
Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 1 – 9804201143

Defense Information Systems Agency (DISA)

Joint Interoperability & Engineering Organization
(JIEO)

Center for Computer Systems Engineering (JEXF)

DII COE Distributed Applications Series

Recommendations for Using DCE,Recommendations for Using DCE,
DCOM, and CORBA MiddlewareDCOM, and CORBA Middleware

April 13, 1998

DISA/JIEO/JEXF Points of Contact:
POC: David Diskin diskind@ncr.disa.mil

or: Sherrie Chubin chubins@ncr.disa.mil

The MITRE Corporation
1820 Dolley Madison Boulevard
McLean, Virginia 22102-3481

MITRE Document ID: MITRE-DAS-C1

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 2 – 9804201143

DII COE Distributed Applications Series

(Note: You are currently reading the shaded document)

Document Title Contents Purpose
A. Index Documents
A1 – Guide to Using the
DII COE Distributed
Applications Series

Briefly describes the documents in
this series and explains their
applicability to defense system users.

Read this document if:
• You want to know which documents in this

series are most relevant to your needs.
B. Understanding Distributed Applications
B1 – Issues in Building
Effective Distributed
Applications

Introduces basic issues and
terminology for distributed
applications. Emphasizes concepts
such as total performance and
scalability that are especially relevant
to defense systems.

Read this document if:
• You want an introduction to the overall

concepts of distributed applications.
• You want a perspective of distributed systems

oriented more to DoD issues such as
scalability.

B2 – New Perspectives
on Distributed
Architectures

A more in-depth look at underlying
factors that must be dealt with when
integrating older systems into new
applications, and for obtaining greater
flexibility and scalability in new
systems.

Read this document if:
• You will need to integrate older and non-

standard systems into new distributed
applications.

• You need build or evaluate systems that need
to scale up to many or very many components.

B3 – Java and
Middleware

A brief look at the possible impact of
the network programming language
Java on middleware and distributed
applications.

Read this document if:
• You are concerned about the impact Java

could have on selecting middleware and
architectures.

• You are interested in potential benefits of Java.
B4 – Integration and Use
of Middleware Products
in the DII COE

An overview of both current support
for middleware technologies in the DII
COE, and of likely future trends for
use.

Read this document if:
• You need to use the DII COE for distributed

apps
• You want to use middleware not yet in the

COE
C. Selection and Use of Middleware for Building Distributed Applications
C1 – Recommendations
for Using DCE, DCOM,
and CORBA Middleware

Quickly summarizes the key features,
advantages, and disadvantages of
using DCE, DCOM, or CORBA for
distributed defense applications, and
provides recommendations for how
to use them.

Read this document if:
• You need to decide whether to use one or

more of these middleware technologies in your
application.

• You have legacy apps that use one of these
three.

• You want specific examples of middleware
issues.

C2 – A Comparison of
Three Middleware
Technologies: DCE,
DCOM, and CORBA

A detailed comparison of three COTS
middleware technologies (DCE,
DCOM, and CORBA) that are
particularly likely to be needed or
encountered when building
distributed applications.

Read this document if:
• You want a more in-depth understanding of

the concept of middleware and its uses in
defense systems.

• You have legacy apps that use one of these
three.

• You need to select a middleware technology.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 3 – 9804201143

Document Title Contents Purpose
C3 – Guide for Building
Multiple Middleware
Applications

A detailed description of the problem
of how to build distributed
applications when use of a single
middleware product cannot be
guaranteed. It includes specifics on
mixing of DCE, DCOM, and CORBA.

Read this document if:
• You need both Unix and Windows NT

platforms.
• You already use DCE, DCOM, or CORBA.
• You need a general strategy for dealing with

more than one middleware product (e.g. due to
legacy).

• You need specifics on bridging between any of
the DCE, DCOM, and CORBA middleware
products.

D. Guidance for Distributed Application Architects
D1 – Guide for Building
Scalable Distributed
Architectures

A brief description of how to identify
scalability issues, oriented towards
distributed application architects.

Read this document if:
• You are working on a large or performance

limited distributed application where scaling is
critical.

D2 – Guide for Efficient
Use of Object
Technology in
Distributed Applications

A brief description and summary of
the advantages object-oriented
distributed applications and migrating
to them.

Read this document if:
• You want a general understanding of the

benefits of object technology for distributed
systems.

• You want to understand available object-
oriented tradeoffs when using middleware
technologies such as DCE, DCOM, and
CORBA.

• You need to migrate from non-object-oriented
middleware to object-oriented middleware.

D3 – Predicting CORBA
Performance Through
Prototyping

Provides guidance on how to analyze
the performance implications of
building distributed applications with
CORBA, or with other middleware
products such as DCE or DCOM.

Read this document if:
• You need to estimate the performance impact

of using CORBA or other middleware products
as part of a COE-based distributed application.

• You want to understand what major factors
impact performance in distributed applications.

D4 – DII COE Guidelines
for Using CORBA,
DCOM, and DCE

Provides specific guidelines for DII
COE use of CORBA, DCOM, and
DCE, with a primary focus on
CORBA. Addresses features down to
the IDL syntax level.

Read this document if:
• You will be developing distributed DII COE

applications using CORBA, DCOM, or DCE.
• You need an open, interoperable design

strategy.
E. Advanced Architecture Examples
E1 – A Cellular Proxy
Architecture for
Battlespace Integration

Applies principles from the
documents to the specific problem of
distributed tactical systems.

Read this document if:
• You are interested in examples of applying

scaling and other concepts to a difficult
environment.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 4 – 9804201143

Executive Summary

A distributed application is an application whose software components reside on more than one
computer in a network, with the network typically composed of diverse computers and operating
systems (a heterogeneous network). Middleware is software that simplifies the construction of
distributed applications by providing standardized mechanisms that distributed components can
use to communicate over a network. From both a historical and technological viewpoint, three of
the most important middleware technologies are the Distributed Computing Environment (DCE),
the Distributed Component Object Model (DCOM), and the Common Object Request Broker
Architecture (CORBA).

Another increasingly important middleware technology is Java Remote Method Invocation
(RMI). RMI was originally developed solely for use between distributed components written in
the Java programming language, but its relevance to other more generic middleware technologies
is growing due to more use of Java in distributed systems, and because there is a concerted effort
underway to integrate RMI with CORBA. Java and RMI are mentioned briefly in this document
as they relate to middleware, but for more detailed information on Java and RMI please see the
index of Distributed Application Series documents at the front of this document.

DCE is best described as an influential early middleware product that subsequently fell behind in
the marketplace due to its lack of standardized support for object-oriented languages. Although
still a part of many legacy systems, DCE is unlikely to play a major role in the development of
newer and (especially) Internet-based distributed systems. Many of the most innovative features
of DCE have in the past few years been incorporated into other middleware products such as
DCOM and CORBA, and DCE lacks the market support needed for its products to keep pace
effectively with either DCOM or CORBA.

DCOM is a relatively new Microsoft-sponsored technology for Windows NT platforms that
promises to play a major role in PC-based server systems when Window NT 5.0 begins to
significantly penetrate that market in late 1998 or 1999. It is deployed in Windows NT 4.0
systems and is available for Windows 95 systems, but does not appear to be used extensively. The
reason is that as of early 1998, the features of DCOM that deal with conveying and supporting
service requests between remote components are still too immature to easily support development
of large distributed systems. At present DCOM is more important not for its distribution features,
but rather for its accompanying specification of how to interact with software components
(objects) in a Windows system. This local-only aspect of the DCOM standard, called COM, is
deeply embedded in Windows systems and provides an important interoperability target for
distributed applications that need to incorporate both Windows and non-Windows computer
systems into their networks.

As of early 1998, the middleware product that is the most widely deployed and actively used on
Windows-based PCs is CORBA. In 1997 CORBA was distributed to millions of PCs as part of
the popular Netscape Communicator browser, which uses a Java-compatible version of the
CORBA-compliant Borland VisiBroker to provide communications to remote objects via the
Internet. In addition to this de facto standardization of CORBA as the mostly widely used and

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 5 – 9804201143

readily accessible middleware product for PCs, the CORBA language for describing interfaces to
software components is now an international standard (ISO/IEC DIS 14750). Membership in the
CORBA sponsoring organization (the Object Management Group, or OMG) includes about 780
vendors, developers, and user organizations. The international standardization of the CORBA
interface language makes CORBA attractive for Internet based applications, and the large size of
the OMG means that CORBA products can be found on most computer systems.

CORBA is also unique because it is being integrated at the underlying protocol levels both with
the Internet and with Java, a language designed specifically for creating distributed applications.
Integration of CORBA with the Internet allows developers to use the existing Internet
infrastructure to build efficient distributed applications faster and more flexibly. Integration of
CORBA with Java makes it significantly easier for developers to use the simpler and more
network-oriented features of Java to integrate legacy software into new distributed applications.

As of early 1998, general recommendations for using these three middleware technologies are:

 • Use Distributed Computing Environment (DCE) only for legacy software. From a
market perspective, DCE has been significantly weakened by its belated and incomplete
support for object-oriented languages. With object-oriented languages continuing to grow
in importance in both commercial applications and on the Internet, this has left DCE in a
poor situation compared to both CORBA and DCOM. DCE thus is a poor choice for a
middleware technology except when it is already being used in a legacy system. DCE is
not an appropriate choice for building entirely new distributed systems.

 • Use CORBA. The de facto position of CORBA as the most widely distributed and used
middleware product in PCs (via Netscape Communicator) makes it an excellent choice for
use in low-end Windows platforms. Furthermore, the broad availability, open standards,
support for a wide range of platforms and programming languages, and mature support
for object-oriented software make CORBA an especially good choice for integrating
diverse types of systems. Other factors that make CORBA a strong choice are its
accompanying long-term architecture (the OMA) for defining and integrating supporting
services, and its ongoing integration with Java (see below).

 • Use only one CORBA vendor unless interoperability can be verified. The greatest
current weakness of CORBA is the slow pace of its efforts to make CORBA products
from different vendors interoperate with each other. There has been significant progress in
this area in the last couple of years, but at present the safest strategy for using CORBA is
still to pick a single vendor and use that vendor consistently for a given application.

 • Use integrated CORBA/Internet/Java products whenever possible. One particularly
promising middleware technology trend is the ongoing integration of CORBA, the
Internet, and Java. An explicit example of this trend is the Netscape Communicator
browser and its bundled VisiBroker Java software. The integration of these three
technologies is centered on a CORBA message protocol (that is, a well-defined style of
exchanging messages) known as the IIOP, or Internet Inter-ORB Protocol. The IIOP is a
simple but flexible CORBA protocol that allows objects written in many different

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 6 – 9804201143

programming languages to communicate directly with each other over the Internet. As of
early 1998, both the design and marketing position of IIOP make it the best candidate for
becoming a universal protocol for linking diverse types of objects over an Internet-style
network.

 • Use middleware bridges into COM. DCOM is not at present a major factor in building
distributed systems, but the closely associated but local-only COM technology is already
widely used in Windows 95 and NT to define the interfaces to many types of software
objects. Middleware vendors who provide effective bridges to COM thus also provide
valuable access to software components available in low-cost PC systems, and also
minimize the possible future impact of more robust versions of DCOM.

As of early 1998, associated general predictions of events that could impact use of these three
middleware technologies are:

 • Expect impacts from DCOM when Windows NT 5.0 is released. Microsoft is strongly
committed to DCOM and has already announced new initiatives that should make it more
powerful and useful on both its native Windows systems and on other operating systems.
The most important event for DCOM will be the full commercial release of Windows NT
5.0 in late 1998 or 1999. NT 5.0 will include an advanced set of middleware-oriented
services (called Active Directory) that should make DCOM much more powerful and
easier to use. Overall, it is still too early to tell how such future versions of DCOM will
compete with the growing CORBA/Internet/Java collection of multi-vendor middleware
efforts.

 • Expect to see more use of Java in distributed applications. Java provides features that
make applications more portable and more scalable, particularly when it is accessed
though the IIOP. Java is currently the best overall candidate for “mobile objects” that can
be flexibly reassigned to new platforms to increase efficiency during everyday use of a
distributed application. Due to the many market, technical, and legal factors that are
affecting Java, it is difficult to predict exactly how large a role Java will play in the future
of middleware, although a fairly major role looks fairly well assured as of early 1998.

 • Expect to see continued expansion in the use of scripting languages. Contrary to the
minimalist implications of the term “scripting,” scripting languages such as Perl, Visual
Basic, Javascript, Python, and tcl/Tk are actually among the most powerful programming
languages in existence. 1 They are particularly useful for integrating legacy software, since
much of their power comes from an open and highly accommodating programming style
that does not require legacy components to meet the internal programming conventions of
new software. In terms of their relationship to middleware technologies such as CORBA,
scripting languages are best understood as complementary technologies that can be used

1 “Scripting: Higher-Level Programming for the 21st Century” (March 1998) , by John K. Ousterhout,
IEEE Computer, Vol. 31, No. 3, March 1998, pp. 23-30. Public abstract at:
http://computer.org/computer/co1998/r3023abs.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 7 – 9804201143

to bring legacy software into a middleware framework rapidly and easily. For example,
Perl or Python can be used to convert the inputs and outputs of a legacy system into IIOP
messages, so that the resulting combination looks like a CORBA-compliant server.

 • Expect to see XML used for sharing middleware data. XML is a new World Wide
Web Consortium (W3C) standard for representing complex data using human-readable
labels and structuring.1 It is relevant to middleware because it provides a convenient and
well-standardized way to present, transport, and preserve complex data objects without
“attaching” non-portable software methods to them. For example, a software object
written in Java can present all or part of its internal data structure as a language-
independent XML object that can then be stored in a database, or directly interpreted by
components written in languages such as C++. In a heterogeneous distributed application,
XML thus can be used to make it easier to store and share complex data across diverse
types of platforms and components.

 • Expect change. The Internet has drastically increased the rate at which new technologies
impact the market place. Approaches that emphasize open, well-standardized message
protocols (e.g., the CORBA IIOP and the recent XML standard) are generally the best
choices in such situations, as opposed to selections of specific tools or functions.

