
Safe extensions to the stochastic analysis of
real-time systems

Jóse Luis D́ıaz, J́ose Maŕıa López
Universidad de Oviedo

Technical report SESART04
January 2004

Abstract

Classical deterministic analysis of real-time systems focuses on obtaining the worst pos-
sible response time of each task, among all possible execution scenarios. Comparing this
worst-case response time with the deadline of the task, the feasibility of the system can be
assessed. If the deadline does not exceed this worst-case execution time, it is guaranteed
that the response time of the deadline will not exceed its deadline under any circunstance.

The stochastic analysis of real-time systems, instead, focuses in obtaining the proba-
bility function of the response time of the tasks, that is, the profile of all possible response
times and the probability of occurrence of each one. Using this probability function, the
probability of the response time exceeding any given value can be computed. In particu-
lar, the probability of deadline misses can be obtained, since it is equal to the probability
of the response time exceeding that deadline. However, this kind of stochastic analysis
has a high computational complexity, and becomes unffordable in current practice. On
one side, the exact calculation of the response time distribution of the tasks is not possi-
ble except for simple periodic and independent task sets. On the other side, in practice,
tasks introduce complexities like release jitter, blocking in shared resources, stochastic
dependencies, etc, which can not be handled by the periodic and independent task set
model.

In order to overcome the problems of the stochastic analysis, some kind of simpli-
fication has to be incorporated into it. However, it is important to guarantee that the
simplifications incorporated aresafe, or pessimisticin an stochastic sense. We will con-
sider a simplification to be safe if the probabilities of deadline misses obtained using that
simplification are greater than the exact ones. This way, we can guarantee that the real
ratio of deadline misses will never exceed the probabilities obtained from the analysis.

This technical report introduces the idea of pessimism in the stochastic analysis, by
formally defining a comparison operator among random variables, which allow us to state
whether a random variable is “worse than” other. Some important properties of this op-
erator are shown. These properties are used to prove some theorems about the stochastic
analysis, which can be summarized as “if pessimistic data is introduced in the model,
pessimistic response times will be obtained”. This result looks trivial, but it has to be
carefully proven when the model deals with random variables instead of deterministic
constants.

Allowing some pessimism, the stochastic analysis of real-time can be extended in
several directions. In this technical report we present one of them, namely, the extension
for dealing with non-independent tasks, which can be blocked in the access to shared
resources. We will show that the classical resource sharing protocols can be also stochas-
tically analyzed, if pessimism is allowed.

1 Introduction

Traditional techniques of real-time analysis assume single-valued execution times of the
tasks. For example, the processor utilization analysis [11, 10] and response time analy-
sis [16].

However, execution times are variable in practice, so analysis techniques based on
single-valued execution times usually consider only the worst-case execution time. This
greatly introduces pessimism in the analysis, giving rise to over dimensioned real-time
systems.

A multiframe model was proposed by Mok and Chen [13], in which the execution
time of a task may vary greatly from one instance to another, assuming that this variation
follows a known pattern. The pattern is given as a finite list of numbers, and the execution
times of successive instances are generated from the list. From this model, new utiliza-
tion bounds which improve those of Liu and Layland [11] are derived for fixed-priority
preemptive scheduling. However, since this model is aimed at providing a deterministic
timing guarantee, it is still pessimistic.

Progress has recently been made in the analysis of real-time systems under the as-
sumption that tasks require stochastic execution times. Research in this area can be cate-
gorized into two groups depending on the approach it takes to facilitate the analysis.

The methods in the first group assume a special scheduling model that provides isola-
tion between tasks, so that each task can be analyzed independently of other tasks in the
system (e.g., the reservation-based system addressed in [1] and Statistical Rate Monotonic
Scheduling [2]). Those in the second group consider common scheduling algorithms and
model the execution time of the tasks as random variables. They introduce worst-case
assumptions to simplify the analysis (e.g., the critical instant assumption in Probabilis-
tic Time Demand Analysis [15] and Stochastic Time Demand Analysis [6, 7]), restrictive
load conditions (e.g., the heavy traffic condition in the Real-Time Queuing Theory [8, 9]),
or restrictions about maximum system utilization and preemption [12].

Diaz et al. [5] modeled the execution time of the tasks as random variables and per-
formed an exhaustive analysis of periodic and independent tasks sets without worst-case
assumptions under both fixed-priority and EDF scheduling. The authors proved that the
system becomes stable whenever the average system utilization is less than one. For this
case, they present algorithms to calculate the stochastic distribution of the response time
of the tasks, which allow us to calculate the probability of missing deadlines. An inter-
esting property of the analysis is the capacity to deal with systems with maximum system
utilization higher than one (whenever the average system utilization remains lower than
one). Thus, systems which would be deemed unfeasible under the deterministic analysis
may be feasible under the stochastic analysis. The analysis is useful not only for soft real-
time systems, but also for the so-calledprobabilistic hard real-time systems[3], where a
probabilistic guarantee close to 100% suffices.

However, the exact stochastic analysis proposed in [5] has a high computational com-
plexity, and becomes unffordable in current practice. On one side, the exact calculation
of the response time distribution of the tasks is not possible except for simple periodic
and independent task sets. On the other side, in practice, tasks introduce complexities
like release jitter, blocking in shared resources, stochastic dependencies, etc, which can
not be handled by the periodic and independent task set model. Extending the model to
cover these cases, altough possible in theory, would increase even more his computational
complexity.

