
Cost Minimization of Virtual Machine
Allocation in Public Clouds Considering

Multiple Applications

Joaqúın Entrialgo, José Luis Dı́az, Javier Garćıa, Manuel Garćıa, and
Daniel F. Garćıa

University of Oviedo, Asturias, 33204 Gijón, Spain,
{joaquin, jldiaz, javier, mgarcia, dfgarcia}@uniovi.es

Abstract. This paper presents a virtual machine (VM) allocation strat-
egy to optimize the cost of VM deployments in public clouds. It can si-
multaneously deal with multiple applications and it is formulated as an
optimization problem that takes the level of performance to be reached
by a set of applications as inputs. It considers real characteristics of in-
frastructure providers such as VM types, limits on the number VMs that
can be deployed, and pricing schemes. As output, it generates a VM allo-
cation to support the performance requirements of all the applications.
The strategy combines short-term and long-term allocation phases in
order to take advantage of VMs belonging to two different pricing cate-
gories: on-demand and reserved. A quantization technique is introduced
to reduce the size of the allocation problem and, thus, significantly de-
crease the computational complexity. The experiments show that the
strategy can optimize costs for problems that could not be solved with
previous approaches.

Keywords: Cloud Computing · Cost Optimization · Virtual Machine
Allocation · Multi-application

1 Introduction

Cloud computing has evolved quickly in recent years, becoming a useful and
attractive alternative for deploying new applications. Cloud computing offers
almost unlimited computing capacity (scalability), which can be immediately
increased or decreased following the users’ demand (elasticity). All of these char-
acteristics are available through a ”pay-as-you-go” model.

However, users who want to deploy their applications on the cloud have to
answer an important question: how much cloud computing power should they
hire? Hiring too much means a waste of money; on the other hand, hiring too
little may reduce profits or, even worse, incur economic penalties if SLAs are not
met. Therefore, there is a broad research in order to answer this question and to
find the most cost-effective allocation, such as [1], [4,5,6], [9,10], [14,15] or [18].

Among the services provided by cloud computing, here we consider Infras-
tructure as a Service (IaaS), one of the fastest growing fields. Cloud providers

offer different Virtual Machine (VM) types (for example, a VM type provided by
Amazon EC2 is m4.large, which offers 2 virtual CPUs and 8 GiB of RAM [3]).
Moreover, with regard to pricing, VMs can belong to two different categories:
on-demand and reserved [2]. Thus, the cost optimization problem is complex.
Firstly users have to choose the cloud provider and the datacenters, each of
them with different costs, where to carry out their deployments. Then, users
should choose the most appropriate VM types to execute their applications. Fi-
nally, if the applications will run for a long time, users should consider to take
advantage of the lower price of reserved instances.

Therefore, minimizing deployment costs, while guaranteeing the fulfillment
of a determined level of performance, is a usual objective of cloud computing
users. To achieve this goal, a significant number of VM allocation strategies have
been developed.

An allocation strategy produces a VM allocation that represents the number,
types and pricing categories of the VMs to be deployed in a given time period.
In order to determine the instants in which an allocation strategy is applied, the
time is usually divided in regular time slots. A typical length for these slots is
one hour, coinciding with the billing period of some important providers, such
as Amazon EC2.

VM allocation strategies can be focused in the short or in the long term. A
short-term strategy generates an allocation for the next time slot. In contrast, a
long-term strategy usually operates with a yearly period, and it generates a VM
allocation for each time slot of a year. Short-term strategies rely on on-demand
VMs, because these are oriented to be started or stopped as required, follow-
ing the instant variations of the workload. In contrast, long-term strategies can
take advantage of reserved VMs in addition to on-demand VMs. Reserved VMs
support the base workload of the applications, and on-demand VMs supplement
the computing capacity provided by reserved VMs as required by the application
demands.

Long-term strategies have to deal with severe difficulties. The allocation prob-
lems to be solved are huge (for example, considering a reservation period of one
year and a time slot of one hour, 8760 allocations must be calculated and they
can not be solved independently). Moreover, a significant number of VM types
may have to be taken into account, so the solution space to be explored for
each allocation may be vast, and the limits imposed by providers (that is, the
maximum number of VMs that can be deployed in a region or in an availability
zone) also hinder the computation of a solution.