1 “Extensible Markup Language (XML)” (W3C, March 1998), http://www.w3.org/XML/

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 8 – 9804201143

Document History

Release Release Date Authors and Reviewers

1.6 1998-04-13 Authors: Terry Bollinger (MITRE)
David Diskin (DISA)
Sherrie Chubin (DISA)

Reviewers: David Diskin (DISA)
Sherrie Chubin (DISA)
Roger Duncan (MITRE)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 9 – 9804201143

Table of Contents

DII COE Distributed Applications Series2

Executive Summary4

Document History8

Table of Contents9

List of Figures................................ 11

List of Tables 12

1. Introduction: Key Features of Middleware Technologies13
1.1 Distributed Applications and Middleware ... 13
1.2 Interface Definition Languages (IDLs) ... 13
1.3 Interoperability Protocols ...13
1.4 Message Brokers ... 14
1.5 Supporting Services ... 15
1.6 Tool and Componentware Support ..16
1.7 Support for Objects in the IDL ..16

2. Annotated Descriptions of DCE, DCOM, and CORBA17
2.1 DCE – Distributed Computing Environment ... 17
2.2 DCOM – Distributed Component Object Model ...18
2.3 CORBA – Common Object Request Broker Architecture21

3. Middleware Comparisons and Recommendations 24
3.1 DCE – Distributed Computing Environment ... 24

3.1.1 Key Features of DCE ...24
3.1.2 Advantages of DCE ...25
3.1.3 Disadvantages of DCE...25
3.1.4 Recommendations for DCE ...27

3.2 DCOM – Distributed Component Object Model ...27
3.2.1 Key Features of DCOM..28
3.2.2 Advantages of DCOM ..29
3.2.3 Disadvantages of DCOM ...29
3.2.4 Recommendations for DCOM ..31

3.3 CORBA – Common Object Request Broker Architecture32
3.3.1 Key Features of CORBA..33
3.3.2 Advantages of CORBA ..34
3.3.3 Disadvantages of CORBA ...37
3.3.4 Recommendations for CORBA ..38

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 10 – 9804201143

4. Summary of Recommendations 41

Appendix A. Orbix CORBA Products43

Appendix B. VisiBroker CORBA in Netscape Products 44
B.1 VisiBroker Components in Netscape Products ..44
B.2 VisiBroker Components in Netscape Communicator 4.X45
B.3 VisiBroker Components in Netscape Enterprise Server 3.1 45
B.4 Restrictions on the Use of VisiBroker in Netscape ..46
B.5 VisiBroker Components Not Included With Netscape46
B.6 Comparison of Netscape VisiBroker and VisiBroker 3.X47

Appendix C. References 51

Appendix D. Glossary56

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 11 – 9804201143

List of Figures

Figure 1. Java to C++ Via an Internet Interoperability Protocol14

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 12 – 9804201143

 List of Tables

Table 1. VisiBroker Features Supported in Netscape and in VisiBroker 3.X47

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 13 – 9804201143

1. Introduction: Key Features of Middleware Technologies

All middleware technologies share certain features, since they all deal with the same problem of
how to make it easier to construct and integrate distributed applications. This introduction
provides a brief overview of several key features and concepts that are useful for understanding
and comparing middleware products.

1.1 Distributed Applications and Middleware

A distributed application is an application whose software components reside on more than one
computer in a network, with the network typically composed of diverse computers and operating
systems (a heterogeneous network). Middleware is software that simplifies the construction of
distributed applications by providing standardized mechanisms that distributed components can
use to communicate over a network. From both a historical and technological viewpoint, three of
the most important middleware technologies are the Distributed Computing Environment (DCE),
the Distributed Component Object Model (DCOM), and the Common Object Request Broker
Architecture (CORBA).

1.2 Interface Definition Languages (IDLs)

An interface definition language is just what it sounds like: a computer language for describing
the externally accessible operations of a software component. IDLs look like abbreviated
programming languages, ones that only provide enough features to permit a programmer to name
operations (that is, programming procedures, functions, or methods), and to describe what kinds
of parameters need to be sent and returned when an operation is used. Thus an IDL is valuable
not because it lets programmers do anything new, but because it provides a standardized way of
defining the services that are available from a software component. Once such a standardized
interface has been defined for a software component, that component can in principle be called or
used by any other component on any other platform, even if the other component was written in a
different programming language.

A second and subtler advantage of an IDL is that it provides a consistent way to hide diverse
communication methods from software components that use them. With an IDL interface into the
middleware, application components can be largely indifferent as to whether another component is
located on the same or a different platform, even though the underlying communication
mechanisms are very different for local and remote access.

1.3 Interoperability Protocols

An IDL defines common interfaces for components, but it says nothing about how requests and
responses to those interfaces will be conveyed as messages across a network. This conveying of
service requests and responses is the second basic function of a middleware technology, and it is
accomplished by defining an interoperability protocol that specifies what types of messages will
be exchanged and how their contents should be interpreted. The complexity of a middleware
interoperability protocol is directly related to the complexity of its IDL, since an IDL that allows
complex data structures to be defined will need to be supported by an interoperability protocol

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 14 – 9804201143

that “understands” how to convert such data structures to and from network messages. The
overall process of converting data structures into messages is called marshaling, and the recovery
of the data from such messages is called (not too surprisingly) unmarshaling. An example of the
overall process of using a CORBA interoperability protocol on the Internet is shown in Figure 1.

Figure 1. Java to C++ Via an Internet Interoperability Protocol

1.4 Message Brokers

In addition to showing how an interoperability protocol is used to transfer requests and data
across a network, Figure 1 also introduces the important question of what, exactly, is responsible
for providing the address information needed to send a message across a network. The simplest
approach to this problem is a “direct mail” strategy in which each component knows the full
address of every component to which it needs to send a message. This approach is closely
analogous to the way ordinary postal mail works, since anyone who wants to mail a letter must
first know the physical address of the intended recipient.

A direct-mail strategy has the advantage of being efficient, since every message goes directly to
the intended recipient without having to pass through any intermediate steps. However, it also has
important disadvantages. At the network level, it is inflexible because individual components
remain locked to an old address even when the receiving component has moved to a new location.
At the individual component level, a direct-mail approach is burdensome because it requires each
component to store and maintain all the addresses it needs. This is wasteful, since many

h C++ Program (server):

“Sure – it looks just
like any other request

to me”

Java Program
(client):

“Please store this
data in the central

Internet

Request and Data in
CORBA IDL syntax

Request and Data in
Java syntax

Request and Data
accepted by “ORB”

Request and Data
recreated from data
in interoperability

messages

Request and Data
reformatted and

inserted into Internet
interoperability

messages

Request and Data in
C++ syntax

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 15 – 9804201143

components use the same addresses and thus could share them instead of keeping separate copies
of them. A direct-mail approach is even more burdensome for legacy components that lack
features for storing or using network addresses. Trying to force legacy components to understand
network addresses may require major code re-writes, and thus can significantly limit the range of
components available for integration into new distributed applications.

What is needed to resolve these difficulties is a new software entity that serves as a director or
dispatcher of messages – that is, as a message broker. (In the case of object-oriented middleware,
such message brokers are often called Object Request Brokers, or ORBs.) The idea of a message
broker is to allow simple descriptive names to be used as the addresses of components. The
message broker translates those names into network addresses without the senders or receivers
ever knowing each other’s real network locations. The result would be the postal-mail equivalent
of being able to address a letter by simply writing a person’s name on the envelope, and then
letting the post office do the work of looking up the physical address of that person.

It should be noted that except in a few unusual cases, it is neither practical nor desirable for a
distributed application to use a “pure” message broker model in which every message is routed
through the address-lookup portion of the broker. Since distributed components often send
hundreds or thousands of messages to the same recipients, repeated lookups in such cases could
be both very slow and wasteful of resources. A well-designed message broker instead provides a
fast local storage (called a cache) for keeping recently retrieved and other relevant network
addresses. The addresses kept in this fast local storage can then be used to “direct mail” all
subsequent messages to the same remote components. In a good broker design this switch
between explicit remote lookup of an address and local use of a cache can be made transparent, so
that from the perspective of a software component its requests are all handled in the same way.

Historically, the concept of a message broker and recognition of its importance has come about
rather slowly in middleware. This may be due in part to the simplicity and conceptual appeal of
direct-mail messaging models, which correspond to the way people use everyday messaging
services such as telephones and postal mail. However, in the long term the message broker
concept provides a number of fundamental benefits. At the design level it provides a good way to
separate the complexity of the network from the functionality of a distributed application, and at
the operations level it enables more reliable and scalable performance by making it easier to
reconfigure an application in response to increased network loads or isolated network failures. In
both cases the message broker concept significantly increases the range of possible uses of
middleware and distributed applications.

1.5 Supporting Services

Once a middleware technology has its IDL and interoperability protocol in place, it can use those
features to provide a range of supporting services that make it easier to build distributed
applications. A common example would be a name server, which is a service that helps distributed
components locate each other on a network. Supporting services are not absolutely necessary for
middleware, but in practice good supporting services can make a very substantial difference in
how easy it is to develop flexible, extensible distributed applications.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 16 – 9804201143

1.6 Tool and Componentware Support

As with supporting services, supporting tools and componentware (that is, prefabricated
components ready for incorporation into new applications) are not absolutely necessary in a
middleware technology, but they can make a substantial difference in how easy it is to develop
new distributed applications. The most powerful tools and componentware are ones that make the
process of distributing application components across a network as “transparent” as possible.
That is, they hide as much of the complexity of the middleware itself as possible, so designers can
keep their focus and efforts on building application functionality.

1.7 Support for Objects in the IDL

An object is a resource (e.g., a data structure) that can only be accessed by using a previously
defined set of operations (procedures or functions). This explicit association of resources and
operations makes it easier to control and protect resources, and also forces developers to put
more thought up front into how to create a set of operations that makes access to the resource
fast and convenient. From a design perspective, this kind of association of resources and
operations can be done using any programming language. However, only object-oriented
languages support explicit association of resources and operations at the level of the source code,
so that correctly associated use of resources and operations can be verified at compilation. In
addition to this basic capability to associate resources and operations explicitly, most object-
oriented languages also provide a variety of mechanisms that make it easier to create new objects
and new types of objects. Examples of these mechanisms include object classes for creating new
objects of a specific type, and inheritance for defining new object classes as more specific versions
of other, more generic object classes.

Object-oriented programming languages such as C++ and Java have become quite popular in
recent years, and for this reason alone it is important that middleware products support object-
oriented software components. However, object-oriented technologies also provide a direct
benefit to distributed applications by making resources more readily available on a network. The
operations of the resource object can simply be “published” or made known to other platforms in
the network, which can then use the middleware to access that resource. On the other hand, if
there is no well-defined set of operations there will be a tendency to treat each new request to use
the resource as a custom programming task. Such a case-by-case approach is costly, inflexible,
and in the long term unreliable, since it results in a proliferation of different ways to access the
same resource. Defining resources as objects avoids such problems and helps ensure consistency.

Ideally, the IDL of a middleware product should support the declaration of objects in much the
same way that object-oriented programming language does. An IDL that does not provide explicit
object specification can still be used to convey service requests between object-oriented
components, but it requires additional custom programming and the resulting application is less
likely to be portable.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 17 – 9804201143

2. Annotated Descriptions of DCE, DCOM, and CORBA

This section provides annotated overviews of the three middleware technologies DCE, DCOM,
and CORBA. The annotations are in the form of hyperlinked footnote references that provide
Internet references to many of the more important documents from which this comparison was
developed. If you are reading this document in a version of Word that supports Internet browsing,
you can view any referenced document by simply double-clicking on the blue underlined portion
of the footnote. If your copy of Word does not support Internet browsing, or if you are using a
printed copy of this document, the Internet address (called a Universal Resource Locator, or
URL) of each reference is also provided. To use the URL reference, copy or type it into the URL
field of your Internet browser.

2.1 DCE – Distributed Computing Environment

Historically, DCE1 was the first major multi-vendor middleware technology. DCE is defined and
promoted by The Open Group2, previously known as the Open Systems Foundation (OSF). A
good source of introductory and general information about DCE is the DCE Frequently Asked
Questions (FAQ) page,3 which is referenced on The Open Group home page and maintained by
Jon Mauney (jon@mauney.com). DCE has had significant competition from CORBA and DCOM
in recent years, but it is still widely used in many systems and platforms.4 DCE has good security
features based on Kerberos,5 and in the past DCE products on different platforms and from
different vendors have generally shown better compatibility and interoperability than have
comparable CORBA products.6 DCE was supposed to become object-oriented in early 1996 with
the release of the DCE 1.2.1 standard, which specifies an object interface for the C++ language
(only).7 In practice, however, DCE vendor support for C++ and other object language interfaces
has been fragmented and incomplete. As a result, object-oriented developers using DCE are
forced either to choose one of several incompatible object-oriented extensions to DCE, or to

1 DCE FAQ Question 1.01: What is DCE? (August 1997),
http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q1_01

2 The Open Group home page (March 1998) , http://www.opengroup.org/
3 DCE Frequently Asked Questions (August 1997) ,

http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html
4 DCE FAQ Question 1.03: What platforms support DCE? (August 1997) ,

http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q1_03
5 “Kerberos User's Guide SG-2409 9.0” (December 1997) ,

http://www-lc.llnl.gov:8080/library/all/SG-2409
6 DCE FAQ Question 1.08: What is the relationship between DCE and CORBA? (August 1997),

http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q1_08
7 OSF DCE 1.2.1 New Features (November 1995),

http://www.camb.opengroup.org/tech/dce/info/papers/osf-dce-ds-1195.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 18 – 9804201143

create their own custom (and thus incompatible) object interface extensions to DCE.1 For
distributed applications written in object-oriented languages such as C++, this makes DCE
complex to use and greatly reduces the portability and interoperability of the resulting
applications.