1

There is a clear need of some way to simplify the analysis and reduce the amount of
data used by the algorithms. However, since the analysis is aimed to probabilistic hard
real-time systems, these simplifications should be guaranteedpessimistic, i.e. the real
system should never behaveworsethan predicted by the analysis. This technical report
formalices the idea ofworse in the stochastic sense, and proves that this idea leads to
safe simplifications and extensions. It also presents one of its multiple applications, the
extension of the model for dealing with blocking in the access to shared resources.

The rest of the technical report is organized as follows. In Section 2 the model of the
system is presented. In Section 3 the concept ofstochastic pessimismand the relationship
“worse than” applied to random variables are presented, and some of its more important
propierties are proved. In Section 5 the extension of the model to deal with blocking is
presented. This extension uses thestochastic pessimismidea defined before. Finally, in
Section 6 the conclusions and future work are presented.

2 System model

The system is modeled as a set ofN independent periodic tasksS= {τ1, . . . ,τi , . . . ,τN},
each taskτi being defined by the tuple(Ti ,Φi ,Ci ,Di ,Mi), whereTi is the period of the
task,Φi its initial phase,Ci its execution time and the pair(Di ,Mi) define the real-time
constraint of the task.

The execution time is a discrete random variable1 with a known probability function
(PF), denoted byfCi(·), where fCi(c) = P{Ci =c}. Alternatively, the execution time dis-
tribution can also be specified using its cumulative distribution function (CDF), denoted
by FCi(·), whereFCi(x) = ∑x

c=0 fCi(c). The value ofCi is bounded by a positive minimum
valueCmin

i and a finite maximum valueCmax
i , so its probability function can be stored as

a finite vector[fCi(C
min
i), . . . , fCi(C

max
i)].

Three system utilizations can be derived from the execution time of the tasks, namely:

• Minimum system utilization:Umin =
N

∑
i=1

Cmin
i /Ti

• Average system utilization:̄U =
N

∑
i=1

C̄i/Ti

• Maximum system utilization:Umax =
N

∑
i=1

Cmax
i /Ti

Each periodic task gives rise to an infinite sequence of jobs,Γ j , with deterministic
release timesλ j , which depends only on the phase and period of the task it comes from.
Each job requires an execution time which is a random variable whose distribution is
given by the probability function of the task it comes from,fCi(·), and it is assumed to be
independent of other jobs of the same task and those of other tasks. The response time
of a job Γ j is a random variable, denoted byR j , whose probability function has to be
obtained by the analysis.

Di is the task relative deadline andMi the maximum allowable probability of missing
deadlineDi . Taskτi is said to be schedulable ifP{Ri >Di} ≤ Mi , beingRi the response
time of τi .

1Throughout this report we use a calligraphic typeface to denote random variables, e.g.C, W, R, etc.

2

The scheduling policy we assume is a general, preemptive, priority-driven policy that
assigns a static priority to each job and schedules jobs according to this priority. The
scheduler guarantees that the running job is the one with the highest priority among the
ready jobs. We are not concerned with the policy used to assign priorities to jobs, as
long as they are assigned in a deterministic way. This model includes well-known fixed
priority policies such asDeadline Monotonic(DM), and non-fixed priority policies such
asEarliest Deadline First(EDF).

The probability function of the response time of a task can be theoretically obtained
by averaging the response time probability functions of the jobs that the task generates.
The problem is that this sequence of jobs is infinite. However, due to the periodic nature
of the release pattern of the jobs it is to be expected that the probabilities of deadline
misses of these jobs also exhibit a periodic pattern.

Diaz et al. [5] proved that the statistical distribution of the response time of the job
released at instantλ j is the same than that of the job released at instantλ j +T, i.e, one hy-
perperiod2 later, wheneverUmax≤ 1. Moreover, ifŪ < 1, even ifUmax> 1, the statistical
distribution of the response time of the jobs released atλ j ,λ j + T,λ j + 2T, . . . ,λ j + kT
converges towards a steady-state distribution.

This means that, in order to compute the response time probability function of a task, it
suffices to obtain the response time probability functions of the jobs generated by this task
within an hyperperiod. Diaz et al. [5] provided algorithms for obtaining the probability
function of the initial backlog in the stady-state hyperperiod, and from this backlog the
response time for all jobs in the steady-state hyperperiod can be derived.

These algorithms operate on probability functions which are assumed to beexact.
The computational cost of these algorithms is high. If the model has to be extended for
overcoming some of its limitations, the complexity will grow exponentially. There is a
need for reducing this complexity, at the cost of lossing some precision in the results.
However, in order to these results be useful for design decissions in the field of real-
time systems, the loss of precision must be on the safe side. That is, the probabilities of
deadline misses provided by the approximated solution must be greater than the exacto
probabilities. In the next section we formalize the concept “worse than” which will allow
us to design this kind of safe simplifications and extensions.

3 The concept of pessimism and its basic properties

It is possible to define an ordering among the random variables, such that we can say
that one random variable is “worse than” other, in the context of real-time systems. This
allows us, to compare different analysis techniques and approximations. We will state that
a analysis technique or approximation ispessimistic, if the resultant response times of the
tasks are stochastically worse than the real ones. The concept of “worse than” in the real-
time stochastic analysis coincides with the concept of “first order stochastic dominance”
introduced in statistics and further used in economics. Its formal definition is as follows:

Definition 1. Given two random variablesX andY, we will say that “X is worse than
Y”, and denote it byX < Y if FX(x) ≤ FY(x).