A previous VM allocation approach, referred to as LLOOVIA (Load Level
based OptimizatiOn for VIrtual machine Allocation) [6], combined a long-term
and a short-term strategy, organized in two phases, to take advantage of both
reserved and on demand VMs. LLOOVIA is designed to minimize allocation
costs, while guaranteeing the fulfillment of a determined level of performance.
However, LLOOVIA lacks the ability to deal with multiple applications: it is
designed for managing only one application. To overcome this shortcoming, an
improved version of LLOOVIA, named MALLOOVIA (Multi-Application Load

Level based OpimizatiOn for Virtual Machine Allocation), has been designed
and is presented in this paper.

MALLOOVIA can deal with multiple applications, each one of them con-
sidered perfectly scalable by horizontal replication. MALLOOVIA is formulated
as an optimization problem that takes the levels of performance to be reached
by a set of applications as input, and generates a VM allocation to support
the performance requirements of all the applications as output. The generated
allocation minimizes the deployment cost of the applications, guaranteeing the
required performance for each one of them. The applications managed by MAL-
LOOVIA can be totally independent or can be part of a service. An example of
the latter case is a multi-tier service, which can be considered as composed of
different applications, corresponding each one of them to a different tier.

The management of multiple applications increases the size of the problems to
be solved extraordinarily, and usually problems become intractable. To overcome
this shortcoming, MALLOOVIA employs a quantization method that has the
ability of reducing the number of performance levels to be dealt with for each
application very significantly. This method has proven to be very effective in the
experimental cases analyzed with MALLOOVIA.

2 Related Work

In this research, we focus on allocation cost minimization, while guaranteeing
the fulfilment of performance requirements. We consider the problem of the
deployment of several applications, in a multi-cloud environment. In this multi-
cloud environment several types of VM, each of them with different prices and
performance, can be chosen. Furthermore, cloud providers impose limits to the
number of VMs that can be hired by the user. Finally two pricing models are
considered, on-demand and reserved instances.

In the literature, there are several papers that approach the cost optimiza-
tion problem of VM allocation. However, none of them cover all the previously
mentioned aspects simultaneously. There are two main approaches to study this
problem. They differ on the way they represent the system workload.

There is a first group of papers ([12], [5], [18], [8], [11] and [16]) where the
workload is represented as the number of VMs required in each period, instead
of as the arrival rate of requests to the system, which is more frequently used
in transactional applications. The approach presented in these works solves only
part of the problem, namely, to find the optimal allocation of VMs to providers,
but it does not address the issue of determining the appropriate type and number
of VMs to support a given arrival rate. This issue is not solved in those papers,
because it is assumed to be known in advance.

In [12] the authors develop a heuristic approach to minimize the cost using
a single cloud provider. They also consider reserved and on-demand VMs, but
they do not consider any VM type distinction or limit. Their model is based on
a prediction over historical data, and in a first stage, using this prediction, the
number of reserved VMs to hire are estimated. In a second stage, using the real

demand, the number of on-demand VMs needed to fulfill the requirements are
obtained.

In [5] the authors propose an optimal cloud resource provisioning algorithm
whose aim is to minimize the total cost for provisioning resources in a certain
time period. The authors consider the cost resulting from both reserved and on-
demand resources from multiple clouds. This model is able to manage different
types of applications, but each application must be supported by the same VM
type, that is, different types of VM cannot be mixed in the same application.
In this model, the VMs are specified as a set of resources: computational power,
storage, network bandwidth and electricity power, and in the same way, each
cloud provider is represented as a pool of these resources. However, nowadays
cloud providers offer VMs as a discrete set of configurations called VM types.
The algorithm proceeds in two steps: in the first step a prediction of the VM
demand is calculated, in the second step the number of reserved VMs to hire is
obtained. In this paper, it is not clear how the on-demand VMs needed to cover
the real demand are chosen.

The authors of [18] follow the same approach that [5], but with the differ-
ence that they rely on a combination of heuristic methods to find the optimal
allocation in a reasonable time.

A more limited study can be found in [8], where the authors develop a heuris-
tic to calculate only the number of reserved VM required for a given prediction.
The heuristic provides a sub-optimal solution when it supports different reserved
VM contracts. This heuristic is limited to only one application, not considering
VM types or VM limits.