2.2 DCOM – Distributed Component Object Model

DCOM2 is the Microsoft response to DCE3 and CORBA4 middleware technologies. Rather than
being viewed as an entirely new middleware technology, DCOM is perhaps best understood as an
application of DCE technology (see above) to the problem of how to distribute Microsoft
document components over a network.5 Microsoft document components and their associated
GUI controls (e.g., ActiveX6 controls) are described internally to Windows systems by using a
proprietary, object-oriented Microsoft technology called Component Object Model (COM).7 8

DCOM (Distributed COM) extends the range of COM technology by transparently (that is,
without requiring any changes to the components) conveying requests to components on other
platforms through use of the underlying DCE communication protocols.9 Since COM is object-
oriented, DCOM is object-oriented in the same sense as other object-oriented extensions10 of
DCE. However, the COM object interfaces used by DCOM are generally more complex to create
and read than those of CORBA11 12, and as a result are more likely to be generated by commercial

1 DCE FAQ Question 2c-02: Can I use DCE from C++? (August 1997) ,
http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q2_20

2 DCOM (January 1998), http://www.microsoft.com/com/dcom.htm
3 DCE FAQ Question 1.01: What is DCE? (August 1997),

http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q1_01
4 “What IS CORBA????” (OMG, October 1997), http://www.omg.org/about/wicorba.htm
5 “Microsoft Complies With DCE – For Now” (Information Week, 29 July 1996) ,

http://www.techweb.com/se/directlink.cgi?IWK19960729S0051
6 ActiveX™ Controls (January 1998), http://www.microsoft.com/com/activex.htm
7 COM Technologies home page (March 1998) , http://www.microsoft.com/intdev/com/
8 COM versus CORBA: A Decision Framework (April 1998) ,

“http://www.quoininc.com/quoininc/COMCORBA.html#COM versus CORBA: A Decision
Framework”

9 “DCOM Technical Overview” (Microsoft, November 1997) ,
http://www.microsoft.com/ntserver/library/dcomtec.exe

10 DCE FAQ Question 2c-02: Can I use DCE from C++? (August 1997) ,
http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q2_20

11 “DCOM and CORBA Side by Side, Step by Step, and Layer by Layer ” (September 1997),
http://www.cs.wustl.edu/~schmidt/submit/Paper.html

12 “From CPP to COM” (Microsoft, October 1995),
http://premium.microsoft.com/msdn/library/techart/html/cpptocom.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 19 – 9804201143

tools from Microsoft or other vendors than coded manually.1 Although convenient for developers
who are using such tools, this approach can complicate the use of a technology such as DCOM if
DCOM is not fully integrated with the tools that create the COM interfaces, or if DCOM is used
on platforms that do not support comparable generation of COM interfaces.

To understand the role of DCOM in the middleware market it is important to make a clear
distinction between COM and DCOM. COM is a mature and broadly deployed document and
component structuring technology used in essentially all Windows 95 and NT platforms,2 whereas
DCOM is an immature middleware technology3 with a web site that as of early 1998 provides
only one unambiguous example of its use in a commercial application.4 In such a situation there
are strong marketing incentives for emphasizing the success of the target COM technology while
skipping somewhat lightly over the status and success of DCOM per se. As a result, many
technical descriptions of DCOM often tend to end up being more about the strength and maturity
of COM,5 than the status of DCOM. Such presentations can blur important issues, however, since
COM as it currently exists is not a middleware technology at all, but rather an interface
technology that can in principle be used by any middleware technology to gain access to software
components on local Windows platform.6 The real advantage that DCOM gains from its close ties
to COM is an “inside track” on the data needed to build an effective interface to such COM
components. Other middleware technologies such as CORBA are dependent on potentially
incomplete or ambiguous published specifications of COM interfaces, and thus may not be able to
track changes to COM standards as quickly as DCOM. This advantage does not appear to have
had much impact on DCOM as of early 1998, but it is a factor that clearly needs to be taken into
account when looking at the long-term potential of DCOM as a middleware product.

As of March 1998 it is still difficult to find specific examples of commercial use of DCOM. The
Microsoft web site that promotes DCOM7 includes a document with three examples of DCOM-
based architectures, but one of the examples is labeled as hypothetical and the other two having
no specifics on the companies that developed them or their current implementation status.8 The

1 “COM+: Building on the Success of the Component Object Model” (Microsoft, November 1997),
http://www.microsoft.com/com/slides/complus.zip

2 COM: Component Object Model (Microsoft, February 1998) ,
http://www.microsoft.com/com/

3 “Real-Time DCOM's Immediate Future Now Uncertain” (Jensen, November 1997) ,
http://www.realtime-os.com/noteworthy/rt-dcom.html

4 “DCOM Cariplo Home-Banking Case Study” (Microsoft, Nov 1997),
http://www.microsoft.com/com/wpaper/dcomhome.zip

5 “DCOM Business Case” (Microsoft, March 1998), http://www.microsoft.com/ntserver/guide/dcom.asp
6 IONA CORBA-COM Bridge announcement: OrbixCOMet™ Desktop (DDDD) ,

http://www.iona.com/news/pressroom/msoft.html
7 DCOM (January 1998), http://www.microsoft.com/com/dcom.htm
8 “DCOM Solutions in Action” (November 1997) , http://www.microsoft.com/com/wpaper/dcomsol.zip

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 20 – 9804201143

Microsoft DCOM site also provides one detailed, web-verifiable, company-specific case study1 of
a home banking system in Italy2 that uses DCOM. In contrast, as of March 1998 the CORBA web
site3 lists 53 specific examples of companies with CORBA distributed application success stories.4

In terms of vendor support, two vendors currently support DCOM:5 Microsoft,6 and more
recently Software AG.7 Microsoft provides all tool and support work for DCOM on Windows 95
and NT, while Software AG develops products for non-Windows operating systems such as Unix
and OS/390.8 Microsoft clearly views the DCOM porting activity of Software AG as an important
component of their long-term ability to make DCOM into a full middleware product that can
interoperate with other non-Windows operating systems. For example, Microsoft includes
Software AG products as part for their long-term strategy (called COM+)9 for making COM
easier to use and more interoperable with other operating systems.

DCOM is nominally an open standard by virtue of a quasi-association10 with the DCE standards
of The Open Group.11 However, for all practical purposes the definition and future direction of
DCOM are best understood as being one of a group of interrelated technologies that are all
controlled by the Microsoft Corporation.12 These COM-related technologies13 include DCOM
itself, COM+,14 the Microsoft Transaction Server (MTS);15 and ActiveX™ Controls.1 The fact

1 “DCOM Cariplo Home-Banking Case Study” (Microsoft, Nov 1997),
http://www.microsoft.com/com/wpaper/dcomhome.zip

2 Home Banking web site (Cariplo Bank in Italy) implemented using DCOM technology (October 1997) ,
http://www.cariplo.it/HomeBanking.htm

3 OMG (CORBA) Home Page (February 1998) , http://www.omg.org/
4 CORBA Success Stories (November 1997) , http://www.corba.org/index.html
5 “DCOM Business Case” (Microsoft, March 1998), http://www.microsoft.com/ntserver/guide/dcom.asp
6 Microsoft home page (March 1998) , http://www.microsoft.com/
7 Software AG home page (March 1998) , http://www.softwareag.com/corporat/default.htm
8 “Software AG's Latest DCOM Runs On IBM OS/390” (Computer Reseller News, November 1997),

http://www.techweb.com/se/directlink.cgi?CRN19971103S0197
9 “COM+: Building on the Success of the Component Object Model” (October 1997),

http://www.microsoft.com/com/slides/complus.zip
10 “Real-Time DCOM's Immediate Future Now Uncertain” (Jensen, November 1997) ,

http://www.realtime-os.com/noteworthy/rt-dcom.html
11 DCOM-DCE meeting minutes (November 1996) ,

http://www.opengroup.org/public/tech/dce/nov96/OOminutes.html#dcom
12 “Microsoft Complies With DCE – For Now” (Information Week, 29 July 1996) ,

http://www.techweb.com/se/directlink.cgi?IWK19960729S0051
13 COM Technologies home page (March 1998) , http://www.microsoft.com/intdev/com/
14 COM+ (November 1997), http://www.microsoft.com/com/complus.htm
15 MTS (March 1998), http://www.microsoft.com/com/mts.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 21 – 9804201143

that DCOM uses a slight variation of the DCE protocol for conveying messages between remote
components2 means that it is possible to communicate between DCE and DCOM components
without complex message conversions. DCOM supports object-oriented languages, although as of
early 1998 the range of object-oriented languages supported by DCOM (C++ and Java) was
considerably smaller than that of CORBA (C++, Java, Smalltalk, Ada95, Objective Cobol, and
others).

2.3 CORBA – Common Object Request Broker Architecture

CORBA3 is a mature, object-oriented middleware technology defined by the Object Management
Group, or OMG.4 As of early 1998 the OMG had a total membership of over 780 vendors,
developers, and end users.5 CORBA was created after DCE but well before DCOM, and it
benefits from a number of “lessons learned” from DCE. In contrast to DCE, CORBA has been
object-oriented since its inception, and in contrast to DCOM, it has always been platform and
language independent. These characteristics make CORBA particularly well-suited for rapidly
integrating diverse legacy software and systems to build new distributed applications.6 Notable
features of CORBA include: support of and interoperability across a wide range of computing
platforms, and programming languages, and CORBA products; 7 support by hundreds of vendors,
developers, and users; compatibility with object-oriented approaches and languages; selection of
its Interface Description Language (IDL) by the International Standards Organization (ISO) as a
“universal” language for describing interfaces to software components8 (see ISO/IEC DIS
147509); a central role in the Object Management Architecture, or OMA,10 which is the
exceptionally broad and long-term OMG vision of for distributed services and how to promote
integration and interoperability among distributed systems; broad use and acceptance by the Unix
community; and the recent (1997) distribution of client portions of CORBA technology (the

1 ActiveX™ Controls (January 1998), http://www.microsoft.com/com/activex.htm
2 DCE FAQ Question 2c-01: Will Windows NT communicate with DCE? (August 1997),

http://www.camb.opengroup.org/tech/dce/info/faq-mauney.html#Q2_19
3 Object Resource Lists (by author of “The CORBA Reference Guide”) (Alan Pope, February 1998),

http://www.qds.com/people/apope/Corba/ap_resources.html
4 OMG Home Page (February 1998) , http://www.omg.org/
5 OMG Member Company Listings (March 1998), http://www.omg.org/cgi-bin/memlist.pl
6 NDF Tracker97 Project (February 1998), http://www.corba.org/gov.htm#usdsfg
7 The ORB Interoperability Showcase (OMG, June 1997), http://corbanet.dstc.edu.au/
8 “OMG pushes to become standards body, touts CORBA” (Computer Reseller News, July 1997),

http://www.techweb.com/se/directlink.cgi?CRN19970728S0027
9 ISO/IEC DIS 14750 (March 1998), http://www.iso.ch/cate/d25486.html
10 “OMA Executive Overview” (OMG, October 1997), http://www.omg.org/about/omaov.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 22 – 9804201143

Borland VisiBroker1) to over 30 million Windows and PC users of the popular Netscape
Communicator Internet browser.2 The OMG web site gives examples of how 53 companies with
highly diverse applications areas are successfully using CORBA technology in both new and
legacy integration applications.3

Due in large part to the acceptance of its IDL as an international standard, CORBA has become a
de facto rallying point for interoperability technologies being spun off by the Internet. Recent
examples of the impact of CORBA include:

 • The ongoing merger of Java and CORBA standards for distributed application.4 5 6

 • The adoption of CORBA IDL as the programming interface to XML,7 which is a much
more extensible replacement for Internet HTML that promises to make structured data
much more readily available on the Internet.

 • The increasing trend towards use of CORBA in transaction-based systems that emphasize
reliable database access.8 9 10

 • Support for CORBA from other middleware organizations such as The Open Group,
which defines and promotes DCE middleware standards. Even though it is nominally
“competing” with the OMG on middleware standards, The Open Group has initiated a

1 “Borland's VisiBroker ORB Surpasses 30 Million Licenses Deployed Worldwide” (March 1998),
http://www.borland.com/visibroker/press/1998/visi30m.html

2 Netscape press release on 68 million users of Commu Marketplace (December 1997),
http://www.netscape.com/newsref/pr/newsrelease538.html

3 “CORBA Success Stories” (OMG, Novermber 1997) , http://www.corba.org/index.html
4 Java, RMI and CORBA (OMG, June 1997), http://www.omg.org/news/wpjava.htm
5 “JavaSoft concedes it's not an all-Java world” (Computer Reseller News, July 1997),

http://www.techweb.com/se/directlink.cgi?CRN19970721S0060
6 Review of book “Instant CORBA” (Orfali & Harkey, February 1998),

http://www.micromail.com/titles/7666.html
7 Document Object Model (Core) Level 1 (W3C, December 1997), http://www.w3.org/TR/WD-

DOM/level-one-core-971209.html
8 Traditional middleware players embrace object-request brokers (Information Week, June 1996),

http://www.techweb.com/se/directlink.cgi?IWK19960603S0076
9 “BEA Objectbroker presentation” (March 1998), http://www.beasys.fr/products/objectbroker.htm
10 Press quotes on BEA products: TUXEDO, Jolt, ObjectBroker, MessageQ (March 1998),

http://www.beasys.fr/products/quotes.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 23 – 9804201143

program called VSOrb1 whose purpose is to help ensure adherence of CORBA products
to CORBA standards.

Collectively, such trends indicate that CORBA will continue to play an important role in
middleware and in the current and future integration of software using Internet technologies.

1 CORBA Validation - the VSOrb Test Technology (The Open Group, January 1998) ,
http://www.opengroup.org/public/vsorb/

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 24 – 9804201143

3. Middleware Comparisons and Recommendations

The paragraphs below summarize key features of DCE, DCOM, and CORBA, describe various
comparative advantages and disadvantages of each, and provide general recommendations for
when it is appropriate or inappropriate to use each of the three technologies.