Graphically, this means that the curveFX(·) never goes above the curveFY(·) (see
fig 1). Note that if the curvesFX(·) andFY(·) cross, the variablesX andY are not compa-
rable, and it is not true thatX < Y norY < X. In this case, all what can be stated isX 6< Y

2The hyperperiod,T, is defined as the least common multiple of the periods of all the tasks.

3

1

x

FX(x)

X2 < X1

X3 < X1

X3 6< X2

X2 6< X3

X1

X2

X3

Figure 1: Graphical meaning of the relationship “worse than”

andY 6< X (see fig. 1). The relationship “worst than” provides a partial ordering among
the random variables.

This kind of ordering is useful for the stochastic analysis of real-time systems. Sup-
pose thatR′ is the approximated response time of a task provided by an approximated
stochastic analisis, whileR is the exact response time. If we could guarantee (i.e, mathe-
matically prove) thatR′ < R, then the analysis would be safe, because this would imply
P{R>D} ≤ P{R′>D}, that is, for any deadline, the “true” probability of deadline misses
is inferior to the probability provided by the analysis.

We will show then some general properties of the relation “worse than”. Most of
these are very intuitive, and their proof is very simple. However, once proved, these
properties constitute a kind of “algebra” which can be used to prove important properties
of the stochastic analysis method. The motivation is to provide a theoretical ground for
mathematically prove wether a given approximated analysis technique is safe or not.

As it is known, the probability function of a sum of random variables can be obtained
by convolution of the probability functions of these variables. However, the notion of
“worse than” relies on the cumulative distribution function (CDF) and not on the proba-
bility function. Next lemma provides a way to directly obtain the CDF of a sum of random
variables. This will be used in the proof of several properties.

Lemma 1. BeingX andY two random variables whose PF are fX(·) and fY(·) respec-
tively, and whose CDF are FX(·) and FY(·), respectively, the CDF of their sum can be
calculated by:

FX+Y(x) =
(
FX⊗ fY

)
(x) =

(
fX⊗FY

)
(x) (1)

Proof. By definition,

FX+Y(x) ,
x

∑
j=−∞

fX+Y(j) =
x

∑
j=−∞

(
fX⊗ fY

)
(j) ,

∞

∑
i=−∞

x

∑
j=−∞

fX(i) · fY(j − i)

The coefficientfX(i) does not depend onj, so it can be taken out of the inner sum:

FX+Y(x) =
∞

∑
i=−∞

fX(i)
x

∑
j=−∞

fY(j − i) taking fX(i) out of the sum

=
∞

∑
i=−∞

fX(i)FY(x− i) by definition ofFY(·)

=
(

fX⊗FY

)
(x) by definition of⊗

Moreover, since the convolution operator is conmutative, this also provesFX+Y(x) =(
FX⊗ fY

)
(x)

4

Computing the CDF using the formulae given in this lemma is not practical. An
implementation of the analysis should use the convolution of the PFs, because this convo-
lution involves a finite number of operations (only the non-zero elements of the PF need
to be convoluted). The convolution of a CDF with a PF, instead, would require an infi-
nite number of operations, because the CDF has an infinite number of non-zero elements.
However, the formulae given in lemma 1 will be useful for the proofs related with the
“worse than” relation. Also note that the lemma still holds if any of the functionsfA(·) or
fB(·) has integral less than 1. In this case, there is a “probability deficit” which can be pic-
tured as a pulse at the infinity, with a probability equal to the deficit. The corresponding
FA(·) simply never reaches the value 1.

In order to simplify the notation, we will say that a random variableX is positive, if
X < O, beingO the random variable whose probability function is defined as:

fO(x) =

{
1 if x = 0

0 if x 6= 0
(2)

Now, we can state and prove the following properties.

Property 1. Reflexivity:A < A.

Proof. The proof is direct from definition 1.

Property 2. Transitivity: if A < B andB < C, thenA < C.

Proof. The proof is direct from definition 1.

Property 3. If A < B, then for allC positiveA+C < B+C. That is, we can add any
positive variable to both members of an inequality, without altering it.

Proof. By lemma 1,FA+C(·) =
(
FA ⊗ fC

)
(·), and analogouslyFB+C(·) =

(
FB ⊗ fC

)
(·).

Developing these convolutions into summatories, and sinceFA(·) ≤ FB(·) by hypothesis,
we conclude thatFA+C(·) ≤ FA+B(·), which, by definition, impliesA+C < B+C.

Property 4. For all positiveA,B, it is true thatA+B < A andA+B < B. That is, the
result of adding two positive random variables is always worse than any of them.

Proof. By hipothesisB < O. According with property 3 we can add a positive random
variable to both members, soA+B < A+O. It is trivial to prove that

(
fA ⊗ fO

)
(·) =

fA(·), soA + O = A, and the proof of the first inequality is complete. The second in-
equality is proved the same way.

Property 5. For any positiveA,B,C andD such thatA < B andC < D, it holds that
A+C < B+D. That is, we can add two inequalities member by member.

Proof. By hipothesys,A < B, and sinceC is positive,A + C < B + C by property 3.
Analogously, sinceC < D andB is positive, we haveB+C < B+D. By the transitive
property, we conclude thatA+C < B+D.