In [11] the authors apply a stochastic model based on Inventory Theory to
find the optimal combination of reserved and on-demand VMs which minimizes
the cost. Applying this model, the authors find an equation to calculate the
number of reserved VMs to be leased. From this expression, they apply a heuristic
process to find a purchase plan. The main drawback of this model is that it is
limited to only one application, one VM type and one cloud provider, and the
model does not consider any limit in the number of VMs that can be hired.

The last paper in which workload is given as number of required VMs is [16].
The authors propose a global broker which receives the users’ demands and allo-
cates them among a set of cloud providers working cooperatively. The proposed
method works in two phases. In the first phase the number of reserved VMs
needed is obtained, in a similar way to [8]. In the second phase, a heuristic algo-
rithm is executed to minimize the users’ usage cost of provisioning on-demand
VMs. The main limitations of this work are that it is limited to only one appli-
cation and it does not support VM types or any kind of limit.

There is a second group of papers ([10], [7], [4] and [17]) where the optimiza-
tion problem is analyzed considering the workload as an arrival rate of requests
that must be served using the allocated VMs. This represents a more common
problem of cloud resource optimization.

In [10] the authors study the VM allocation problem for multimedia applica-
tion providers. The providers aim to minimize the resource cost while meeting

the round trip time requirements. They propose two optimal schemes for VM
allocation for both single-site and multi-site clouds. In this work, both reserved
and on-demand pricing schemes are considered, but the number of reserved VMs
is known and fixed at the beginning of the algorithm. The algorithm only decides
how many of them are used. This is not a valid approach because reserved VMs
imply an initial cost, whether the VMs are used or not.

In [7] the authors investigate the time-cost optimization problem of tasks
with deadline taking advantage of reserved VMs. They present two solutions:
the cost optimization problem, where they look for the cheapest allocation, and
the time optimization problem, where for a given budget, they find the allocation
with the best processing time. This work considers only an application and it is
guided by the VM leasing time, more than VM types or limits.

In [4] the authors present a model that optimizes the cost of a deployment
of a multi-site application in a multi-cloud environment. The model considers
both reserved and on-demand VMs and their pricing schemes. However, it only
uses one application and one VM type in the analysis.

In [17] the authors propose a cloud brokerage service that aggregates the
cloud user demands to take advantage of cheaper prices of reserved VMs. The
service handles the cloud user demands with a pool of VMs that are either
reserved or launched on-demand. The aim is to minimize the cost using as few
on-demand VMs as possible. This work is limited to one VM type and only one
cloud provider.

Finally, the most related work is [6]. This work covers all the characteristics
considered here, except that it only deals with a single application. The objective
of our paper is to extend [6] to solve the cost optimization problem when several
applications have to be allocated on the same cloud resources.

In the literature there are only two similar works ([9] and [15]) that con-
sider cost optimization of several applications on a cloud computing environ-
ment. However, they are limited by the type of resources they support and
they only perform an static (off-line) analysis. Thus, in [9] the authors propose
an algorithm that finds the most cost-effective allocation which meets the QoS
requirements with the lowest cost. Its main drawbacks are that it is limited to
on-demand VMs and it does not take advantage of reserved VMs. Finally, in [15]
the authors solve the problem of cost optimization of concurrent services when
they are executed on a multi-cloud environment considering different VM types,
but as in the previous work it does not take advantage of reserved VMs.

Our paper approaches the cost optimization problem in a more complete
way than previous works: it considers several application simultaneously; it can
be used in multi-cloud environments; it takes into account how cloud providers
support different VM types and their restrictions; and it considers both reserved
and on-demand price schemes.

3 System Model and Resolution

3.1 Overview

The model presented in this paper is very similar to the one in [6], but extended
to allow multiple applications to be deployed in the same (shared) cloud infras-
tructure. Most of the concepts and notation in [6] are still relevant, being the
main differences: a) the workload is not longer a single number per timeslot,
but a set of numbers, one per application, and b) the performance of any given
instance class (defined later) is not a single number, but also a set of numbers.