3.1 DCE – Distributed Computing Environment

DCE is best described as an influential early middleware product that subsequently fell behind in
the marketplace due to its lack of standardized support for object-oriented languages. Although
still a part of many legacy systems, DCE is unlikely to play a major role in the development of
newer and (especially) Internet-based distributed systems. Many of the most innovative features
of DCE have in the past few years been incorporated into other middleware products such as
DCOM and CORBA, and DCE appears to lack the market support needed for its products to
keep pace effectively with either DCOM or CORBA.

The organization that defines and promotes DCE is The Open Group, formerly known as the
Open Software Foundation (OSF), and it includes members from both industry and governments.
It is interesting to note that The Open Group recently set up a new program called VSOrb to
promote the creation of test suites that will validate the conformance of CORBA vendor products
to the standards of the CORBA standards organization, the Object Management Group (OMG).
The fact that the organization that sponsors DCE is now working to promote standardization of
CORBA products demonstrates the importance with which even the promoters of DCE view
CORBA.

3.1.1 Key Features of DCE

The key features of DCE are:

 • Proven multi-platform interoperability. DCE has demonstrated mature multi-platform
interoperability in applications on a wide variety of Unix and non-Unix platforms.

 • A mature IDL. DCE has a mature, well-defined interface definition language (IDL), with
interface specification capabilities that are roughly comparable to the declarative features
of the procedural (that is, non-object-oriented) programming language C.

 • A lack until recently of any standard way to specify objects in its IDL. Prior to late
1997, DCE lacked any standardized way to specify objects to its IDL and required users
to develop their own approaches to conveying object-oriented service requests.

 • A mature set of relatively low-level support services. DCE has a suite of mature but
relatively low-level, operating-system-like services that are available to its users. These
include distributed security services, synchronization of system clocks, and (optionally) file
systems that work transparently across both networks and operating systems.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 25 – 9804201143

 • A mature interoperability protocol that is also used by DCOM. Microsoft chose to
use the DCE interoperability protocol in its own DCOM middleware product, making it
fairly straightforward for DCE components to communicate with DCOM components.

 • Support for object-like access to remote components. Although it is not explicitly
object-oriented, DCE does support object-like design by requiring that all procedures used
to access a remote component be explicitly declared and registered before they can be
used by other components in a distributed application. This promotes good design, and
helps simplify any subsequent conversion to fully object-oriented middleware.

3.1.2 Advantages of DCE

As a technology for integrating and creating distributed applications, the advantages of DCE are:

 • Proven interoperability. DCE provides proven, verifiable interoperability across a wider
range of operating system than either CORBA or DCOM, and has generally had a tighter
approach to verifying interoperability claims than CORBA. CORBA vendors have also
tended to produce unique variations and extensions in their products that help them “lock
in” customers, but which can seriously damage the ability to interoperate between
CORBA products. As of early 1998, DCOM is best understood as being a proprietary
product of Microsoft for use on their own operating systems (Windows 95 and NT),
although there is at least one significant joint effort underway by Software AG and
Microsoft to port DCOM to Unix operating systems.

 • Support for a wide range of current and legacy operating systems. DCE is supported
by a wide range of vendors, including vendors of older legacy operating systems that are
less likely to attract the attention of vendors of new middleware products. DCE also has
good support on Unix operating systems, and is readily available for Windows.

 • Mature services for increasing distributed application reliability. Although they are
relatively low-level, the maturity and distributed operating system focus of DCE services
make them quite useful for increasing the overall reliability and security of an application.
The Kerberos-based security service of DCE in particular has been praised for making
distributed applications more secure, although this particular service has also been
criticized for not being scalable to large applications.

3.1.3 Disadvantages of DCE

The main disadvantages of DCE are:

 • Weak history of support for object-oriented languages. For application developers
using object-oriented languages such as C++, Smalltalk, or Java, DCE has been a weak
choice for many years because of its historical lack of a standardized way to describe the
interfaces to software objects. The lack in DCE of a standardize approach for describing
object interfaces means that developers using object-oriented languages for distributed
applications must spend additional development time to achieve interoperability. They

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 26 – 9804201143

must either devise custom standards for describing objects using DCE protocols, or
(worse) make their distributed objects look like procedural objects when they are invoked
between platforms. Creating custom standards for representing objects over DCE
protocols is certainly feasible and has been done numerous times, but such an approach
sharply limits the portability and interoperability of the resulting distributed applications.
This is because only DCE components that “understand” the same customized object
interface will be able to interact with them. In late 1997 this situation was helped
somewhat for C++ developers by the release of the DCE 1.2.1 standard, which provides a
fully standardized DCE approach for interfacing to C++ objects. Compared to CORBA,
however, DCE 1.2.1 object support features are both belated and highly restrictive, since
CORBA has had object interfaces for many years and supports interfaces to many other
languages besides C++. Thus DCE 1.2.1 is unlikely to regain any market share for DCE,
since CORBA provides more flexible object-oriented alternatives that have been in place
for several years now. It will more likely be used primarily in legacy systems where some
new C++ coding is needed.

 • Weak market position relative to CORBA and DCOM. At present, DCE is more likely
to be found on operating systems with weak market positions. This is due to a difficult
combination of the strength of object-oriented CORBA on many of the same systems as
DCE, and the strong focus of Microsoft on its own object-oriented but otherwise DCE-
like DCOM technology. Additionally, the rapid growth of object-oriented middleware to
help support the Internet market is rapidly shutting out older non-object approaches.
These factors diminish the chances of DCE increasing its market share. It is more likely
that DCE will become a legacy technology used primarily on installed bases.

 • Low level of support services. Although valuable, the existing set of DCE services is
quite low level when compared to the plans of CORBA and DCOM. Perhaps even more
importantly, rapid growth and integration of CORBA in the Internet market may shut out
DCE from playing an active role in new services that may result from the synergy of the
Internet with object-oriented CORBA and Java developments.

 • Difficulty in scaling some services to larger applications. The Kerberos-based security
service of DCE has been criticized for not scaling to larger sizes, and The Open Group has
responded by opening up the range of security methods that can be used with DCE. The
Kerberos-based security features of DCE are still an attractive feature in comparison to
more complex DCOM and CORBA methods, but they generally should only be used when
a distributed application will definitely not require scaling beyond Kerberos limits.

 • Weak tool and componentware support. Both DCE and CORBA are relatively weak in
tool and componentware support when compared to DCOM, which has the advantage of
being sponsored by the same company that is developing both the operating systems and
development tools that will be used with DCOM. The relatively weak market position of
DCE is likely to make it difficult for DCE to make much headway in this area. In contrast
to DCE, CORBA appears to be much better situated for obtaining new tool and
componentware support, as demonstrated by products such as Borland’s JBuilder 2 and
Black and White’s OrbixBuilder for Visual Café.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 27 – 9804201143

3.1.4 Recommendations for DCE

Although historically important, it is unlikely that DCE will be able to gain sufficient lost ground
to obtain the levels of new vendor and tool support likely to be seen for both CORBA or DCOM.
Recommendations for using DCE as middleware thus are as follows:

 • Avoid using DCE for new applications on new platforms. Despite its maturity and
good set of basic services, the market situation for DCE makes it a weak choice for
developing new distributed applications that run on new (e.g., Solaris or Windows NT)
host platforms. For these cases CORBA, DCOM, or a combination of CORBA and
DCOM with bridging would provide better access to object-oriented software technology,
an expanding set of tools and componentware, and a wider range of services.

 • Avoid using DCE for new object-oriented applications. Although DCE has now added
object-oriented syntax to its IDL, it is far behind both CORBA and DCOM in terms of
vendor and language support for object-oriented distributed computing. The new object-
oriented features of DCOM would be better used to upgrade DCE legacy systems, rather
than to create entirely new object-oriented applications.

 • Consider using DCE to continue supporting purely legacy applications. In situations
where an existing DCE-based application needs to be supported or modestly extended,
continued use of DCE should be considered as long as there are no overriding
requirements to switch to or integrate into a different middleware product. The cost and
risks associated with conversion in such cases make it unlikely that the conversion effort
would be worthwhile in comparison to the costs of simply continuing to use DCE.

 • Plan for eventual replacement if you do use DCE. If new DCE software is definitely
required for a particular application, it should in general be designed to use small, well-
defined sets of operators (remote procedures) to access DCE resources. These sets of
operators should be as complete as possible (e.g., they should include operators for overall
control of the resource, as well as for use of the resource). This approach provides the
proven benefits of resource encapsulation for the new DCE code, and will also make any
subsequent transition to object-oriented middleware easier to accomplish.

3.2 DCOM – Distributed Component Object Model

DCOM has an unusual history as a middleware technology. It began as a Microsoft document
structuring technology called Object Linking and Embedding (OLE), and was later transformed
into a more generic object-oriented technology called Component Object Model, or COM. COM
is partway to being middleware in that it defines a generic object-oriented interface definition
language, but not an interoperability protocol. Thus COM can be used to define common
interfaces between software components, but it can link to those components only if they reside
on the same computer. To create the true middleware product DCOM, Microsoft then extended
COM with the addition of a re-engineered version of the DCE interworking protocol. As of early
1998, the most recent major DCOM development was Microsoft’s announcement in late 1997 of
the next generation of DCOM technology, which will be called COM+. COM+ will add CORBA-

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 28 – 9804201143

like language interfaces to DCOM and will be used in an overall strategy for distributed systems
design that Microsoft calls Distributed Network Architecture, or DNA.

DCOM promises to play a major role in PC based server systems when Window NT 5.0 begins to
significantly penetrate that market sometime in 1998. As of early 1998, however, the features of
DCOM that deal with conveying and supporting service requests between remote components are
still too immature to easily support development of large distributed systems. At present DCOM
is more important not for its distribution features, but rather for its relationship to the older COM
interface model. COM is deeply embedded in Windows systems and provides an important
compatibility target for distributed applications that need to incorporate both Windows and non-
Windows host systems into their networks.

3.2.1 Key Features of DCOM

The key features of DCOM as of late 1997 are:

 • Support for object-oriented language interfaces. DCOM supports programming
objects, although its origins as a document structuring concept tends to result in
significantly longer and less intuitive object definitions than those of CORBA. Microsoft
has already stated its intent in COM+ (the next generation of DCOM) to provide much
more CORBA-like style of interface definition in future releases.

 • Ready availability on Windows operating systems. DCOM comes free with Windows
NT 4.0 and can be downloaded free as an add-on to Windows 95.1 This is both an
advantage and a disadvantage, since it allows DCOM to take advantage of “insider”
operating system expertise. However, it also reinforces the perspective that DCOM is
largely a single-vendor product.

 • Minimal availability outside of Windows platforms. DCOM is not at present a major
middleware technology outside of Windows platforms. Third-party vendors such as
Software AG have shown an interest in implementing DCOM on other operating systems
such as Unix, but as of early 1998 the capability and actual deployment of such tools was
quite modest. Compared to DCOM on its native Windows platforms, such third-party
implementations of DCOM on non-Windows platforms are likely to be higher in cost and
less well supported by development tools, and are also likely to have difficulty keeping
current with the rapidly changing technology path of DCOM within Microsoft.

 • Ability to intercommunicate (bridge) easily with DCE. DCOM uses a slight variation
of the same interoperability protocol as DCE, which makes it relatively easy to interface or
bridge DCOM to legacy DCE applications.

1 COM versus CORBA: A Decision Framework (April 1998) ,
“http://www.quoininc.com/quoininc/COMCORBA.html#COM versus CORBA: A Decision
Framework”

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 29 – 9804201143

3.2.2 Advantages of DCOM

The main advantages of DCOM as of early 1998 are:

 • Strong tool and system support. Microsoft is very strongly committed to DCOM. One
recent example of the depth of this commitment has been the recoding of significant
portions of the 5.0 release to their NT operating system to use DCOM, which in NT 5.0
goes by the new moniker of COM+. For developers, this support translates into serious
long-term tool and development support for DCOM applications, as well as assurances
that DCOM will be well supported for Windows and NT operating system platforms.

 • Lower cost of DCOM-compatible networks. Because it is distributed as an integral part
of Windows (in particular Windows NT) operating systems, distributed applications using
DCOM on Microsoft-only network have a substantial cost advantage over third-party
middleware on Windows platforms. Additionally, programming tools such as Visual C++
include integrated support for basic DCOM programming paradigms, making it
significantly easier to integrate DCOM middleware into new applications when using those
tools. Finally, the Intel platforms that typically host Windows operating systems have
increased in power and dropped in cost much more rapidly than comparable Unix systems,
so that the total cost of an Intel and Windows based DCOM network can often be much
lower than a comparable Unix network.

 • Easier interfacing to object-oriented languages than DCE. DCOM supports
programming objects, which simplifies its interface to object-oriented languages such as
C++ in comparison to DCE. However, the code required to describe an object in DCOM
tends to be longer and less intuitive than comparable code for CORBA. This is offset
during initial development by the language-level tool support available for DCOM on
Windows platforms, but can still be an issue during support of the resulting code.

 • Good separation of interfaces and implementations. Like CORBA, DCOM provides a
clear separation between the interface to an object (how it is called or used) and the
implementation of an object (how it is coded). This allows flexibility during development,
since objects can be implemented in different ways or even in different languages for
different nodes in a network. It can also be a problem if implementations fail to provide
the correct functionality to an interface.

3.2.3 Disadvantages of DCOM

DCOM also suffers from several significant disadvantages:

 • Platform dependence. At present (early 1998), the only operating systems on which
DCOM is strongly supported is Windows 95 and NT. Microsoft has publicly expressed a
strong interest in helping in helping one vendor, Software AG, to port DCOM to Unix and
other operating systems. The level of commitment of Microsoft to this effort is indicated
by the fact that they list the Software AG DCOM porting work as a significant component
of their overall long-term strategy (called COM+) for COM and DCOM. However, it is

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 30 – 9804201143

worth noting that the initial (November 1997) price of the Software AG port of DCOM to
the OS/390 mainframe operating system was $200,000.1 This is a rather mind-boggling
figure for cost-conscious PC and Windows NT users who are accustomed to receiving
COM and DCOM technology bundled with NT for free, although presumably the Unix
ports will cost far less when they are finally released. Unless prices for DCOM ports drop
drastically and the technical exchange relationship between Microsoft and Software AG
becomes very close, it is unlikely that non-Windows DCOM products will even approach
the cost and operating system advantages that COM and DCOM enjoy on their native
Windows operating systems. Pragmatically, DCOM thus should be viewed in 1998 as
primarily platform-specific middleware for Windows, although it should be watched
carefully for the arrival of new third-party products or initiatives from Microsoft that may
make it a more genuinely multi-platform and affordable.

