Trabajos voluntarios propuestos

Arquitectura y Tecnología de Computadores

Datos generales

- Número de alumnos por grupo: 3
- Horas de trabajo por alumno: 15h
- Evaluación:
 - Seguimiento
 - Control de versiones centralizado
 - Tutorías
 - Presentación final
 - Evaluación por parte de la clase
 - Nota final entre 0 y 1,5 a sumar linealmente.

Objetivos generales

- Realizar el trabajo de forma cooperativa
 - Coordinación continua con los compañeros de grupo
- Buscar y filtrar información sobre el tema
 - Negociar alcance del trabajo con el profesor
- Resumir el tema en ~10 diapositivas
- Presentar el trabajo ante la clase
 - Cualquier miembro debería poder hacerlo

Funcionamiento del grupo

- Formación del grupo (3 alumnos)
 - informar al profesor de la composición y nombre del grupo
- Reuniones periódicas (al menos una por semana)
 - reparto de tareas, fijación de plazos, confección de actas...
- Repositorio común de documentos
 - contenidos, enlaces, presentación, actas, ...
- Reparto de roles
 - secretario para confeccionar actas
 - encargado de fomentar la participación en las reuniones
 - encargado de controlar el cumplimiento de plazos
 - etc.

Índice de trabajos (Arquitecturas Distribuidas)

(Arquitecturas Distribuldas)

- Infraestructura de sistemas distribuidos
 - 1. Message Oriented Middleware (MOM)
 - 2. Servicios Web
 - 3. Comunicaciones seguras a través de sockets
- Aplicaciones sobre sistemas distribuidos
 - 4. Grid computing
 - 5. Sistemas de ficheros distribuidos
 - 6. Intercambio de archivos entre iguales (p2p)

1. Message Oriented Middleware (MOM)

Descripción

 Los sistemas MOM permiten que los elementos de las aplicaciones distribuidas estén más desacoplados, tolerando intercambios de información asíncronos.

- Estudiar los sistemas más ampliamente difundidos:
 IBM WebSphere MQ (MQSeries), Java EE JMS,
 Microsoft Message Queuing (MSMQ)
- Analizar la implantación del estándar Advance Message Queuing Protocol (AMQP)

2. Servicios Web

Descripción

 Los servicios Web son una forma de invocación remota en la que se utiliza el protocolo HTTP

- Estudiar y describir diferentes implementaciones como SOAP, REST.
- Realizar un cliente de ejemplo o un mashup

3. Comunicaciones seguras a través de sockets

Descripción

- La API de sockets no proporciona seguridad. Capas superiores pueden cifrar una conexión (ej: https)
- SSL utiliza criptografía de clave simétrica, de clave pública, certificados digitales, etc

- Estudiar los aspectos teóricos de SSL y TLS, y una implementación de estas bibliotecas
- Implementación mínima de cliente/servidor seguros

4. Grid computing

Descripción

 La computación en malla permite que gran cantidad de ordenadores trabajen simultáneamente en un mismo problema, normalmente de cálculo intensivo.

- Estudiar el funcionamiento de los sistemas Grid.
 Analizar los sistemas en producción.
- Implantación y programación de un ejemplo.

5. Sistemas de ficheros distribuidos

Descripción

 Los sistemas de ficheros distribuidos permiten a los usuarios acceder a recursos remotos como si fueran locales.

- Estudiar y comparar los sistemas de ficheros distribuidos más comunes: Andrew File System (AFS), Network File System (NFS), Server Message Block (SMB).
- Programar una aplicación que interactúe con algunos de ellos.

6. Intercambio de archivos entre iguales (p2p)

- Descripción
 - Protocolos distribuidos para distribución eficiente de archivos minimizando el consumo de recursos (ancho de banda) del servidor.
 - Ej: bittorrent, eDonkey, Gnutella
- Objetivos
 - Estudiar y comparar protocolos
 - Implementar pequeñas herramientas

Índice de trabajos

(Arquitecturas Paralelas)

- Introducción a las Arquitecturas de Altas Prestaciones
 - 1. Supercomputación española
 - 2. Benchmarking de PCs
- Incremento de Prestaciones
 - 3. Computadores del futuro
 - 4. Evolución de los procesadores
 - 5. Procesadores actuales
 - 6. Procesamiento vectorial

1. Supercomputación española

Descripción

 Estudiar en detalle los centros de supercomputación españoles

- Recopilar los principales centros de supercomputación
- Analizar su infraestructura computacional
- Analizar las líneas de investigación a las que dan soporte

2. Benchmarking de PCs

Descripción

 Estudiar las herramientas para medir diferentes tipos de rendimiento en computadores personales: procesador, gráficos, memoria, etc.

- Recopilar las herramientas existentes para Windows/Linux
- Analizar todas sus posibilidades
- Realizar experiencias con las herramientas libres

3. Computadores del futuro

Descripción

 Estudiar los fundamentos de las técnicas de futuro en el desarrollo de computadores

- Analizar la computación mecánico-cuántica
- Analizar la computación biológica
- Analizar la computación óptica

4. Evolución de los procesadores

Descripción

 Estudiar los procesadores más representativos en la historia del PC

- Recopilar los modelos más representativos
- Analizar su tecnología y arquitectura
- Representar la evolución de sus características

5. Procesadores actuales

Descripción

 Estudiar las características de los procesadores empleados actualmente en computadores de propósito general

- Análizar los procesadores para Servidores
- Análizar los procesadores para PCs
- Análizar los procesadores para Portátiles y PDAs

6. Procesamiento vectorial

Descripción

 Estudiar las capacidades de procesamiento vectorial en los procesadores actuales

- Analizar los procesadores Intel/AMD
- Analizar otros procesadores como PowerPC
- Analizar los procesadores de las principales videoconsolas