The problem to solve is to find, for each timeslot, the number and types of
VMs which should be acquired (both reserved and on-demand VMs), to run each
of the applications. The number and types of reserved VMs will be fixed after the
purchase, and will be the same for all timeslots, while the number and types of
on-demand instances will vary. The problem is solved in two phases. Phase I tries
to find the optimal number of reserved VMs of each type. This phase requires
a long-term prediction of the workload, for the whole reservation period and
for each application. This phase is carried out off-line, before the deployment.
The result of this phase is used to buy reserved VMs for a whole reservation
period. Phase II starts assuming that those reserved VMs are available, and
uses a short-term workload prediction for each application, which consists of
the expected workload per application, for the next timeslot. During phase II,
at each timeslot, the expected workload is supported by a mix of the available
reserved VMs, plus some extra on-demand VMs whose number and type is to
be found in this second phase.

The problem is complicated by the fact that cloud providers can impose a
limit on the maximum number of allocated VMs of each type, or a maximum
total number of VMs allocated per region, or a maximum total number of CPU
cores allocated per region, or a mix of several of these limits. Since these limits
are on the infrastructure, and are not set per application, they make impossible
to decompose the problem in several independent problems, one per application.

3.2 Infrastructure Model

To unify the different kinds of limits imposed by different cloud providers, we
use the concept of Limiting Set, denoted by LSj , which are sets in which
VMs are deployed and which impose some kind of global limit on the VMs in
that set. Each LSj defines two limits: LSvms

j , which is the maximum number of
virtual machines which can run simultaneously in LSj , and LScores

j , which is the
maximum number of CPU cores which can run simultaneously in LSj .

To unify the different VM types offered by different cloud providers in their
different availability zones, and under different pricing schemas, we use the con-
cept of Instance Class, denoted by IC. For example, an on-demand c4.large
on Amazon EC2 on region us-east-2, is a different instance class than a reserved
c4.large on Amazon EC2 on availability zone us-east-1b. For each ICi the fol-
lowing attributes are defined:

– pi is the price per time slot of the class. For reserved VMs this price should
include the upfront payment prorated over the duration of the reservation
period, and the per-hour cost.

– perfai is the performance of that class when it is used to run the application
Aa, under the considered kind of load for that application, and expressed in
the same units as the load. These values can be obtained via benchmarking
or monitoring.

– rsvi is a boolean denoting whether this instance class is reserved or not.
– ci is the number of CPU cores provided by this class.
– lsi is an integer, j, which is the index of the LSj to which this instance class

belongs.
– maxi is the maximum number of VMs of this class which can be instantiated

in its limiting set. Some cloud providers also impose this kind of restriction,
especially for high performance VM types.

Without loss of generality we can divide the set of all ICi into two disjoint
subsets, depending on the value of rsvi. We will use the superindex res to refer to
attributes of reserved instance classes and dem for on-demand ones. For example,
presi , perfdemia , etc.

3.3 Applications and Workload Model

An application is the software that will be run in the instance classes. It can be
thought as the disk image used to boot the VM. For example, one application
can be a database and a second application can be a web server. The set of
possible applications A = {A1, A2, ..., ANA

} is fixed. Each application has a
different performance for each possible instance class, and this is captured by
the attribute perfia previously seen, which is assumed to be known for all instance
classes and applications.

We assume time divided into slots of length t (e.g., 1 hour), and denote
each of these time slots by tk. At any timeslot tk, the workload is a vector
lk = {lk,1, lk,2, . . . , lk,NA

}. The component lk,a is the expected workload for
application Aa during timeslot tk.

Note that for Phase I the sequence of lk for all timeslots tk is required in
advance. This is a prediction that we will denote by LTWP (Long Term Workload
Prediction). For Phase II, however, only the workload for the next timeslot is
required, and we will denote it by STWP (Short Term Workload Prediction).

To reduce the problem size for Phase I we choose to represent the LTWP
as a histogram. Given an arbitrary workload vector L = {L1, . . . , LNA

}, the
histogram H(L) is the number repetitions of that workload in the LTWP. More

formally H(L) =
∑T/t

k=1 eq(L, lk), being eq(x,y) = 1 if x = y, and 0 otherwise.
We define the effective workload, and denote it by L, as the set of all vector

loads which appear at least once in the LTWP, or, more formally L = {L :
H(L) > 0}. Note that, if some L appears twice or more times in the LTWP,
then the size of L will be smaller than the size of LTWP, so this representation
saves space, being equal in the worst case (when no workload vector ever repeats).