5

4 Properties of the stochastic analysis

Using the above general properties, we can prove now some properties of the stochastic
analysis in [5]. In order to simplify the notation and the proofs, we will reformulate as
mathematical functions some of the algorithms presented in [5].

The algorithm “convolve and shrink” can be expressed as an iterative formula in the
following way:

W(λ1) = O
W(λ j) = SHRINK(W(λ j−1)+C j−1,λ j −λ j−1) for j > 1

(3)

where SHRINK(W,∆) is a function, which takes the random variableW and the integer
∆ and produces a new random-variable whose probability function is equal to the proba-
bility function of W, left-shifted the amount∆ and with all values for negative abscissae
accumulated at zero. That is:

fSHRINK(W,∆)(x) =


0 if x < 0

0

∑
i=−∞

fW(x+∆) if x = 0

fW(x+∆) if x > 0

(4)

The algorithm “split, convolve and merge” can be expressed as an iterative formula in
the following way:

R
〈0〉
j = W(λ j)+C j

R
〈k+1〉
j = CF(R〈k〉

j ,λk−λ j ,Ck) for k > 0
(5)

where CF(R,∆,C) is the function “convolve from”, which takes two random variablesR

andC, and the integer∆, and produces a new random variable whose probability function
is equal to

fCF(R,∆,C)(x) =


fR(x) for x≤ ∆

∞

∑
i=∆+1

fR(i) · fC(x− i) for x > ∆ (6)

The following lemma provides a way for obtaining the cummulative distribution func-
tion (CDF) of the random variable CF(R,∆,C). This will be useful to prove some prop-
erties of the CF function.

Lemma 2. The cummulative probability function FCF(R,∆,C)(x) can be calculated with the
following expression:

FCF(R,∆,C)(x) =

{
FR(x) for x≤ ∆
FR(∆)+F

R̂+C
(x) for x > ∆

(7)

BeingR̂ the random variable whose probability function is:

f
R̂
(x) =

{
0 if x ≤ ∆
fR(x) if x > ∆

(8)

6

Proof. Looking at the definition offCF(R,∆,C)(·) in eq.(6), we can see that the second case
is like a convolution, but the sum index starts fromi = ∆+1 instead ofi =−∞. However,
if we changefR(x) by f

R̂
(x) in the sum, the result will be the same, and the sum index

can now be extended toi = −∞ without altering the result. This second case can thus be
rewritten asfCF(R,∆,C)(x) =

(
f
R̂
⊗ fC

)
(x), for x > ∆.

By definition, FCF(R,∆,C)(x) =
x

∑
i=−∞

fCF(R,∆,C)(x). It is not difficult to see, using the

same techniques than in the proof of lemma 1, that this CDF can be computed by

FCF(R,∆,C)(x) =

{
FR(x) for x≤ ∆
FR(∆)+

(
F

R̂
⊗ fC

)
(x) for x > ∆

(9)

And, since
(
F

R̂
⊗ fC

)
(x) = F

R̂+C
(x), the proof of the lemma is complete.

Next, we prove some properties of the functions SHRINK() and CF() defined above,
related with the pessimism concept.

Property 6. For anyA < B, ∆ ≥ 0, it holds thatSHRINK(A,∆) < SHRINK(B,∆).

Proof. Let us callA′ andB′ to the “shrinked” versions ofA andB, respectively. By
definition,FA′(x) is equal to zero forx< 0, and equal toFA(x+∆), for x≥ 0. In addition,
by hypothesis,FA(x) ≤ FB(x) for all x, so, trivially,FA′(x) ≤ FB′(x) for all x.

Property 7. The operator “convolve from” defined in eq. (6), has the following proper-
ties:

a) If C1 < C2, thenCF(R,∆,C1) < CF(R,∆,C2)

b) If R1 < R2, thenCF(R1,∆,C) < CF(R2,∆,C)

c) If ∆ ≥ 0 andC < O, thenCF(R,∆,C) < R

d) If ∆1 ≤ ∆2, thenCF(R,∆1,C) < CF(R,∆2,C)

Proof.

(a) Forx≤ ∆, looking at the first case in eq. (7), since it does not depend onC1 norC2, it
is clear thatFCF(R,∆,C1)(x) = FCF(R,∆,C2)(x).

For x > ∆, by hyphotesisC1 < C2, so, by property 3,̂R +C1 < R̂ +C2, which im-
plies by definitionF

R̂+C1
(x)≤ F

R̂+C2
(x), and thusFCF(R,∆,C1)(x)≤ FCF(R,∆,C2)(x), by

lemma 2.

(b) Forx≤ ∆, since by hyphotesisFR1(·)≤ FR2(·), from the first case in eq. (7) it follows
thatFCF(R1,∆,C)(x) ≤ FCF(R2,∆,C)(x).

Forx> ∆, by hypothesisR1 < R2, so alsôR1 < R̂2, and then̂R1+C < R̂2+C, which
impliesF

R̂1+C
(x) ≤ F

R̂2+C
(x). Thus,FCF(R1,∆,C)(x) ≤ FCF(R2,∆,C)(x), by lemma 2.

(c) It is trivial to prove thatR = CF(R,∆,O), and then, by property (a), the property (c)
follows.