 • Sole source lock-in. As of early 1998, a decision to use DCOM as the only middleware
for a distributed application is tantamount to deciding to host the application on a purely
Windows based network, with the possible addition of a few costly legacy systems using
Software AG products. This is a consequence both of the relative immaturity of current
(pre-NT 5.0 release) distribution features of DCOM, and the early state of efforts by third-
party vendors to produce DCOM tools for other operating systems. Since Microsoft has
final control on all DCOM standards, technology, and marketing strategies, a decision to
use only DCOM for a distributed application should not be made lightly, especially if the
expected target for the distributed application is a heterogeneous network.

 • Complicated non-intuitive programming style for objects and interfaces. Due in part
to its ancestry as a document structuring technology, DCOM uses a style of object and
interface specification that is more complex and less intuitive than the programming-
oriented styles of languages such as Java or Smalltalk. As a consequence, hand-coded
DCOM interfaces tend to be larger, less intuitive, more manually intensive, and more error
prone than the equivalent CORBA interfaces, which in contrast are visually simpler and
much more Java-like.2 Microsoft has compensated for this problem by providing a rich set
of tools and components to simplify creation of DCOM interfaces. These tools include
DCOM support embedded within Microsoft’s Visual J++, Visual C++, and Visual Basic
programming tools, and numerous components based on COM interfaces. Also, Microsoft
has stated its intention to add language-independent interfaces to its next generation of
DCOM technology, COM+.3

1 ActiveX™ Controls (January 1998), http://www.microsoft.com/com/activex.htm
2 “DCOM and CORBA Side by Side, Step by Step, and Layer by Layer ” (September 1997),

http://www.cs.wustl.edu/~schmidt/submit/Paper.html
3 “COM+: Building on the Success of the Component Object Model” (October 1997),

http://www.microsoft.com/com/slides/complus.zip

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 31 – 9804201143

3.2.4 Recommendations for DCOM

As of early 1998, DCOM is a technology in rapid transition. It has the massive technological and
marketing support of Microsoft, but is unlikely to become a major player in the construction of
new distributed applications until Windows NT 5.0 servers achieve significant deployment and the
anticipated COM+ and DNA enhancements of DCOM materialize. In the meantime, CORBA is
making rapid inroads into the Windows PC marketplace through the massive distribution of the
CORBA compliant Borland VisiBroker tool as part of the popular Netscape Communicator
browser, although the actual level of usage of the VisiBroker component of Communicator
cannot be readily determined. When in the past Microsoft promoted proprietary networking
schemes in competition with more open Internet standards, the results were generally in favor of
the more open standards. It is too early to tell if this will also be the case for DCOM and CORBA,
but caution in relying solely on proprietary and rapidly changing DCOM middleware is certainly
advisable, particularly for applications that reside on highly heterogeneous networks.

As of early 1998, the recommendations for using DCOM are as follows:

 • Consider DCOM mostly for experimental use aimed at pure NT 5.0 networks. Any
impact that DCOM has on the middleware market is most likely to appear first in pure
Windows NT 5.0 networks, which will provide stronger DCOM support and also make
more extensive use of DCOM within the operating system itself. DCOM will also benefit
greatly when Active Directory technology in NT 5.0 becomes widely available. Using
DCOM thus may be appropriate for projects that will run only Windows NT 5.0 when it
becomes available (possibly not until the end of 1998 or later).

 • Avoid DCOM as the only middleware product for heterogeneous networks. Current
levels of support for DCOM on non-Windows operating systems do not easily justify the
use of DCOM for heterogeneous networks. The current (early 1998) relative immaturity
of the distributed communication features of DCOM also works against it for use in
complex network environments that require multi-vendor support and a high level of
adaptability to unique circumstances. (Note: This is a rapidly-changing area, and new
products and changes to DCOM may make heterogeneous use of DCOM or its future
incarnations such as COM+ easier in the future – e.g., sometime in 1999 or 2000. At
present, however, both pure CORBA and bridging between multiple middleware products
appear to be more viable middleware approaches for heterogeneous networks that require
the use of both Unix and Windows.)

 • Avoid using DCOM to integrate legacy systems (except for DCE legacy systems). As
of early 1998, DCOM does not have the flexibility or range of platform implementations
needed to make it appropriate for integrating legacy (e.g., Cobol, Ada, or C++) software
into new network applications. In contrast, CORBA is a much better choice for such
integration activities because of its broad platform and vendor support, and because of its
cleaner and more understandable object model. One important exception to this general
rule is that when the legacy system already uses DCE and the new portion of the network
application consists of Windows-based PCs, DCOM may provide easier integration of the
DCE components into the new Windows-based platforms than would CORBA in the same

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 32 – 9804201143

situation. This is possible because DCOM uses a communication protocol that is very
close to that of DCE, so that a minimum of new software development should be needed
to bridge between the two. Even in this case the tradeoffs of using CORBA versus DCOM
for the integration should be carefully considered, however, especially if the new
components of the system include both Unix and Windows operating systems.

 • Consider bridging in heterogeneous networks that require the use of DCOM. When
DCOM is required for the NT portions of a heterogeneous network, the possibility of
using a middleware bridge should be considered strongly. The alternative of attempting to
use DCOM across a heterogeneous network is much less attractive and in many cases may
simply not be feasible. Also, the trend of CORBA vendors towards providing good
bridges to COM has accelerated, with many new products likely in 1998.

3.3 CORBA – Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is the oldest major object-oriented
middleware standard. Although early versions of CORBA products suffered from incompatible
interpretations of CORBA standards, there have been impressive progress and maturing of
CORBA standards and products in the last two years (1997 and 1998).1 This burst of effort to
make CORBA products more powerful, standardized, and interoperable appears to be largely the
result of competition from DCOM, which the CORBA community has increasingly realized
represents a genuine competitive threat that requires both well-defined standards and genuinely
interoperable products. CORBA is notable for: its support for an impressively wide range of
platforms and programming languages; its compatibility with object-oriented approaches, which
are needed to keep distributed applications flexible and scalable; the unusually broad and diverse
range of vendors, developers, and users who support it; its focus on an open, long-term
integration and interoperability architecture (the Object Management Architecture, or OMA); and
its recent unexpected ascent to become one of the most widely deployed middleware products on
Windows and PC platforms, which occurred in 1997 through the distribution of the CORBA-
compliant Borland VisiBroker as part of the popular Netscape Communicator Internet browser.

CORBA is an open standard of the Object Management Group, which is a consortium of vendors,
developers, and end users that was established in 1989. The goal of the OMG is to encourage the
development and standardization of an Object Management Architecture (OMA) that provides
broad interoperability between object-oriented distributed components even in highly
heterogeneous networks. The CORBA specification forms the core of the OMA architecture,
with other OMG standards dealing with a variety of closely related middleware issues. These
other OMA standards include the CORBA Internet Inter-ORB Protocol (IIOP) for Internet based
communications between software objects, object services to help standardize the creation,
support, and use of objects, common facilities for supporting more local support operations such
as printing, document management, database and email, and domain interfaces for providing more

1 The ORB Interoperability Showcase (OMG, June 1997), http://corbanet.dstc.edu.au/

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 33 – 9804201143

consistent access to software components needed in specific, well-defined application areas such
as health care, insurance, and telecommunications.

The breadth of CORBA support is impressive and is also a significant factor in the overall viability
of CORBA as a middleware standard. As of early 1998 the OMG had a total membership of over
780 vendors, developers, and end users. The OMG web site indicated that the OMG was aware of
261 different organizations using or developing CORBA applications, and the actual number of
organizations using CORBA is probably many times higher given that the OMG figures are based
on voluntary information. The most intriguing deployment figure for CORBA technology
occurred in 1997, when a significant subset of CORBA was shipped to about 68 million users as
an integral part of the popular Netscape Communicator browser. In a few months this event
increased the total deployment of CORBA technology from hundreds or at most thousands of
systems to over 30 million systems (mostly in PCs) in early 1998.1 One immediate impact of this
deployment has been to increase the overall awareness of CORBA IDL as a standard interface
language for cross-platform computing.

3.3.1 Key Features of CORBA

The key features of CORBA are:

 • Support for a broad range of platforms and programming languages. One of the
most notable advantages of CORBA as a middleware technology is its unusually broad
range of support for computing platforms and programming languages, which makes it
particularly suitable for applications such as integration of legacy software and platforms
into new, heterogeneous network applications.

 • Broad and diverse market support. An unusually broad and diverse range of vendors,
developers, and users supports CORBA. Membership in its supporting organization, the
Object Management Group, has accelerated in the last few years, indicating that support
for this standard is increasing and becoming even broader based.

 • Standardization of a flexible Internet protocol for inter-object communications. One
of the most conspicuous recent contributions from CORBA has been the addition of a new
specification, called the Internet Inter-ORB Protocol or IIOP, by which software objects
of nearly any type can communicate with each other over the Internet. This addition to
CORBA has greatly increased its versatility, both because it makes it much easier to use
CORBA over the Internet, and because the IIOP can easily be used to bridge CORBA
objects to other types of software objects such as Java components.

 • Support for object-oriented distributed applications. Object-oriented approaches
benefit distributed applications by ensuring that software components can be moved
around a network more flexibly and with less risk of losing the connection between data

1 “Borland's VisiBroker ORB Surpasses 30 Million Licenses Deployed Worldwide” (March 1998),
http://www.borland.com/visibroker/press/1998/visi30m.html

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 34 – 9804201143

and associated functions. The growth of the Internet has increased this need for object-
oriented approaches to distributing components, and thus has helped increase interest in
existing object-oriented middleware standards such as CORBA.

 • Maturity of its object concepts. As the first major object-oriented, multi-platform
middleware technology, CORBA has had more time to mature than DCOM. CORBA has
also benefited from the fact that it originated from a programming-oriented perspective
that differs significantly from that of DCOM, which has its roots in a document structuring
technology known as Object Linking and Embedding (OLE). It is notable that because of
the simplifications it provides, Microsoft has indicated that they will provide a much more
CORBA-like, programming-language-independent style of interfacing in its next (COM+)
iteration of DCOM technology.

 • Emphasis on network transparency (the ORB concept). Overviews of CORBA often
focus on object request brokers, or ORBs. ORBs are usually represented in diagrams as
“software switches” that receive all service requests and then route them to appropriate
server locations. In practice, however, an ORB is probably better understood simply as the
implementation of CORBA by a particular vendor, and the switching role of an ORB as
the degree to which that ORB makes the underlying network invisible or “transparent” to
application objects. An explicit software switch, which can be a serious performance
bottleneck, is not necessarily required. For example, an ORB can generally provide
location transparency, or the ability to request services from an object without knowing
the name of the computer on which the object is located. It achieves this by finding a
location once and then having the client host send all services requests directly to the host
of that server object. A well-designed ORB combines network transparency and good
performance by making such optimizations as automatic and transparent to applications as
possible.

3.3.2 Advantages of CORBA

The main advantages of using CORBA are:

 • Support by about 800 vendors, developers, and users. While Microsoft participates in
the OMG, the most important support for CORBA comes from the rest of the very large
and diverse membership of the OMG. Vendors appear to feel it is important to have an
open object middleware standard if they are to remain independent of any one operating
system or operating system vendor. The growth of DCOM thus has encouraged many
vendors to more strongly support the CORBA standard, which they feel is less focused on
a particular operating system (Windows) and also easier to use than DCOM.

 • Platform independence. With the participation of hundreds of vendors and developers in
the OMG, CORBA is conspicuously platform independent, especially when compared to
DCOM and its strong bias towards Windows. As of early 1998, CORBA is also the de
facto standard for actively used middleware on Windows-based PCs. This occurred in
1997 through the inclusion and distribution of the Borland VisiBroker ORB within the
popular Netscape Communicator browser. Additionally, all of the major CORBA vendors

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 35 – 9804201143

provide Windows NT versions of their ORB products, making CORBA a viable option for
exclusive use as the middleware in networks that include NT systems. This is especially
true when CORBA vendors provide good bridging products for interfacing into the COM
objects of Windows operating systems. Since there has been a flurry of new
CORBA/COM bridge announcements in early 1998, such as the IONA Orbix
announcement of OrbixCOMet Desktop,1 it is likely that will be a substantial increase in
1998 of off-the-shelf support for creating CORBA-based heterogeneous distributed
applications that include PC platforms.

 • Open, public process for creating and approving specifications. The open process in
which OMG specifications are created is itself a significant asset, since it allows any
interested vendor or development group both to contribute to the standard and to obtain
the most current version of the standard. DCE has similar advantages on this point, but the
openness of the specification processes for both CORBA and DCE contrasts sharply with
the proprietary nature of the DCOM specification process, which is essentially owned by
Microsoft and can change rapidly and unexpectedly based on internal marketing decisions
by Microsoft. Even the name of the DCOM technology has been changed or modified on a
fairly frequent basis, and even companies such as Software AG that are working closely
with Microsoft appear to have difficulty obtaining sufficiently detailed information on
DCOM to build fully functional equivalents on other platforms.