3.4 Optimization Problem for Phase I

The optimization problem can be formulated as an integer linear programming
problem, with the unknown integer variables Yai, which is the number of reserved
VMs of class ICres

i to be purchased at the beginning of the reservation period
T to run application Aa, and XaiL which is the number of on-demand VMs of
class ICdem

i to run application Aa to be purchased at any time slot for which the
predicted vector load is L. Since reserved instances are paid even if not used,
the analysis assumes those machines to be always available.

The function to optimize is the cost for the whole reservation period, which
can be calculated as:

C =

NA∑
a=1

Nres∑
i=1

Yaip
res
i T/t +

NA∑
a=1

Ndem∑
i=1

∑
L∈L

XaiLp
dem
i H(L) (1)

This cost is minimized subject to restrictions:

Nres∑
i=1

perf resai Yai +

Ndem∑
i=1

perf demai XaiL ≥ La ∀L ∈ L,∀a = 1, . . . , NA (2)

NA∑
a=1

Yai ≤ maxres
i ∀i = 1, . . . , N res (3)

NA∑
a=1

XaiL ≤ maxdem
i ∀L ∈ L, i = 1, . . . , Ndem (4)

NA∑
a=1

∑
i∈Sres

j

Yai +

NA∑
a=1

∑
i∈Sdem

j

XaiL ≤ LSvms
j ∀L ∈ L, j = 1, . . . , NLS (5)

NA∑
a=1

∑
i∈Sres

j

ciYai +

NA∑
a=1

∑
i∈Sdem

j

ciXaiL ≤ LScores
j ∀L ∈ L, j = 1, . . . , NLS (6)

Restriction (2) states that, for each application, the performance given by
the solution should be at least equal to the workload for that application, for all
predicted workload vectors. Restrictions (3) to (6) represent the limits imposed
by cloud providers on the total number of VMs of ech type, the total number
of VMs per region and the total number of CPU cores per region, respectively.
In the last two restrictions, the symbol Sj represents the set of instance classes
which share the same limiting set LSj , i.e: Sj = {i : lsi = j}.

3.5 Optimization Problem for Phase II

Phase II is very similar to Phase I, but much simpler. The set of equations to
solve are the same already seen in Phase I, but now L is a set with a single
element: the vector load for the next time slot (STWP).

During Phase II only on-demand instances can be hired, so it is necessary to
include new restrictions which fix the number of reserved instances to the values
found by Phase I. However, we can allow Phase II to reuse reserved instances for
a different application than the one given by the allocation generated in Phase I.
This way we can accommodate discrepancies between the long term prediction
and the short term prediction (which will be in general more accurate).

To formalize this idea, lets call Y ′
ia the solution found by Phase I. Then, in

Phase II the following restriction is added:

NA∑
a=1

Yia =

NA∑
a=1

Y ′
ia ∀i = 1, . . . , N res (7)

3.6 Solving Strategies and Approximations

The size of the problem in Phase I is usually huge, especially when no workload
vector repeats in the LTWP, and thus the size of L is large. This can be alleviated
if the LTWP is approximated by a quantized version.

Formally, given a set of quantization steps {Qa}, one per application, the
quantized long-term workload prediction, QLTWP, is defined as the sequence of
vector loads l̄k, for k = 1, . . . , T/t, being:

l̄k = {l̄ka} =

{⌈
lka
Qa

⌉
Qa

}
a = 1, . . . , NA (8)

Note that, by taking the ceiling operator, QLTWP is a pessimistic approxima-
tion of LTWP, assuming workloads greater than or equal to the ones predicted.
This is to ensure that the performance restriction in (2) is still fulfilled.

Since the quantization reduces the number of possible values that the work-
load can take, it increases the chance of observing repetitions of the same vector
load L, and thus the histogram of QLTWP, H̄(L), will have a smaller number
of non-zero points than H(L), i.e: the size of the effective quantized workload L̄
will be smaller (or equal in the worst case) than the size of the original effective
workload L.