7

1

r

FR(r)

∆1 ∆2

FCF(R,∆2,C)

FCF(R,∆1,C)

Figure 2: Effect of different∆ on the CF operator (property 7d)

(d) Consider first the casex ≤ ∆2. On one hand, according to eq. (6),FCF(R,∆2,C)(x) =
FR(x). on the other hand, for anyx, FCF(R,∆1,C)(x) ≤ FR(x), because CF(R,∆1,C) <
R, as demonstrated in property (c) (cf. figure 2). So we haveFCF(R,∆1,C)(x) ≤
FCF(R,∆2,C)(x) for x≤ ∆2.

The casex > ∆2 is slightly more complex. Starting from eq.(7)), by lemma 1 we can
computeF

R̂+C
(·) as

(
f
R̂
⊗FC

)
(·) = ∑∞

i=−∞ f̂R(i) ·FC(x− i). Noting that f̂R(i) is zero
for i ≤ ∆, and equal tofR(i) for i > ∆, we can finally write:

FCF(R,∆1,C)(x) = FR(∆1)+
∞

∑
i=∆1+1

fR(i) ·FC(x− i) (10)

FCF(R,∆2,C)(x) = FR(∆2)+
∞

∑
i=∆2+1

fR(i) ·FC(x− i) (11)

The sum in eq. (10) can be split in two sums, one fromi = ∆1 + 1 to ∆2, and other
from i = ∆2 +1 to ∞. Then, substracting eq. (10) from eq. (11) we obtain

FCF(R,∆2,C)(x)−FCF(R,∆1,C)(x) = FR(∆2)−FR(∆1)−
∆2

∑
i=∆1+1

fR(i)FC(x− i)

then, by definition ofFR(·)

=
∆2

∑
i=∆1+1

fR(i)−
∆2

∑
i=∆1+1

fR(i)FC(x− i)

and finally, taking common factor offR(i)

=
∆2

∑
i=∆1+1

fR(i)(1−FC(x− i))

This sum non-negative, becauseFC(·)≤ 1, soFCF(R,∆1,C)(x)≤ FCF(R,∆1,C)(x) also for
x > ∆2, q.e.d

The above properties have important implications in the stochastic analysis. The main
idea can be informally stated as “pessimistic input data will produce pessimistic results”.
This idea seems obvious when the input data managed by the analysis algorithms are
deterministic numbers. We prove that it is also true when the input data are random
variables.

8

Theorem 1. Lets S and S′ be two systems with identical parameters, but with different
initial backlogW(0) andW′(0) respectively. IfW′(0) < W(0), thenW′(t) < W(t) for
all t ≥ 0.

Proof. Lets t1 be equal to the arrival instant of the next job which contributes to the
backlog, sinceSandS′ have the same parameters, this instant is the same for both. For all
t < t1, the backlog at instantt is obtained simply as SHRINK(W(0), t), so, by property 6,
W′(t) < W(t) for t < t1.

At instantt = t1, the backlog is increased by the computation time of the arriving job.
LetsC be the random variable which represents this computation time, which is the same
for both systemsSandS′. By property 3,W′(t1)+C < W(t1)+C. Takingt1 as the new
time origin, the same reasoning can be repeated until reaching any future instant.

This theorem implies that, whenW(0) = O, the backlog “worsens” with time. It also
implies that, when a new job is added to the system, the backlog worsens from the instant
of relase of this new job, in relation with the case in which this job was not present.
Finally, it also implies that, if the execution time of a job is replaced by one “worse” (in
the stochastic sense), the backlog from the release instant of that job will be also worse.

Theorem 2. Let S and S′ be two real-time systems, with identical parameters, except for
one of the jobs, sayΓk, whose execution time isCk in system S andC′

k in system S′. If
C′

k < Ck, then the response times obtained by the stochastic analysis of these systems fulfil
R′

j < R j for all Γ j .

Proof. All jobs with priority greater thanPk are unnafected byΓk, so their response time
remain unnafected, and triviallyR′

j < R j for these jobs (because the “worse than” relation
is reflexive). So we will focus only on jobs with priority less thanPk. Let us consider an
arbitrary jobΓ j .

If j < k, we have that the backlog for any instant prior toλk is the same for both
systems, because the sequence of arrivals and the execution times are the same. As a
consequence, if jobΓ j cannot be preempted byΓk, the response time will be the same for
both systems. IfΓ j can be preempted byΓk, thenR′

j < R j , by the hypothesisC′
k < Ck and

property 7(a).
If j = k, we are calculating the response time of jobΓk. As in the previous case, the

backlog is the same in both systems. But the response timeR′
k will be worse thanRk,

becauseC′
k < Ck, in virtue of properties 7(a) and 7(b) we will haveR′

k < Rk.
Finally, if j > k, we have thatW′(λ j) < W(λ j), because at instantλk the backlogW

is increased byCk, while the backlogW′ is increased inC′
k, beingC′

k < Ck. In virtue of
Theorem 1, the backlog will be worse for any fugure instant. Then, for any job released
after Γk, the initial backlog is worse, and thus, by properties 7(a) and 7(b) again, we
concludeR′

j < R j .

This theorem implies that, if required, the analyst can replace the computation time
of any job by one more pessimistic in the stochastic sense. The results obtained after this
replacement are pessimistic, but safe. This mechanism will allow for introducing several
simplifications and extensions in the model.