 • Long-term definition and support of middleware services. The Object Management
Architecture (OMA) that is built around CORBA provides a more complete and extensive
overall roadmap for defining and adding services and domain-specific interfaces than is
currently found in any other middleware technology. The defined and planned services of
the OMA include a wide range of capabilities for creating, supporting, controlling, and
maintaining objects distributed over a network. As of early 1998, the CORBAservices
guide2 lists 15 key services and further describes 12 future object services for further
extending these services. The key services are: Naming, Event, Life Cycle, Persistent
Object, Transaction, Concurrency Control, Relationship, Externalization, Query,
Licensing, Property, Time, Security, and Object Trader. The future object services are:
Archive, Backup/Restore, Change Management, Data Interchange, Internationalization,
Implementation Repository, Interface Repository, Logging, Recovery, Replication,
Startup, and Data Interchange. While such lists help demonstrate the depth and
inclusiveness of the OMG vision for CORBA middleware, it should also be noted that
many of these services are not yet provided by vendors, and that other CORBA services
could eventually be overtaken by events elsewhere in the software industry if they do not
become widely available and actively deployed in the next two or three years.

 • Easier to understand, program, and support at the software coding level. Of the three
middleware technologies of DCE, DCOM, and CORBA, CORBA has the cleanest and

1 Orbix COMet Desktop (February 1998), http://www.iona.com/news/pressroom/msoft.html
2 Electronic copies of CORBAservices guide (February 1998), http://www.omg.org/corba/sectran1.htm

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 36 – 9804201143

most easily maintained interface at the software coding level. This interface level is
particularly important for creating reliable, supportable software, since any additions or
changes to an interface need to be clearly understood by the people maintaining them.
Additionally, an understandable programmatic interface is especially important when
interfacing to legacy systems and software that cannot be easily accommodated by more
abstract approaches such as graphical user interface (GUI) programming or automatic
generation of interfaces from programming tools. DCE also has a fairly understandable
programming interface, but suffers from being too close to the operating system, so that
using DCE correctly requires users of DCE to understand a variety of detailed issues that
may not be directly relevant to their application. DCOM has a particularly complex and
non-intuitive binary programming interface that is based on C++ virtual functions. The
complexity of using this interface means that users rarely work with it at the programmatic
level and rely instead on generation of interface code by higher level tools. This approach
is fine for rapid early generation of prototype interfaces, but tends to produce interfaces
that in the long range are hard to understand and difficult to maintain.

 • Support for object-oriented languages and designs. CORBA is highly compatible with
both an overall object-oriented approach to designing distributed applications and with
object-oriented languages in general. An especially promising object-oriented design path
for CORBA is found in its continuing integration with both the Internet and Java. This
“gang of three” (CORBA/Internet/Java) makes possible a higher level of integration and
underlying flexibility than is possible with any one of these technologies by itself. When
used together, CORBA provides both universal object-oriented messaging via its Internet
Inter-ORB Protocol (IIOP), and also a way to access legacy and compiled systems. The
Internet provides a highly robust and already nearly universal network host on which the
distributed applications can reside. Finally, Java provides a highly dynamic language
suitable both for rapidly creating new interfaces to legacy systems (accessed via IIOP),
and the ability to relocate components dynamically on the underlying Internet host.

 • Support of the Internet Inter-ORB Protocol (IIOP) – One of the most interesting and
potentially powerful mechanisms that has been developed by the CORBA community is
something called the Internet Inter-Operability Protocol, or IIOP. The IIOP well defined
protocol that lets software objects of nearly any type to communicate over the Internet, so
that it can be used not only between CORBA objects, but also between CORBA and non-
CORBA objects. This makes the IIOP a good de facto candidate for universal object
communications over the Internet.

 • Ability to integrate legacy software applications. The CORBA community has
promoted the concept of integrating legacy systems with custom (and generally non-
object-oriented) interfaces into new applications by “wrapping” or hiding the legacy
software behind a new set of interfaces that meet CORBA standards, and has provided
clear, easily understood programming-level interfaces to make this possible. This is in
sharp contrast to DCOM, which currently uses a complex, hard-to-understand
programmatic interface that is usually generated by higher level tools instead of being
directly coded by programmers. While this generative approach of DCOM is useful for
creating initial prototypes on one well-defined platform such as Windows NT, it is not

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 37 – 9804201143

well suited for defining interfaces to components written in many different languages and
residing on many different platforms. In contrast, the more readily understandable
programming interfaces of CORBA can be created with about the same ease for nearly
any type of legacy component, and are also far easier to maintain because they are more
easily understood than generated code. Once CORBA interfaces have been created, they
can also be interfaced to other systems in a more standard fashion (e.g., via the Internet by
using IIOP). This approach is likely to become even more useful as CORBA continues its
current trend towards closer integration with both the Internet and Java.

 • Good separation of interfaces and implementations. As with DCOM, CORBA
provides a very clear separation of the interface to an object (how it is called or used) and
the implementation of an object (how it is coded). This allows flexibility during
development, since objects can be implemented in different ways or even in different
languages for different nodes in a network.

 • Strong focus on providing dynamic interface options. All three of the middleware
technologies described here have traditionally tended to rely on “static” or compiled
approaches to setting up communication paths between components. While these
approaches are powerful and generally efficient, they are also inflexible and can make
dynamic recovery and load balancing more difficult. In the case of CORBA, however, the
OMG has placed a strong emphasis on also providing “dynamic” interfaces that provide
(at the cost of some performance) the ability to create and re-allocate the paths used to
communicate between components, so that greater component mobility and system
reliability is possible. Dynamic capabilities are also especially useful for adding legacy
software into a new application, since they can be used to provide a single “traffic cop”
interface into a large set of legacy components, rather than attempting to build separate
static interfaces to each such component. The Object Request Broker (ORB) concept of
CORBA has from the beginning been oriented towards “brokering” requests in a dynamic
fashion, and it provides a well-defined software location for performing the types of
message re-direction required for dynamic component interfaces. The OMG has also
specifically designed client and server side dynamic interface capabilities in the form of the
CORBA Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI).

3.3.3 Disadvantages of CORBA

Some disadvantages of CORBA is:

 • Less integrated tool support than DCOM. When compared to the language-level GUI
support provided for COM and DCOM by Visual C++, Visual J++, and Visual Basic,
CORBA is neither as fully integrated nor as easy to use. On the other hand, it can be
argued that based on the relative complexity of using CORBA and DCOM for the same
tasks,1 COM and DCOM might probably not be used much at all if it were not for the

1 “DCOM and CORBA Side by Side, Step by Step, and Layer by Layer ” (September 1997),
http://www.cs.wustl.edu/~schmidt/submit/Paper.html

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 38 – 9804201143

availability of these tools. Perhaps more importantly, generative approaches such as those
used by the Microsoft development tools can lead to significant difficulties later in
enhancing and maintaining the resulting software, since once any changes are made
directly to the generated code it becomes impossible to directly recreate it from the
original tool level. When viewed from a full life cycle cost perspective that includes the
(usually significantly larger) costs of enhancing and maintaining software after initial
development is completed, a technology such as CORBA that provide succinct, readable
statements of what is actually being done will generally be superior to generative
approaches. This is because the generative approaches tend to increase the complexity and
fragility of the code that must be maintained. Finally, the overall market for CORBA
components is likely to grow as integration of CORBA with Java proceeds through tools
such as the Borland VisiBroker, it is likely that CORBA will benefit from a much larger
suite of supporting components and tools than is now available.

 • Weak vendor-to-vendor interoperability of CORBA products. In contrast to DCE,
the ability of CORBA products to interoperate with each other has been historically weak.
Protocols have not always matched, services cannot always be used across vendors, and
the internal naming conventions have often been incompatible or opaque across vendor
products. The result has been a general inability of CORBA products from different
vendors to talk with each other. This has weakened the overall value of CORBA, since it
means that for all practical purposes CORBA users, like DCOM users, will need to choose
a single vendor for their technology. On the other hand, the CORBA standards community
is aware of these problems and has been working to increase interoperability across
vendors, such as through the relatively new (in early 1998) branding and testing initiative
by The Open Group CORBA. The comparatively recent Internet Inter-ORB Protocol
(IIOP) CORBA standard has been particularly helpful in this area, since it provides a good
basis for well-standardized communictions between CORBA vendors. Application builders
who are faced with using multiple CORBA products (e.g., Orbix plus Netscape with an
embedded Borland ORB) need to verify that the level of interoperability needed to fully
support their intended application has been implemented.1

3.3.4 Recommendations for CORBA

As of early 1998, CORBA is a mature object-oriented middleware product that is the most widely
deployed for Windows-based PCs, and it is far and away the most dominant middleware platform
for Unix systems. CORBA also enjoys unusually strong support from a wide range of vendor,
developer and user organizations. Its long-term plan for services provides an unusually broad and
well-defined path for service definition and integration. CORBA is also being integrated rapidly
both with the Internet and with Java, a language designed specifically for creating distributed
applications. Integration of CORBA with the Internet allows developers to use the existing

1 COM versus CORBA: A Decision Framework (April 1998) ,
“http://www.quoininc.com/quoininc/COMCORBA.html#COM versus CORBA: A Decision
Framework”

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 39 – 9804201143

Internet infrastructure for faster and more flexible creation of new distributed applications.
Similarly, integration of CORBA with Java makes it significantly easier for developers to use the
simpler and more network-oriented features of Java to integrate legacy software into new
distributed applications.

General recommendations for using CORBA are:

 • Use CORBA. The de facto position of CORBA as the most widely distributed and used
middleware product for Internet-connected PCs makes it an excellent choice for low end
Windows platforms. Furthermore, its broad availability and support on other platforms
such as Unix makes it useful for integrating diverse types of components and systems. Its
appropriateness for integrating legacy software is further enhanced by its clear, well-
defined, and internationally standardized interface description language for specifying the
interfaces to software components. The maturity of the object-oriented features of
CORBA also make it well-suited to the current trend towards more dynamic distributed
software that whose relationship to the underlying network can change in real time.

 • Use only one CORBA vendor unless interoperability can be verified. The greatest
current weakness of CORBA is the slow pace of its efforts to make CORBA products
from different vendors interoperate with each other. There has been significant progress in
this area in the last couple of years, but at present the safest strategy for using CORBA is
still to pick a single vendor and use that vendor consistently for a given application.

 • Use “gang of three” (CORBA/Internet/Java) CORBA products whenever possible.
At present, the most promising overall path for broad integration of applications using the
Internet appears to be joint use of CORBA (especially IIOP), Internet technologies, and
Java.1 2 3 CORBA provides integration of legacy systems, broad platform interoperability,
object-oriented interfaces, and a well-defined path (the ORB) for implementing various
forms of network transparency. This support is likely to become increasingly important as
part of an overall industry thrust to make distributed applications more scalable, robust,
and portable. The Internet provides a robust universal network for hosting distributed
applications, and Java provides a dynamic programming “glue” that can be used to
develop new interfaces into older legacy systems more rapidly and more effectively. While
all CORBA 2.0 and 2.1 products are required to support IIOP, the way in which IIOP is
supported can vary significantly from vendor to vendor. The best implementations make

1 Java, RMI and CORBA (OMG, June 1997), http://www.omg.org/news/wpjava.htm
2 “JavaSoft concedes it's not an all-Java world” (Computer Reseller News, July 1997),

http://www.techweb.com/se/directlink.cgi?CRN19970721S0060
3 Review of book “Instant CORBA” (Orfali & Harkey, February 1998),

http://www.micromail.com/titles/7666.html

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 40 – 9804201143

good use of features that increase efficiency and reduce needless overhead for operations
such as communication with Java objects.1

 • For networks that include NT, use CORBA with good COM bridges. DCOM will be
an important force in the upcoming release of Windows NT 5.0. However, for now (early
1998) an approach that relies on CORBA for the network side of distributed applications
and CORBA-to-COM bridges for the Windows NT and Windows 95 side is more likely to
produce robust, reliable distributed applications. Support for CORBA-to-COM bridges
should increase in 1998, as demonstrated by the early 1998 release of products such as the
IONA OrbixCOMet Desktop.2

1 “Distributed Object Computing in the Internet Age” (Visigenic, October 1997),
http://www.visigenic.com/prod/vbrok/wp.html (Note: Withdrawn by Borland in March 1997)

2 Orbix COMet Desktop (February 1998), http://www.iona.com/news/pressroom/msoft.html

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 41 – 9804201143

4. Summary of Recommendations

Use Distributed Computing Environment (DCE) only for legacy software. From a market
perspective, DCE has been significantly weakened by its belated and incomplete support for
object-oriented languages. With object-oriented languages continuing to grow in importance in
both commercial applications and on the Internet, this has left DCE in a poor situation compared
to both CORBA and DCOM. DCE thus is a poor choice for a middleware technology except
when it is already being used in a legacy system. DCE is not an appropriate choice for building
entirely new distributed systems.

Use CORBA. The de facto position of CORBA as the most widely distributed and used
middleware product in PCs (via Netscape Communicator) makes it an excellent choice for use in
low-end Windows platforms. Furthermore, the broad availability and support for CORBA on
Unix and other platforms makes it especially appropriate for integrating diverse types of systems.
The mature object-oriented features of CORBA also support the current trend towards more
dynamic distributed application architectures, since software objects combine data and
functionality in a way that makes them safer and easier to move to from platform to platform than
comparable non-object-oriented software components.

Use integrated CORBA/Internet/Java products whenever possible. One particularly
promising middleware technology trend is the ongoing integration CORBA, the Internet, and
Java. An explicit example of this trend is the Netscape Communicator browser and its bundled
VisiBroker Java software. The integration of these three technologies is centered on a CORBA
message protocol (that is, a well-defined style of exchanging messages) known as the IIOP, or
Internet Inter-ORB Protocol. The IIOP is a simple but flexible CORBA protocol that allows
objects written in many different programming languages to communicate directly with each other
over the Internet. As of early 1998, both the design and marketing position of IIOP make it the
best candidate for becoming a universal protocol for linking diverse types of objects over an
Internet-style network.

Use middleware bridges into COM. DCOM is not presently a major factor in building
distributed systems, but the closely associated local-only COM technology is already widely used
in Windows 95 and NT to define the interfaces to many types of software objects. Middleware
vendors who provide effective bridges to COM thus also provide valuable access to software
components available in low-cost PC systems, and also minimize the possible future impact of
more robust versions of DCOM.