Using QLTWP instead of LTWP the size of the problem can be thus reduced.
The quantization steps {Qa} gives us control over the size of the problem, at
the cost of possibly introducing suboptimality in the solution.

There is one choice of {Qa} which is particularly intesting because it does
not introduce suboptimality in the solution. This is the case in which each Qa

is the greatest common divisor of the performances for that application among
all instance classes, i.e:

Qa = gcd
i

perfia (9)

Using Qa chosen as in eq. (9) the solution of Phase I gives the same values for
Yia than in the case without quantization, but the quantized version is a smaller
problem, easier to solve, as shown in the experimental results section.

Fig. 1. Workload of the case study, for a year (left) and for the first 50 hours (right)

4 Experimental Results

In order to show how the technique proposed in this paper can solve problems
that previous state-of-the-art techniques are not able to address, a synthetic case
study is presented in this section. In this case study, a hypothetical analytics
company uses three applications: a data extraction application that every six
hours fetches the data from different external sources, an analysis application
that the customers use and a database that is used by the extraction application
to save the data and by the analysis application to carry out the analysis.

These three applications are executed in Amazon’s EC2 cloud. The analyt-
ics company has statistics about the number of expected requests for the next
year and wants to obtain the allocation with the minimum cost that fulfills the
performance requirements. Fig. 1 shows the synthetic workload that has been
generated to simulate the statistics from the company. As can be seen the three
applications have different request patterns. In particular, the extraction appli-
cation only executes every six hours; the analysis application exhibits periodic
behaviour with daily, weekly and yearly cycles; finally, the database applica-
tion workload is compounded from the other two application workloads, using
different visit ratios to the database.

In order to have real prices and limits, we are going to assume that the
applications have to be deployed in region US West (N. California) of Amazon’s
EC2 cloud, where there are three availability zones. There is a limit of 20 reserved
VMs in each zone. In addition, there is a limit of 20 VMs for each type of on-
demand instance. In order to provide a variety of options, VM types m3.medium,
m3.large, c3.large and c3.xlarge have been selected as possible types to execute
the application. Table 1 shows the performances and price for each VM type. The
values of the performances have been generated synthetically, but the relation
between them follows the relation between ECU (the performance metric used
by Amazon) for each type. In addition, compute optimized VM types (c3.large
and c3.xlarge) have been given more performance for the analysis application
to provide a more interesting case study where different applications behave
differently in different VM types.

Table 1. Performance and price of different VM types

Application performance (rph) Price ($/h)
VM type Extraction Analysis Database On-demand Reserved

c3.large 5750 30 18900 0.12 0.0766
c3.xlarge 10350 50 34020 0.239 0.154
m3.large 4600 20 15120 0.154 0.105
m3.medium 2300 10 7560 0.077 0.0532

Table 2. Quantization amounts used in phase I

Quantization GCD Number of Quantization step Qa (rph)
amount multiplier variables Extraction Analysis Database

0 N/A 91632 None None None
1 1 8544 1150 10 3780
2 3 2256 3450 30 11340
3 5 1200 5750 50 18900
4 7 672 8050 70 26460
5 10 720 11500 100 37800
6 15 384 17250 150 56700

As the goal of the experimentation is showing how this new technique com-
pares to previous works, the case study has been analyzed with MALLOOVIA
and LLOOVIA. However, since LLOOVIA can only handle one application, the
three applications have been analyzed independently, generating three solutions,
one per application, and the total cost has been computed as the sum of the cost
of the three solutions. Notice that, since LLOOVIA considers the limits inde-
pendently in each application, there is a risk that total number of VMs for the
combined solution exceeds the limits, so the solution obtained with LLOOVIA
would be unfeasible.

To study how quantization affects the results, the problem has been solved
without quantization and with several amounts of quantization using different
quantization steps, and to isolate the error introduced by quantization from the
error in the workload predictions the same workload has been used as LTWP and
STWP. In the first case, the quantization step for each application is the greatest
common divisor (GCD) of the performance of each VM type. This quantization
step does not introduce error. In the rest of the cases, the quantization step is
multiplied by 3, 5, 7, 10 and 15, giving the values shown in Table 2. As can
be seen, increasing the quantization steps reduces the number of variables in
the optimization problem for phase I. Using the GCD, the number of variables
decreases from 91632 to 8544.

