee Blas!

Envío de Mensaje Identificando al Emisor

$$E(Ks_A,M) = \{M\}_{Ks_A}$$

$$E(Kp_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Kp_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Kp_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Ks_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Ks_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Ks_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

$$E(Ks_B,\{M\}_{Ks_A}) = \{\{M\}_{Ks_A}\}_{Kp_B}$$

 $D(Kp_{A}, \{M\}_{Ks_{A}}) = M$

iLo envía Ana!

Criptografía de clave pública. Casos de Uso

Principales: Ana y Blas.

Ana genera K_{S_A} y K_{D_A} publica K_{D_A}

Blas genera Ks_B y Kp_B publica Kp_B

Firma Digital

M'=Mensaje (M) + Firma (F)

Computa Hash(M') = H

$$E(Ks_A,H)=\{H\}_{Ks_A}$$

Publica (**M'+ {H}**_{KSA})

Hash(M') = H1

$$D(Kp_{A}, \{H\}_{Ks_A}) = H2$$

Si H1=H2 mensaje de Ana y sin alterar.

También se podría encriptar $M'+\{H\}_{KSA}$

Clave pública. Algoritmo RSA

El RSA (Rivest, Shamir y Adelman) es el más utilizado. Pasos:

1. Se escogen P y Q números primos muy grandes (al menos 256 bits $> 2^{100}$).

- 2. Calcular N=P*Q y Z=(P-1)*(Q-1)N=91 Z=72
- 3. Se escoge Kp tal que sea un número primo relativo de Z. (Sin factores comunes con Z).

 Kp=5 ó 7 ó 11 ó 13 ...
- 4. Ks es el primer número que nos resuelve la ecuación: $Kp*Ks = 1 \pmod{Z}$. Si Kp*S*=1 6 73 6 145,... Si Kp*=5, Ks=?;
- 5. La funciones de cifrado y descifrado son: $E(Ks,N,M) = M^{Ks} \mod N \quad y \quad D(Kp,N,C) = C^{Kp} \mod N$ $E= M^{29} \mod 91 \qquad D= C^5 \mod 91$
- 6. El texto se divide en bloques de k bits / 2^k < N 2^k < 91 \Rightarrow k=6

Algoritmo RSA. Ejemplo

Tenemos:

Mensaje:

ASCII

Esto es una prueba \rightarrow 45 73 74 6F 20 65 73 20 75 ...

Binario: 0100 0101 0111 00011 0111 0100 0110 1111 0010 0110 0101

Agrupando de k en k bits

52

17

23

13

.... (están en decimal)

Cifrado:

$$C = 17^{29} \mod 91 = 75^4$$

Veremos cómo obtenerlos

Decodificación:

 $M = 75^5 \mod 91 = 17$

Cómo calcular el resultado

Tenemos que encontrar el resultado de 1729 (mod 91)

- Método "bruto": Calcular 17²⁹ (sale 481968572106750915091411825223071697) y despues aplicarle mod 91.
- Método basado en la propiedad del módulo:

$$(a \times b) \mod M = ((a \mod M) \times (b \mod m)) \mod M$$

17²⁹ es 17 * 17 * 17 (29 veces). En cada multiplicación podemos aplicar el modulo 91 y asi nunca salen números demasiado grandes.

17 ²	$17 \times 17 = 289 \equiv 16 \pmod{91}$					
17 ³	$16 \times 17 = 272 \equiv 90 \pmod{91}$					
17 ⁴	$90 \times 17 = 1530 \equiv 74 \pmod{91}$					
aun así tenemos 28 multiplicaciones y módulos						
17 ²⁸	$90 \times 17 = 1530 \equiv 74 \pmod{91}$					
17^{29}	$74 \times 17 = 1274 \equiv 75 \pmod{91}$					

Cómo calcular el resultado

- Algoritmo de exponenciación binaria (o "elevar al cuadrado y multiplicar"), para elevar un número a una potencia.
- Se quiere calcular x^N
 - Poner el exponente, N, en binario
 - Inicializar aux:=1
 - Para cada bit b de N, comenzando por la izquierda
 - Elevar al cuadrado aux
 - Si el bit b es 1, hacer además aux:=aux * x
 - Si el bit b es 0, no hacer nada extra
 - Al final, aux contiene el resultado buscado (x^N)

Cómo calcular el resultado

• ¿Por qué funciona el algoritmo?

• Ejemplo: 17²⁹

29=11101

Iteración	aux inicial	aux^2	bit b	nuevo aux	
1	1	1	1	1*17	
2	17	$(17)^2$	1	172*17	
3	173	$(17^3)^2=17^6$	1	176*17	
4	177	$(17^7)^2 = 17^{14}$	0	1714	
5	17 ¹⁴	$(17^{14})^2 = 17^{28}$	1	17 ²⁸ *17	
17 ²⁹					

 Este algoritmo llega a la solución con pocas operaciones, pero los datos que maneja se hacen enseguida enormes.

Algoritmo usado en la práctica

 Se usa la exponenciación binaria antes explicada, pero en cada asignación de aux se aplica el módulo.

Iter.	aux inicial	aux^2	mod 91	bit b	nuevo <i>aux</i>	mod 91
1	1	1	1	1	1*17	17
2	17	289	16	1	16*17 = 272	90
3	90	81000	1	1	1*17	17
4	17	298	16	0	16	16
5	16	256	74	1	74*17 = 1258	75

17²⁹ (mod 91)

Comparativa clave secreta vs clave pública

- Seguridad: Con los algoritmos y el manejo de claves adecuado, ambas técnicas son suficientemente seguras.
- Comodidad: La encriptación de clave pública es muy cómoda ya que no necesita compartir un secreto.
- Rendimiento: El cifrado de clave secreta es más eficiente que el de clave pública (estimado en 2 ó 3 órdenes de magnitud).

La encriptación de clave pública no cifra el mensaje.

Se utiliza para intercambiar la clave secreta con la que se cifra el mensaje.