Pay close attention to DCOM in Windows NT 5.0. Microsoft is strongly committed to DCOM
and has already announced new initiatives that should make it more powerful and useful on both
its native Windows systems and on other operating systems. The most important event for DCOM
will be the full commercial release of Windows NT 5.0 in late 1998 or 1999. NT 5.0 will include
an advanced set of middleware-oriented services (called Active Directory) that should make
DCOM much more powerful and easier to use. Overall, it is still too early to tell how such future
versions of DCOM will compete with the growing CORBA/Internet/Java collection of multi-
vendor middleware efforts.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 42 – 9804201143

Expect to see more use of Java in distributed applications. Java provides features that make
applications more portable and more scalable, particularly when it is accessed though the IIOP.
Java is currently the best overall candidate for “mobile objects” that can be flexibly reassigned to
new platforms to increase efficiency during everyday use of a distributed application. Due to the
many market, technical, and legal factors that are affecting Java, it is difficult to predict exactly
how large a role Java will play in the future of middleware, although a fairly major role looks
fairly well assured as of early 1998.

Expect to see continued expansion in the use of scripting languages. Contrary to the
minimalist implications of the term “scripting,” scripting languages such as Perl, Visual Basic,
Javascript, Python, and tcl/Tk are actually among the most powerful programming languages in
existence. They are particularly useful for integrating legacy software, since much of their power
comes from an open and highly accommodating programming style that does not require legacy
components to meet the internal programming conventions of new software. In terms of their
relationship to middleware technologies such as CORBA, scripting languages are best understood
as complementary technologies that can be used to bring legacy software into a middleware
framework rapidly and easily. For example, Perl or Python can be used to convert the inputs and
outputs of a legacy system into IIOP messages, so that the resulting combination looks like a
CORBA-compliant server.

Consider using XML to simplify sharing of middleware data. XML is a new World Wide
Web Consortium (W3C) standard for representing complex data with human-readable labels and
structuring. XML complements the closed, encapsulated data structures approach of CORBA and
object-oriented programming languages by allowing complex data to be “publicized” with both
context and structure preserved, but without requiring that users of the data have any special
knowledge of the internals of the original object. XML thus is in many ways the data equivalent of
a scripting language, since it provides an open style of “data scripting” to represent complex data,
without requiring that either side of the exchange know much about the internals of the other. In
terms of its relationship to a middleware technology such as CORBA, XML provides a
standardized way to represent complex, object-oriented data without forcing all software
components to use the same underlying object-oriented or relational database. This kind of
database independence translates into greater flexibility when using a middleware technology such
as CORBA to integrate diverse types of components into a single distributed application.

Expect change. The Internet has drastically increased the rate at which new technologies impact
the market place. Approaches that emphasize open, well-standardized message protocols (e.g.,
the CORBA IIOP and the recent XML standard) are generally the best choices in such situations,
as opposed to selections of specific tools or functions.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 43 – 9804201143

Appendix A. Orbix CORBA Products

Orbix is one of the leading CORBA vendors, and it will be included in the 4.0 release of the DII
COE. Orbix is one of the first CORBA vendors, and they are also one of the first CORBA
vendors to provide significant security services.

Categories of Orbix products include:

 • Orbix for various operating systems (Unix, MVS, Windows, others)

 • Orbix for real-time applications

 • Security

 • Internet

 • System Management

 • Transactions

 • Messaging

A full listing of Orbix products can be found at:

Orbix Products (IONA, April 1998), http://www.orbix.com/products/fulllist.html

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 44 – 9804201143

Appendix B. VisiBroker CORBA in Netscape Products

B.1 VisiBroker Components in Netscape Products

Borland VisiBroker is an easy-to-use, Java-compatible CORBA product that provides flexible
object-oriented communications between Internet software components. From a middleware
design perspective, VisiBroker is notable both for its leading position in integrating Java with
CORBA1, and for its emphasis on dynamic architectures that provide improved scalability and
availability of the resulting applications.2 One indicator of the viability of the VisiBroker design
and product is the recent (March 1998) abandonment of by Sun Microsystems of its own NEO
CORBA product in favor of using VisiBroker.3

In June of 1997, parts of two VisiBroker products were bundled into two Netscape products.4

The VisiBroker products used in this bundling were VisiBroker for Java and VisiBroker for C++,
and the Netscape products were the popular (and free5) Netscape Communicator 4.X browser and
the Netscape Enterprise Server 3.X. As a result of this bundling and the resulting free distribution
of VisiBroker clients with Netscape Communicator, as of March 1998 roughly 30 million
systems6 (mostly Windows PCs) contain working installations of Java-capable CORBA
middleware from Borland. This huge base of installed VisiBroker clients provides a ready
interoperability target for CORBA-compliant servers, and for now makes CORBA middleware a
de facto standard for rapid development of new and legacy distributed applications that are
Internet-based and PC-hosted. An example of a distributed application that was developed rapidly
by using this installed base of VisiBroker clients in Netscape is Tracker97, 7 a U.S. Department of
State application that enables the U.S. and its partner countries to track international movement
of hazardous and dual-use materials.

Because of the unusually large Netscape-based deployment of VisiBroker and its overall strong
orientation towards the Internet, this appendix provides more detailed information on both the

1 “Visigenic's ORB fills the gaps and helps developers write CORBA apps in Java” (January 1998),
http://www.advisor.com/wArticle.nsf/wPages/IA9801.Micks07

2 “VisiBroker: A Better ORB by Design” (Borland white paper) (October 1997) ,
http://www.visigenic.com/prod/vbrok/wp.html#BOBD (Note: Withdrawn by Borland in March 1997)

3 “Sun Picks Visigenic As ORB Supplier” (January 1998),
http://techweb.cmp.com/internetwk/news/news0109-4.htm

4 Borland press release on bundling of VisiBroker into Netscape products (June 1997) ,
http://www.visigenic.com/news/ns697.html

5 New Netscape policy of free distribution of Netscape Communicator source code (February 1998) ,
http://home.netscape.com/free.html

6 Borland press release on VisiBroker (March 1998) ,
http://www.borland.com/visibroker/press/1998/visi30m.html

7 NDF Tracker97 Project (February 1998), http://www.corba.org/gov.htm#usdsfg

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 45 – 9804201143

features of the Netscape versions of VisiBroker and of the full VisiBroker product line. The
information in the rest of this appendix was provided in a draft white paper from Visigenic (now
part of Borland International), and was current as of January 15, 1995. The original draft white
paper has been partially re-arranged, edited, and heavily reformatted, and so should be taken only
as non-binding guidance information. For this reason, it is recommended that this appendix be
used only as a guide for understanding features and constraints. If you have a specific application
in which you wish to use features listed in this appendix, it is therefore recommended that you
verify those features directly with Borland International.1 (Verification is also a good idea due of
the current rapid pace of new product releases in the middleware industry.) New data on the
VisiBroker product may be obtained from the Borland web site, or from the older Visigenic site.2

Developers interested in using Borland VisiBroker should note that VisiBroker 2.X components
used in Netscape products are based on an older and less flexible connection and thread model
that is no longer used in the most recent (3.X) full releases of VisiBroker products. Also, there is
other incompatibility for VisiBroker 2.X and 3.X. The differences between the Netscape
(VisiBroker 2.X) and current full commercial release (VisiBroker 3.X) are addressed in the
feature comparison table at the end of this appendix.

B.2 VisiBroker Components in Netscape Communicator 4.X

Netscape Communicator 4.X releases can be downloaded free of charge from Netscape, and
includes the following VisiBroker component:

• VisiBroker for Java 2.5, Runtime Client

VisiBroker for Java is the first CORBA 2.0 Object Request Broker (ORB) written completely in
Java, and it can best be described as a development tool for building, managing, and deploying
distributed Java applications that are open, flexible, and interoperable across multiple platforms.
VisiBroker for Java enables true interoperable distributed applications for the Internet, Intranets,
and enterprise computing environments through a native implementation of CORBA’s Internet
Inter-ORB protocol (IIOP).

B.3 VisiBroker Components in Netscape Enterprise Server 3.1

The Netscape Enterprise Server 3.1 (which must be purchased from Netscape) includes the
following four VisiBroker components:

• VisiBroker for Java 2.5, Runtime Client

• VisiBroker for Java 2.5, Development Kit

• VisiBroker for C++ 2.1, Runtime

1 Borland International home page (March 1998) , http://www.borland.com/
2 Original VisiGenic home page, now owned by Borland (March 1998) , http://www.visigenic.com/

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 46 – 9804201143

• VisiBroker for C++ 2.1, Development Kit

In addition to development kits, the Netscape Enterprise Server also includes a second major
VisiBroker product, VisiBroker for C++. VisiBroker for C++ is a complete CORBA 2.0 Object
Request Broker (ORB) implementation written in the high-performance C++ language.
VisiBroker for C++ serves as a development tool for building, managing, and deploying
distributed C++ applications that are open, flexible, and interoperable across multiple platforms.
Objects built with VisiBroker for C++ can easily be accessed by Web-based applications, such as
applications built with VisiBroker for Java that communicate using the CORBA Internet Inter Orb
protocol (IIOP).

B.4 Restrictions on the Use of VisiBroker in Netscape

In their agreement to allow Netscape to use components of their VisiBroker 2.5 and 2.1 products,
Borland licensed the distribution of both the development system (that is, the IDL compiler) and
the ORB within the Netscape SuiteSpot Server. However, Borland limits use of that development
system to one developer on the same system on which the Netscape server was shipped. Also,
Borland does not permit the runtime ORB to be used “stand-alone” outside of its Netscape
application. The runtime ORB may be used by third party applications that run on the Netscape
server box only to invoke remote methods defined by the Netscape server or other Netscape
product. Finally, Borland does not allow the runtime ORB to be used by “independent” third
party applications or on any on boxes that do not contain the Netscape server.

B.5 VisiBroker Components Not Included With Netscape

The following VisiBroker components are currently available by purchase from Borland, but are
not included in any Netscape products:

• VisiBroker for C++ 3.1, Runtime

• VisiBroker for C++ 3.1, Development Kit

• VisiBroker for Java 3.1, Runtime

• VisiBroker for Java 3.1, Development Kit

• Visigenic Gatekeeper

• Object Request Debugger for Java

• Object Request Debugger for C++

• SSL Pack for VB for Java

• SSL Pack for VB for C++

• Naming Service (Java and C++ Versions)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 47 – 9804201143

• Event Service (Java and C++ Versions)

• VisiBroker Manager Tool Set

• VisiBroker Integrated Transaction Service

• Advanced Thread Pooling and Connection Management

• Borland Technical Support

B.6 Comparison of Netscape VisiBroker and VisiBroker 3.X

Table 1 compares VisiBroker in Netscape products to the full VisiBroker 3.X release.

Table 1. VisiBroker Features Supported in Netscape and in VisiBroker 3.X

Legend: = supported
- = not supported

blank = not applicable

In Netscape
Browser

and Server
(VBJ 2.5)

In Netscape
Server
(only)

(VBC 2.1)

VisiBroker
for Java 3.X

(full
release)

(VBJ 3.X)

VisiBroker
for C++ 3.X

(full
release)

(VBC 3.X)

CORBA Standards Compliance

New OMG IDL to Java Mapping 1.0
Revised OMG IDL to C++ Mapping 1.1 -
CORBA 2.0 Core
CORBA 2.0 Interoperability

IIOP 1.0
IIOP 1.1

CORBA 2.0 Security: IIOP over SSL

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 48 – 9804201143

Legend: = supported
- = not supported

blank = not applicable

In Netscape
Browser

and Server
(VBJ 2.5)

In Netscape
Server
(only)

(VBC 2.1)

VisiBroker
for Java 3.X

(full
release)

(VBJ 3.X)

VisiBroker
for C++ 3.X

(full
release)

(VBC 3.X)

Advanced CORBA Implementation

IDL to Java compiler
Built-in preprocessing

IDL to C++ compiler
Built-in preprocessing -

Transient and persistent object references: local/global
objects
Exception handling
Extended IDL data types (Notes 1,2) -
IDL Extensible Structs -

Basic Object Adapter (BOA)
Dynamic object impl. activation (Object Activation
Daemon)

-

Dynamic object instance activation (Activators) -
Implementation Repository
Implementation Repository API (IDL interface to OAD) -

Interface Repository (IR)
Dynamic Invocation Interface (DII)

Support for typecodes and anys
In-process DII - -

Dynamic Skeleton Interface (DSI)

ORB Interface
Native IIOP (Internet Inter-ORB Protocol)
Caffeine: Java Ease-of-Use

java2iiop compiler (a.k.a. caffeine compiler)
Pass-by-value

java2idl compiler
URL Naming Service
Gatekeeper: Web Server gateway

Request forwarding to servers (object servers)
Request forwarding to applets (callback objects)
Automatic HTTP tunneling (without callbacks)
Access to Smart Agents
Support for IIOP over SSL (with callbacks) -
Enhanced integration into firewall environments -

Multi-home support, configurable ports, proxy object
refs

-

Ease of Development

Easy binding with available object servers (via Smart
Agents)
TIE programming option
Enhanced user documentation - -
Object Request Debugger - -
Object Database Activator (ODA) - -
Caffeine Java tools and services

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 49 – 9804201143

Legend: = supported
- = not supported

blank = not applicable

In Netscape
Browser

and Server
(VBJ 2.5)

In Netscape
Server
(only)

(VBC 2.1)

VisiBroker
for Java 3.X

(full
release)

(VBJ 3.X)

VisiBroker
for C++ 3.X

(full
release)

(VBC 3.X)

Ease of Deployment

Zero administration object server registry (Smart Agents)
Enhanced ease of installation - -
Integration with Windows registry and NT services - -

Security: IIOP over SSL

IIOP over SSL v3 (Secure Socket Layer) - -
SSL BOA - -
Optional mutual (X509 certificate) client/server
authentication

- -

Data encryption using RSA BSAFE cryptographic library - -

Scalability and Performance

Efficient multithreading: use of native OS thread support
Optimized client-to-object communication (Smart Binding)
Multiple, distributed Smart Agents

Dynamic partitioning of object server information
Automatic federation of Smart Agents on same LAN

Object server load balancing (via Smart Agents)

Optimized thread mgmt: thread-per-session/thread
pooling

- -

Optimized connection management: client and server-side - -
Optimized interprocess invocation (e.g. shared memory) -

High Availability

Support for replicated object servers
Transparent binding of clients with currently available
servers
Support for client-server resynch after server/network
failure
Robust system architecture: ORB self-use of fault
tolerance

Automatic restart of object servers (via OAD) -
Automatic Smart Agent fail-over -
Gatekeeper support for applet-server resynchronization -

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 50 – 9804201143

Legend: = supported
- = not supported

blank = not applicable

In Netscape
Browser

and Server
(VBJ 2.5)

In Netscape
Server
(only)

(VBC 2.1)

VisiBroker
for Java 3.X

(full
release)

(VBJ 3.X)

VisiBroker
for C++ 3.X

(full
release)

(VBC 3.X)

Customizable ORB System

Smart stubs - -
Interceptors - -

In-process interceptors - -
Location Service API (IDL interface to Smart Agents) - -

Dynamic ORB module upgrades - -
Plug-in custom communication transports (Note 3) - -
Plug-in custom object adapters (Note 3) - -

Get and set policy and system parameters via:
Bind management API
Buffer management API -
Thread management API - -
Connection management API - -

Optional use of Gatekeeper -
Optional use of Smart Agents -

Note 1: The wchar/wstring is only supported on platforms that support UNICODE, such as Windows 95/NT or Solaris
2.6.