As a corollary, introducing artificially a new job (or task) will also increase the pes-
simism of the results, in the sense that the response times obtained with this extra job are
worse (in the stochastic sense) than without it. This can be easily proved by assuming
that systemShas an additional job withC = O (which does not alter the analysis), while
systemS′ has the same job withC′ < O. Now, Theorem 2 can be directly applied.

9

1

x

FX(x)

0 1 2 3 4 5 6 7 8 9 10 11

X1
X2
X3

sup(X1,X2,X3)

Figure 3: Construction of the supremum of a set of random variables

5 Blocking in shared resources

Shared resources, like shared memory areas, are useful to communicate tasks. Resource
access protocols are used to preserve the consistency of the shared data, guaranteeing at
the same time bounded blocking times. Examples of these protocols are the Priority Inher-
itance Protocol (PIP) and Priority Ceiling Protocol (PCP) for fixed priority scheduling, as
well as the Stack Resource Protocol (SRP) for fixed and non-fixed priority scheduling [4].

Under a deterministic analysis, the response time of a taskτi that can suffer blocking is
calculated by artificially increasing its execution time byBi units, whereBi is the blocking
time of the task [4]. Since the exact blocking time can vary between different releases of
the same task or be difficult to calculate,B′

i is used instead ofBi , whereB′
i is a bound on

the exact blocking time,Bi .
Under the stochastic analysis the situation is analogous. The execution time of a task

τi , of execution timeCi should be increased by adding the blocking timeBi , which is now
a random variable. The result is a transformed task with execution timeCi +Bi (being
fCi+Bi = fCi ⊗ fBi). Now the problem is analogous to that found in the deterministic
analysis, i.e., how to calculate the exact distribution of the random variableBi . The
solution is to find a bound valid for all scenarios. In stochastic terms, this means finding a
random variableB′

i , worse than the exactBi for all possible scenarios. Let us define how
to construct a random variable worse than any of a set of random variables.

Definition 2. Given a set of random variables{Xi}, we define thesupremumof that set,
and denote it assup{Xi}, the random variable whose CDF is

Fsup{Xi}(x) = min
i

FXi(x) (12)

Figure 3 shows how the function is constructed3, by taking the minimum of allFXi(·).
By construction, sup{Xi} < Xi for all i. Thus, the idea of the supremum of a set of
random variables is analogous to the maximum of a set of real numbers. Using this idea,
the classical results for resource access protocols can be easily translated to the stochastic
analysis as well.

The system model has to be extended to hold information about the set of semaphores
(Sk) used by the system to guard the shared resources, and the length of the critical sec-
tions in the tasks. In the classical analysis, the typical information stored in the model
consists of a set of real numbersDi,k which represent, for each pair(τi ,Sk), the length of
the longest critical section that taskτi contains, guarded by semaphoreSk. From this set of
real numbers, the maximum blocking timeB′

i of each task is obtained. The way in which

3Please, note that the plot of the supremum has been slightly shifted down for better legibility of the
figure.

10

S1(P1) S2(P1)

τ1 D1,1 D1,2

τ2 D2,1 D2,2

τ3 D3,1 D3,2

Table 1: Cumulative distributions of the critical sections for the blocking examples.

this is done depends on the resource sharing protocol. For example, PCP guarantees that
each task is blocked only once by any task of less priority, while PIP only guarantees
that a task cannot be blocked twice by the same semaphore or by the same task. These
different properties lead to different algorithms to obtainB′

i .
These ideas can be translated to the stochastic case, using the concept ofsupremum

defined above. The length of a critical section is now a random variable whose proba-
bility function is assumed known (it can be obtained by measurement, or using hybrid
techniques such as the ones described in [3]). Then, a random variableDi,k is constructed
as the supremum of the length of all the critical sections of taskτi guarded by semaphore
Sk. From theseDi,k an estimationB′

i of the blocking timeBi of each task can be obtained.
OnceB′

i is obtained, the stochastic analysis can be done as described in Diaz et al. [5],
but using(B′

i + Ci) instead ofCi . If we can guarantee thatB′
i < Bi , then the analysis

will be pessimistic, becauseB′
i +Ci < Bi +Ci , from property 3. Thus, by Theorem 2, the

response times will be also pessimistic.

5.1 Priority Ceiling Protocol

It is well known that, under PCP, a taskτi can be blocked only once by tasks of lower
priority. This property ensures that the maximum blocking timeB′

i that a taskτi can suffer
coincides with the length of the longest critical section among all the lower priority tasks
which can cause blocking toτi . Translating the deterministic method presented in [14] to
the stochastic case, we will computeB′

i as the supremum of the set{D j,k|Pj < Pi ,C(Sk)≥
Pi}, C(Sk) being the priority ceiling of the semaphoreSk, defined as the highest priority
among the tasks which use that semaphore.

For example, consider a system with three tasks and two semaphores (see Table 1).
The priority ceiling of each semaphore is indicated in parentheses. Each cell in the table
contains the length of the critical section of taskτi guarded by semaphoreSk. If a taskτi

does not have any critical section guarded by semaphoreSk, thenDi,k = O. If a taskτi

contains several sections guarded bySk, Di,k is computed as the supremum of the lengths
of these sections, as explained before.