Fig. 2 shows that in MALLOOVIA, the cost increases very little when the
quantization step is increased (notice that the y axis starts in 45 000). As ex-
pected, when the quantization step is the greatest common divisor, the cost is
the same as with no quantization. In the worst case, the cost is incremented in

Fig. 2. Comparison of allocation costs
in MALLOOVIA and LLOOVIA

Fig. 3. Time required for solving
phase I of MALLOOVIA

less than 0.3%. On the other hand, Fig. 3 shows that the solving time for phase
I of MALLOOVIA is greatly reduced using quantization. Using the GCD, the
solving time is one order of magnitude smaller than without quantization, but
the solution obtained is also optimal.

Fig. 2 shows a result that may be unexpected at first: except when the
quantization amount is maximum, costs are higher in MALLOOVIA than in
LLOOVIA. As it was mentioned before, there is a reason that explains why, in
fact, MALLOVIA is better: as LLOOVIA is not prepared for working with sev-
eral applications, the allocation obtained by combining the three independently
generated allocations does not respect the limits imposed by the providers and,
thus, is not feasible.

This can be seen in Fig. 4, which shows the number and types of VMs allo-
cated for each application in MALLOVIA and LLOOVIA for the 50 first hours.
Reserved VMs are represented with different colors (depending on the type and
zone), while on-demand VMs are depicted with levels of grey. It can be seen
that LLOOVIA allocates 60 reserved VMs for the analysis application. That is
the maximum number of reserved VMs that can be allocated with the 20 limit
per region and the three regions available, and it is a valid solution when only
that application is taken into account. However, when solving for the database
application, LLOOVIA also allocates two reserved VMs, making the combined
allocation not compliant with the limits imposed by the provider; thus, the com-
bined solution is unfeasible. On the other hand, MALLOOVIA allocates 60 VMs
between the three applications, obtaining a feasible solution.

In addition, MALLOVIA has another advantage: if for any time-slots the
STWP for an application were smaller than the LTWP, some reserved instances
for that application would not be needed and could be reused for another appli-
cation, avoiding to hire new on-demand VMs and, thus, reducing the cost.

This case study has demonstrated that MALLOOVIA can solve problems
that strategies not prepared for multi-applications solve incorrectly. In addition,
it has shown that using quantization the solving time can be significantly reduced
without increasing the cost significantly.

Fig. 4. Comparison of number of VMs allocated in MALLOOVIA and LLOOVIA. In
the legend, the suffix ” R” indicates that the VM is reserved and ” AZn” indicates
that it is deployed in availability zone n.

5 Conclusions and future Work

In this paper we have presented the MALLOOVIA allocation strategy. It enables
the cloud user to find the most economical allocation that meets performance
when the user wants to deploy several applications running simultaneously and
for a long time period.

MALLOOVIA succeeds in representing the real characteristics found in the
cloud market: different cloud providers, several types of VMs, constraints im-
posed by the providers to the number of VMs that can be simultaneously hired
and pricing schemes. In addition, it supports multi-application deployments.
The optimization problem was formulated using integer linear programming and
solved in two phases: phase I obtains the number of reserved VMs to be hired
at the beginning of the reservation period, and phase II allocates applications
to the hired reserved VMs and obtains the number of extra on-demand VMs
needed at each time slot.

MALLOOVIA uses an approximation method based on quantization, which
reduces significantly the size and resolution time of the problem with practi-
cally no cost deviation for small quantization levels. In the experimental results,
this strategy has shown that it is able to solve the allocation cost-minimization
problem without violating the imposed restrictions, unlike previous strategies.

Future work focuses on improving the realism of the cloud model, for ex-
ample taking into account extra constraints, such as the amount of memory
or the number of cores required for an application, and studying how the VM
performance variability within the same instance class impacts the results [13].
Another future work direction is to investigate new approximations to reduce
the problem size without lost of accuracy.

Acknowledgments. This work was supported by the Spanish National Plan for
Research, Development and Innovation [Project MINECO-15-TIN2014-56047-
P].