Note 2: Due to a change in their implementation, VBJ 2.5 and VBJ 3.0 extended data types are not interoperable.
Also, long double is not available on Windows or in Java. Fixed-point decimal is also not available, but is
planned.

Note 3: Available in a separate support package.

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 51 – 9804201143

Appendix C. References

The following list of non-linked (plain text) Internet references summarizes the ones provided in
context by the footnotes of this document. The references are in alphabetical order by Universal
Resource Locator (URL).

Internet Address (URL) Title or Description

“http://www.quoininc.com/quoininc/COMCORBA.ht
ml#COM versus CORBA: A Decision Framework”

COM versus CORBA: A Decision
Framework (April 1998)

http://corbanet.dstc.edu.au/ The ORB Interoperability Showcase
(OMG, June 1997)

http://home.netscape.com/free.html New Netscape policy of free
distribution of Netscape
Communicator source code (February
1998)

http://premium.microsoft.com/msdn/library/techart/htm
l/cpptocom.htm

“From CPP to COM” (Microsoft,
October 1995)

http://stsc.hill.af.mil/crosstalk/1997/feb/corba.html An Introduction to CORBA (MITRE,
February 1997)

http://techweb.cmp.com/internetwk/news/news0109-
4.htm

“Sun Picks Visigenic As ORB
Supplier” (January 1998)

http://www.advisor.com/wArticle.nsf/wPages/IA9801.
Micks07

“Visigenic's ORB fills the gaps and
helps developers write CORBA apps in
Java” (January 1998)

http://www.beasys.fr/products/objectbroker.htm “BEA ObjectBroker presentation”
(March 1998)

http://www.beasys.fr/products/quotes.htm Press quotes on BEA products:
TUXEDO, Jolt, ObjectBroker,
MessageQ (March 1998)

http://www.borland.com/ Borland International home page
(March 1998)

http://www.borland.com/visibroker/press/1998/visi30m
.html

“Borland's VisiBroker ORB Surpasses
30 Million Licenses Deployed
Worldwide” (March 1998)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 52 – 9804201143

Internet Address (URL) Title or Description

http://www.borland.com/visibroker/press/1998/visi30m
.html

Borland press release on VisiBroker
(March 1998)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html

DCE Frequently Asked Questions
(August 1997)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html#Q1_01

DCE FAQ Question 1.01: What is
DCE? (August 1997)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html#Q1_03

DCE FAQ Question 1.03: What
platforms support DCE? (August
1997)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html#Q1_08

DCE FAQ Question 1.08: What is the
relationship between DCE and
CORBA? (August 1997)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html#Q2_19

DCE FAQ Question 2c-01: Will
Windows NT communicate with
DCE?(August 1997)

http://www.camb.opengroup.org/tech/dce/info/faq-
mauney.html#Q2_20

DCE FAQ Question 2c-02: Can I use
DCE from C++? (August 1997)

http://www.camb.opengroup.org/tech/dce/info/papers/
osf-dce-ds-1195.htm

OSF DCE 1.2.1 New Features
(November 1995)

http://www.cariplo.it/HomeBanking.htm Home Banking web site (Cariplo Bank
in Italy) implemented using DCOM
technology (October 1997)

http://www.corba.org/gov.htm#usdsfg NDF Tracker97 Project (February
1998)

http://www.corba.org/index.html “CORBA Success Stories” (OMG,
November 1997)

http://www.cs.wustl.edu/~schmidt/submit/Paper.html “DCOM and CORBA Side by Side,
Step by Step, and Layer by Layer”
(September 1997)

http://www.iona.com/news/pressroom/msoft.html IONA CORBA-COM Bridge
announcement: OrbixCOMet™
Desktop (January 1998)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 53 – 9804201143

Internet Address (URL) Title or Description

http://www.iso.ch/cate/d25486.html ISO/IEC DIS 14750 (March 1998)

http://www.micromail.com/titles/7666.html Review of book “Instant CORBA”
(Orfali & Harkey, February 1998)

http://www.microsoft.com/ Microsoft home page (March 1998)

http://www.microsoft.com/com/ COM: Component Object Model
(Microsoft, February 1998)

http://www.microsoft.com/com/activex.htm ActiveX™ Controls (January 1998)

http://www.microsoft.com/com/complus.htm COM+ (November 1997)

http://www.microsoft.com/com/dcom.htm DCOM (January 1998)

http://www.microsoft.com/com/mts.htm MTS (March 1998)

http://www.microsoft.com/com/slides/complus.zip “COM+: Building on the Success of
the Component Object Model”
(October 1997)

http://www.microsoft.com/com/wpaper/dcomhome.zip “DCOM Cariplo Home-Banking Case
Study” (Microsoft, Nov 1997)

http://www.microsoft.com/com/wpaper/dcomsol.zip “DCOM Solutions in Action”
(November 1997)

http://www.microsoft.com/intdev/com/ COM Technologies home page (March
1998)

http://www.microsoft.com/ntserver/guide/dcom.asp “DCOM Business Case” (Microsoft,
March 1998)

http://www.microsoft.com/ntserver/library/dcomtec.ex
e

“DCOM Technical Overview”
(Microsoft, November 1997)

http://www.netscape.com/newsref/pr/newsrelease538.h
tml

Netscape press release on 68 million
users of Communicator Marketplace
(December 1997)

http://www.omg.org/ OMG Home Page (February 1998)

http://www.omg.org/about/wicorba.htm “What IS CORBA????” (OMG,
October 1997)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 54 – 9804201143

Internet Address (URL) Title or Description

http://www.omg.org/cgi-bin/memlist.pl OMG Member Company Listings
(March 1998)

http://www.omg.org/news/wpjava.htm Java, RMI and CORBA (OMG, June
1997)

http://www.opengroup.org/ The Open Group home page (March
1998)

http://www.opengroup.org/public/tech/dce/nov96/OO
minutes.html#dcom

DCOM-DCE meeting minutes
(November 1996)

http://www.opengroup.org/public/vsorb/ CORBA Validation - the VSOrb Test
Technology (The Open Group,
January 1998)

http://www.orbix.com/products/fulllist.html Orbix Products (IONA, April 1998)

http://www.qds.com/people/apope/Corba/ap_resources
.html

Object Resource Lists (by author of
“The CORBA Reference Guide”)
(Alan Pope, February 1998)

http://www.realtime-os.com/noteworthy/rt-dcom.html “Real-Time DCOM's Immediate
Future Now Uncertain” (Jensen,
November 1997)

http://www.softwareag.com/corporat/default.htm Software AG home page (March
1998)

http://www.techweb.com/se/directlink.cgi?CRN19970
721S0060

“JavaSoft concedes it's not an all-Java
world” (Computer Reseller News, July
1997)

http://www.techweb.com/se/directlink.cgi?CRN19970
728S0027

“OMG pushes to become standards
body, touts CORBA” (Computer
Reseller News, July 1997)

http://www.techweb.com/se/directlink.cgi?CRN19971
103S0197

“Software AG's Latest DCOM Runs
On IBM OS/390” (Computer Reseller
News, November 1997)

http://www.techweb.com/se/directlink.cgi?IWK199606
03S0076

Traditional middleware players
embrace object-request brokers
(Information Week, June 1996)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 55 – 9804201143

Internet Address (URL) Title or Description

http://www.techweb.com/se/directlink.cgi?IWK199607
29S0051

 “Microsoft Complies With DCE – For
Now” (Information Week, 29 July
1996)

http://www.visigenic.com/ Original Visigenic home page, now
owned by Borland (March 1998)

http://www.visigenic.com/news/ns697.html Borland press release on bundling of
VisiBroker into Netscape products
(June 1997)

http://www.visigenic.com/prod/vbrok/wp.html (Note:
Withdrawn by Borland in March 1998)

“Distributed Object Computing in the
Internet Age” (Visigenic, October
1997)

http://www.visigenic.com/prod/vbrok/wp.html#BOBD
(Note: Withdrawn by Borland in March 1998)

“VisiBroker: A Better ORB by
Design” (Borland white paper)
(October 1997)

http://www.w3.org/TR/WD-DOM/level-one-core-
971209.html

Document Object Model (Core) Level
1(W3C, December 1997)

http://www-lc.llnl.gov:8080/library/all/SG-2409 “Kerberos User's Guide SG-2409 9.0”
(December 1997)

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 56 – 9804201143

Appendix D. Glossary

ACL Access Control List
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATL ActiveX Template Library
ATM Asynchronous Transfer Mode (high-speed networking)

BOA Basic Object Adapter (CORBA)

CDR Common Data Representation (CORBA)
CDS Cell Directory Service (DCE)
CF Common Facilities (CORBA)
CIOP Common Inter-ORB Protocol (DCE)
CLI Call-Level Interface
CLSID Class Identifier
COE Common Operating Environment
COM Component Object Model (COM/DCOM)
COM+ Common Object Model Plus (COM/DCOM)
CORBA Common Object Request Broker Architecture
COSS Common Object Services Specification (CORBA)
COTS Commercial Off-The-Shelf

DCE Distributed Computing Environment
DCE RPC DCE Remote Procedure Call
DCOM Distributed Component Object Model
DEC Digital Equipment Corporation
DII Defense Information Infrastructure (DoD)
DII Dynamic Invocation Interface (CORBA)
DLL Dynamic Link Library
DNS Domain Name Service
DOC Distributed Object Computing
DRDA Distributed Relational Database Architecture
DSI Dynamic Skeleton Interface (CORBA)
DSM Distributed System Management
DSOM Distributed System Object Model

FAQ Frequently Asked Questions (Internet)
FDDI Fiber Distributed Data Interface

GDS Global Directory Service
GIOP General Inter-ORB Protocol (CORBA)
GUI Graphical User Interface
GUID Globally Universal Identifier
GUID Globally Universal Identifier

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 57 – 9804201143

HP/UX Hewlett Packard Unix
HSN High Speed Networks
HTML Hypertext Markup Language (Internet)
HTTP Hypertext Transfer Protocol (Internet)

IBM International Business Machines
IDL Interface Definition Language (DCE, DCOM, CORBA)
IID Interface Identifier
IIOP Internet Inter-ORB Protocol (CORBA)
IOP Inter-Orb Protocol
IOR Interoperable Object Reference
IP Internet Protocol
IPC Interprocess Communication
IPX Internetwork Packet Exchange
IR Interface Repository
ISAPI Internet Server API
ISO International Standards Organization

LAN Local Area Network
LPC Local Procedure Call

MFC Microsoft Foundation Classes (COM/DCOM)
MIDL Microsoft Interface Definition Language (COM/DCOM)
MS-DOS Microsoft Disk Operating System
MS-RPC Microsoft RPC (COM/DCOM)
MVS Multiple Virtual System

NDR Network Data Representation (DCOM)
NetBIOS Network Basic Input/Output System
NOS Network Operating System
NSID Name Service Interface Daemon
NTLM NT LAN Manager

OA Object Adapter
OCX OLE Control (COM/DCOM)
ODBC Open DataBase Connectivity
ODL Object Description Language (COM/DCOM)
OLE Object Linking and Embedding (COM/DCOM)
OMA Object Management Architecture (CORBA)
OMG Object Management Group (CORBA)
OODCE Object Orientated Distributed Computing Environment
OOUI Object Orientated User Interface
ORB Object Request Broker (CORBA)
ORPC Object Remote Procedure Call

Recommendations for Using DCE, DCOM, and CORBA Middleware
Sponsored by: DISA/JIEO Center for Computer Systems Engineering (JEXF)

MITRE-DAS-C1 – 58 – 9804201143

OS Object Services (CORBA)
OS Operating System
OSF Open Software Foundation (now called The Open Group)

PERL Pathologically Eclectic Rubbish Lister (no kidding)

RDA Remote Database Access
RFP Request For Proposal
RMI Remote Method Invocation (Java)
ROT Running Object Table
RPC Remote Procedure Call (DCE)

SCO The Santa Cruz Operation
SDK Software Developer’s Toolkit
SGML Standard Generalized Markup Language
SII Static Invocation Interface (CORBA)
SOM System Object Model
SPX Sequenced Packet Exchange
SSI Static Skeleton Interface (CORBA)
SSPI Security Support Provider Interface

TCL Tool Command Language
TCP Transmission Control Protocol (Internet)
TP Transaction Processing

UDP User Datagram Protocol
URL Uniform Resource Locator (Internet)
UTC Coordinated Universal Time

VINES Virtual Networking System
VM Virtual Machine

WAN Wide Area Network (networks)
WWW World Wide Web (Internet)

XML eXtensible Markup Language (Internet)