Taskτ1 can be blocked by any of the critical sections in lower priority tasks, because
the priority ceiling of both semaphores isP1. Then,B′

1 = sup{D2,1,D2,2,D3,1,D3,2}.
The same applies to taskτ2, soB′

2 = sup{D3,1,D3,2}. Taskτ3 cannot suffer blocking
because it is the lowest priority task, soB′

3 = O. Once allB′
i have been obtained this

way, they are added to the correspondingCi and the stochastic analysis is carried out as
explained in [5].

11

5.2 Priority Inheritance Protocol

If the resource sharing protocol is PIP instead of PCP, the method for obtainingB′
i is

different. Under PIP it has been proved [14] that any taskτi will be blocked once at most
by the same semaphoreSk, or by the same lower priority taskτ j (Pj < Pi). However, it is
possible that the task gets blocked several times on different semaphores and by different
lower priority tasks. In these cases, the blocking time will be the sum of the lengths of
the critical sections which caused blocking. This implies thatB′

i should be computed by
examining all possible blocking scenarios, and taking the worst (supremum) of all these
blocking times.

For instance, consider again the example in Table 1. Taskτ1 can be blocked by tasks
τ2 and τ3, but not by the same semaphore twice. Therefore, if it gets blocked byτ2

on semaphoreS1, taskτ3 can only cause additional blocking on semaphoreS2, and vice-
versa. As a consequence,B′

1 = sup{(D2,1+D3,2),(D2,2+D3,1)}. Note that, since we are
dealing with random variables, each sum requires a convolution of the probability func-
tions. Taskτ2 can be blocked only byτ3, becauseτ3 is the only lower priority task. But,
since it cannot be blocked twice by the same task, we concludeB′

2 = sup{D3,1,D3,2}.
Finally, taskτ3 cannot suffer blocking by lower priority tasks, soB′

3 = O.
An exhaustive analysis of all blocking scenarios is not difficult to perform, altough

its computational cost can be high. The exhaustive analysis, however, can be completely
avoided using a different method, at the cost of introducing even more pessimism. This
method is the stochastic counterpart of the one presented in [4] for the deterministic case.
In order to obtain a more pessimistic approximation,B′′

i , of the blocking time the follow-
ing steps should be performed:

• For eachj such thatPj < Pi , compute the supremum of the set{D j,k|C(Sk) ≥ Pi}.
Add all these supremi and call the resultBl i .

• For eachk such thatC(Sk) ≥ Pi , compute the supremum of the set{D j,k|Pj < Pi}.
Add all these supremi and call the resultBsi .

• Construct the random variableB′′
i as one whose CDF isFB′′

i
(x)= max{FBl i(x),FBsi(x)}.

This concept is the inverse of the concept of supremum defined before, so we call
it the infimum. Thus,B′′

i = inf{Bl i ,Bsi}.

Applying this approximation to the example on Table 1,B′′
1 = inf

{
(sup{D2,1,D2,2}+

sup{D3,1,D3,2}),(sup{D2,1,D3,1}+sup{D2,2,D3,2})
}

.
This method uses the function inf, which is the contrary than the sup. At first sight

it could appear as if this will not preserve the pessimism in the results. The following
theorem shows that, in fact,B′′

i < B′
i .

Theorem 3. Let B′
i be the blocking time obtained by exhaustively analyzing all possible

blocking scenarios for a taskτi , computing the blocking time in each, and taking the
supremum of all of them. LetB′′

i be the approximation to the blocking time obtained by
the method described above. Then,B′′

i < B′
i .

Proof. Let us callΩ to the set of the durations of each critical sections which could cause
blocking toτi in different scenarios. I.e, the set of durations of any critical section in tasks
with priority lower thanPi , guarded by semaphores with priority ceiling greater than or
equal toPi . Formally:

Ω = {D j,k|Pj < Pi ,C(Sk) ≥ Pi} (13)

12

Let 2Ω be the power set ofΩ, i.e., the set of all its possible subsets. Each element
in 2Ω is a set which represents a blocking scenario (in which taskτi suffers interference
from all of D j,k in that set). However, some of these sets are to be excluded, because they
represent scenarios in which the properties of the PIP are violated. We will say that the
setG, G∈ 2Ω represents an illegal blocking scenario if it contains at least two elements
D j,k,Dl ,m such thatj = l or k = m, because this would imply two blockings caused by
the same task (j = l) or by the same semaphore (k = m).

An algorithm which computesB′
i by exhaustive search should do the following steps:

1. Construct the setΩ

2. For eachG∈ 2Ω do:

• If G represents a legal scenario, compute

BG = ∑
Di,k∈G

Di,k (14)

• If G represents an illegal scenario,BG = O

3. ComputeB′
i has the supremum of allBG calculated before. That is:

B′
i = sup

G∈2Ω
{BG} (15)

If we picture the random variablesD j,k arranged in an array, like the one presented
in table 1, each rowi will contain all the critical sections of taskτi , while each columnk
will contain all the critical sections guarded by semaphorek. Any setG∈ 2Ω contains a
subset of theseD j,k, but if G has to represent a legal blocking scenario, thenG will not
contain twoDi, j in the same row, or in the same column.