References

1. Álvarez, P., Hernández, S., Fabra, J., Ezpeleta, J.: Cost Estimation for the Pro-
visioning of Computing Resources to Execute Bag-of-Tasks Applications in the
Amazon Cloud. In: Altmann, J., Silaghi, G.C., Rana, O.F. (eds.) Economics of
Grids, Clouds, Systems, and Services, vol. 9512, pp. 65–77. Springer International
Publishing, Cham (2016)

2. Amazon: Amazon EC2 pricing (2016), https://aws.amazon.com/ec2/pricing/
3. Amazon: Amazon EC2 - instance types (2017), https://aws.amazon.com/ec2/

instance-types/
4. Bellur, U., Malani, A., Narendra, N.C.: Cost optimization in multi-site multi-cloud

environments with multiple pricing schemes. In: 2014 IEEE 7th International Con-
ference on Cloud Computing. pp. 689–696. IEEE (Jun 2014)

5. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Transactions on Services Computing 5(2), 164–177 (Apr
2012)

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

6. Dı́az, J.L., Entrialgo, J., Garćıa, M., Garćıa, J., Garćıa, D.F.: Optimal allocation
of virtual machines in multi-cloud environments with reserved and on-demand
pricing. Future Generation Computer Systems 71, 129 – 144 (2017)

7. Hu, M., Luo, J., Veeravalli, B.: Optimal provisioning for scheduling divisible loads
with reserved cloud resources. pp. 204–209. IEEE (Dec 2012)

8. Khatua, S., Sur, P.K., Das, R.K., Mukherjee, N.: Heuristic-based optimal resource
provisioning in application-centric cloud. CoRR abs/1403.2508 (2014)

9. Mireslami, S., Rakai, L., Wang, M., Far, B.H.: Minimizing Deployment Cost of
Cloud-Based Web Application with Guaranteed QoS. pp. 1–6. IEEE (Dec 2015)

10. Nan, X., He, Y., Guan, L.: Optimal allocation of virtual machines for cloud-based
multimedia applications. In: Multimedia Signal Processing (MMSP), 2012 IEEE
14th International Workshop on. pp. 175–180. IEEE (Sep 2012)

11. Nodari, A., Nurminen, J.K., Frühwirth, C.: Inventory theory applied to cost opti-
mization in cloud computing. In: Proceedings of the 31st Annual ACM Symposium
on Applied Computing. pp. 470–473. ACM Press (2016)

12. Orbegozo, I.S.A., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Cloud
capacity reservation for optimal service deployment. In: CLOUD COMPUTING
2011, The Second International Conference on Cloud Computing, GRIDs, and
Virtualization. pp. 52–59. IARIA (Sep 2011)

13. O’Loughlin, J., Gillam, L.: Performance Evaluation for Cost-Efficient Public In-
frastructure Cloud Use. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) Eco-
nomics of Grids, Clouds, Systems, and Services, vol. 8914, pp. 133–145. Springer
International Publishing, Cham (2014)

14. Pietri, I., Sakellariou, R.: Cost-Efficient CPU Provisioning for Scientific Workflows
on Clouds. In: Altmann, J., Silaghi, G.C., Rana, O.F. (eds.) Economics of Grids,
Clouds, Systems, and Services, vol. 9512, pp. 49–64. Springer International Pub-
lishing, Cham (2016)

15. Ran, Y., Yang, B., Cai, W., Xi, H., Yang, J.: Cost-Efficient Provisioning Strategy
for Multiple Services in Distributed Clouds. pp. 1–8. IEEE (May 2016)

16. Reddy, K.H.K., Mudali, G., Sinha Roy, D.: A novel coordinated resource provi-
sioning approach for cooperative cloud market. Journal of Cloud Computing 6(1),
8 (2017)

17. Wang, W., Niu, D., Liang, B., Li, B.: Dynamic cloud instance acquisition via IaaS
cloud brokerage. IEEE Transactions on Parallel and Distributed Systems 26(6),
1580–1593 (Jun 2015)

18. Yousefyan, S., Dastjerdi, A.V., Salehnamadi, M.R.: Cost effective cloud resource
provisioning with imperialist competitive algorithm optimization. In: 2013 5th
Conference on Information and Knowledge Technology (IKT). pp. 55–60. IEEE,
IEEE (May 2013)

	Cost Minimization of Virtual Machine Allocation in Public Clouds Considering Multiple Applications