On the other side, the approximated algorithm described in page 12 computes first
Bl i , as the sum of all the supremi among each row, andBsi as the sum of all the supremi
among each column, and finally takes the “best” (infimum) of both. We will prove that
any ofBl i or Bsi is worse thanB′

i , so even if we take the “best” of them, the result will
be still worse thanB′

i .
Let us consider any setG in 2Ω, which represents a valid scenario. As said, this set

will haveat maximumone element of each row. Let us suppose the worst case in which all
rows contribute toG, each with a differentD j,k. By definition,BG is the sum of all these
Di, j . But Bl i is worse, because it is the sum of the supremi of each row. This supremi
is, by definition, worse than any of the elements of the row, so in particular is worse than
the element which contributes toBG. So the sum of all of them will also be worse, by
property 5, i.eBl i < BG. Since the above is true for anyG∈ 2Ω , it is also true for the
worst (supremum) of allBG. This, by definition, isB′

i as computed by the algorithm
previously described. SoBl i < B′

i .
With an analogous reasoning it can be proved thatBsi < B′

i . Both conclusions can be
written in terms of the respective cumulative distribution functions, that is:

FBl i(x) ≤ FB′
i
(x)

FBsi(x) ≤ FB′
i
(x)

SinceB′′
i is the infimum ofBl i andBsi , which is built by taken the maximum, point by

point, amongFBl i(x) andFBl i(x), we conclude thatFB′′
i
(x) ≤ FB′

i
(x) which by definition

impliesB′′
i < B′

i .

13

6 Conclusions and future work

This report has introduced the relationworse thanbetween two distributions of a random
parameter of the analysis, which defines a stochastic ordering in the context of real-time
systems. This relation and its properties define a theoretical framework that opens the
door to safe stochastic analysis approximations. Whenever the distribution of a parameter
of the stochastic analysis is substituted by a worse distribution, the resultant response time
distributions coming from the analysis are worse for all the tasks, i.e, the probabilities of
missing deadlines are higher and so the analysis becomes safe.

The most interesting characteristic of the relationworse thanis that it allows us to
order different distributions of the same random parameter of the analysis. For example,
it allows us to state that one execution time distribution is worse than another, that a
blocking time distribution is worse than another, that a response time distribution is worse
than another, etc. The ordering between random variables is a valuable tool that permits a
rapid translation of well-known real-time deterministic results to the stochastic scenario.
Deterministic analysis becomes a particular case of the stochastic analysis. This way, any
deterministic analysis is always more pessimistic than its stochastic counterpart. Using
these translations we have introduced the analysis of task sets that can block on shared
resources, but many others are possible.

Future work will focus on applying the pessimistic analysis to deal safely with other
real-time problems, such as optimal priority assignment, release jitter or stochastic de-
pendencies.

14

References

[1] L. Abeni and G. Buttazzo. Stochastic Analysis of a Reservation Based System.
In Proc. of the 9th International Workshop on Parallel and Distributed Real-Time
Systems, Apr. 2001.

[2] A. K. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. InProc. of
the 19th IEEE Real-Time Systems Symposium, pages 123–132, Dec. 1998.

[3] G. Bernat, A. Colin, and S. Petters. WCET Analysis of Probabilistic Hard Real-Time
Systems. InProc. of the 23rd IEEE Real-Time Systems Symposium, Dec. 2002.

[4] G.C. Buttazzo. Hard Real-Time Computing Systems. Predictable Schedul-
ing Algorithms and Applications, chapter 7. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1997.

[5] J. L. Dı́az, D. F. Garćıa, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello, J. M.
López, Sang Lyul Min, and Orazio Mirabella. Stochastic Analysis of Periodic Real-
Time Systems in a Real-Time System. InProc. of the 23rd IEEE Real-Time Systems
Symposium, pages 289–300, Austin, Texas, December 2002.

[6] M. K. Gardner and J. W.S. Liu. Analyzing Stochastic Fixed-Priority Real-Time
Systems. InProc. of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Mar. 1999.

[7] Mark K. Gardner.Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems. PhD thesis, University of Illinois, Urbana-Champaign, 1999.

[8] J. P. Lehoczky. Real-Time Queueing Theory. InProc. of the 17th IEEE Real-Time
Systems Symposium, pages 186–195, Dec. 1996.

[9] J. P. Lehoczky. Real-Time Queueing Network Theory. InProc. of the 18th IEEE
Real-Time Systems Symposium, pages 58–67, Dec. 1997.

[10] John P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. InProc. of the 11th IEEE Real-Time Systems Symposium, pages 201–
209, December 1990.

[11] L. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment.Journal of ACM, 20(1):46–61, 1973.

[12] S. Manolache, P. Eles, and Z. Peng. Memory and Time-Efficient Schedulability
Analysis of Task Sets with Stochastic Execution Times. InProc. of the 13th Eu-
romicro Conference on Real-Time Systems, pages 19–26, Jun. 2001.

[13] A. K. Mok and D. Chen. A Multiframe Model for Real-Time Tasks.IEEE Transac-
tions on Software Engineering, 23(10):635–645, Oct. 1997.

[14] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization.IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

15

[15] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.W.-S Liu. Prob-
abilistic Performance Guarantee for Real-Time Tasks with Varying Computation
Times. InProc. of the Real-Time Technology and Applications Symposium, pages
164–173, Chicago, Illinois, May 1995.

[16] K. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks.Real-Time Systems, 6:133–151, 1994.

16

	Introduction
	System model
	The concept of pessimism and its basic properties
	Properties of the stochastic analysis
	Blocking in shared resources
	Priority Ceiling Protocol
	Priority Inheritance Protocol

	Conclusions and future work

