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Abstract

Classical deterministic analysis of real-time systems focuses on obtaining the worst pos-
sible response time of each task, among all possible execution scenarios. Comparing this
worst-case response time with the deadline of the task, the feasibility of the system can be
assessed. If the deadline does not exceed this worst-case execution time, it is guaranteed
that the response time of the deadline will not exceed its deadline under any circunstance.

The stochastic analysis of real-time systems, instead, focuses in obtaining the proba-
bility function of the response time of the tasks, that is, the profile of all possible response
times and the probability of occurrence of each one. Using this probability function, the
probability of the response time exceeding any given value can be computed. In particu-
lar, the probability of deadline misses can be obtained, since it is equal to the probability
of the response time exceeding that deadline. However, this kind of stochastic analysis
has a high computational complexity, and becomes unffordable in current practice. On
one side, the exact calculation of the response time distribution of the tasks is not possi-
ble except for simple periodic and independent task sets. On the other side, in practice,
tasks introduce complexities like release jitter, blocking in shared resources, stochastic
dependencies, etc, which can not be handled by the periodic and independent task set
model.

In order to overcome the problems of the stochastic analysis, some kind of simpli-
fication has to be incorporated into it. However, it is important to guarantee that the
simplifications incorporated amafe or pessimistidn an stochastic sense. We will con-
sider a simplification to be safe if the probabilities of deadline misses obtained using that
simplification are greater than the exact ones. This way, we can guarantee that the real
ratio of deadline misses will never exceed the probabilities obtained from the analysis.

This technical report introduces the idea of pessimism in the stochastic analysis, by
formally defining a comparison operator among random variables, which allow us to state
whether a random variable is “worse than” other. Some important properties of this op-
erator are shown. These properties are used to prove some theorems about the stochastic
analysis, which can be summarized as “if pessimistic data is introduced in the model,
pessimistic response times will be obtained”. This result looks trivial, but it has to be
carefully proven when the model deals with random variables instead of deterministic
constants.

Allowing some pessimism, the stochastic analysis of real-time can be extended in
several directions. In this technical report we present one of them, namely, the extension
for dealing with non-independent tasks, which can be blocked in the access to shared
resources. We will show that the classical resource sharing protocols can be also stochas-
tically analyzed, if pessimism is allowed.



1 Introduction

Traditional techniques of real-time analysis assume single-valued execution times of the
tasks. For example, the processor utilization analysis [11, 10] and response time analy-
sis [16].

However, execution times are variable in practice, so analysis techniques based on
single-valued execution times usually consider only the worst-case execution time. This
greatly introduces pessimism in the analysis, giving rise to over dimensioned real-time
systems.

A multiframe model was proposed by Mok and Chenl [13], in which the execution
time of a task may vary greatly from one instance to another, assuming that this variation
follows a known pattern. The pattern is given as a finite list of numbers, and the execution
times of successive instances are generated from the list. From this model, new utiliza-
tion bounds which improve those of Liu and Layland/[11] are derived for fixed-priority
preemptive scheduling. However, since this model is aimed at providing a deterministic
timing guarantee, it is still pessimistic.

Progress has recently been made in the analysis of real-time systems under the as-
sumption that tasks require stochastic execution times. Research in this area can be cate-
gorized into two groups depending on the approach it takes to facilitate the analysis.

The methods in the first group assume a special scheduling model that provides isola-
tion between tasks, so that each task can be analyzed independently of other tasks in the
system (e.g., the reservation-based system addresseéd in [1] and Statistical Rate Monotonic
Scheduling[2]). Those in the second group consider common scheduling algorithms and
model the execution time of the tasks as random variables. They introduce worst-case
assumptions to simplify the analysis (e.g., the critical instant assumption in Probabilis-
tic Time Demand Analysis [15] and Stochastic Time Demand Analysis [6, 7]), restrictive
load conditions (e.g., the heavy traffic condition in the Real-Time Queuing Theary [8, 9]),
or restrictions about maximum system utilization and preemption [12].

Diaz et al. [5] modeled the execution time of the tasks as random variables and per-
formed an exhaustive analysis of periodic and independent tasks sets without worst-case
assumptions under both fixed-priority and EDF scheduling. The authors proved that the
system becomes stable whenever the average system utilization is less than one. For this
case, they present algorithms to calculate the stochastic distribution of the response time
of the tasks, which allow us to calculate the probability of missing deadlines. An inter-
esting property of the analysis is the capacity to deal with systems with maximum system
utilization higher than one (whenever the average system utilization remains lower than
one). Thus, systems which would be deemed unfeasible under the deterministic analysis
may be feasible under the stochastic analysis. The analysis is useful not only for soft real-
time systems, but also for the so-call@dbabilistic hard real-time systenj8], where a
probabilistic guarantee close to 100% suffices.

However, the exact stochastic analysis proposed in [5] has a high computational com-
plexity, and becomes unffordable in current practice. On one side, the exact calculation
of the response time distribution of the tasks is not possible except for simple periodic
and independent task sets. On the other side, in practice, tasks introduce complexities
like release jitter, blocking in shared resources, stochastic dependencies, etc, which can
not be handled by the periodic and independent task set model. Extending the model to
cover these cases, altough possible in theory, would increase even more his computational
complexity.



There is a clear need of some way to simplify the analysis and reduce the amount of
data used by the algorithms. However, since the analysis is aimed to probabilistic hard
real-time systems, these simplifications should be guaramgessimistici.e. the real
system should never behawsrsethan predicted by the analysis. This technical report
formalices the idea ofvorsein the stochastic sense, and proves that this idea leads to
safe simplifications and extensions. It also presents one of its multiple applications, the
extension of the model for dealing with blocking in the access to shared resources.

The rest of the technical report is organized as follows. In Seffion 2 the model of the
system is presented. In Sectjgn 3 the conceptathastic pessimisand the relationship
“worse thafi applied to random variables are presented, and some of its more important
propierties are proved. In Sectiph 5 the extension of the model to deal with blocking is
presented. This extension uses ihechastic pessimisidea defined before. Finally, in
Sectior] 6 the conclusions and future work are presented.

2 System model

The system is modeled as a setNfndependent periodic tasi&= {71,...,7,..., ™},
each tasks being defined by the tupl€T;, ®;, Ci, Di, M;), whereT; is the period of the
task, ®; its initial phase C; its execution time and the paib;, M;) define the real-time
constraint of the task.

The execution time is a discrete random variMn'Ih a known probability function
(PF), denoted byfe, (), wherefe, (c) = P{Ci=c}. Alternatively, the execution time dis-
tribution can also be specified using its cumulative distribution function (CDF), denoted
by Fe, (-), whereFe, (x) = S&_q fe,(€). The value ofS; is bounded by a positive minimum
valueC™" and a finite maximum valug™, so its probability function can be stored as
a finite vector{ fe, (CMM), ..., fe, (CM&)].

Three system utilizations can be derived from the execution time of the tasks, namely:

N -
e Minimum system utilizationy™" = Zlcim'“/'ﬁ
i=

—_— N —
e Average system utilizationd = ZCi/Ti
i=

N
e Maximum system utilizationt " = ZcimaX/Ti

Each periodic task gives rise to an infinite sequence of jblswith deterministic
release timed, which depends only on the phase and period of the task it comes from.
Each job requires an execution time which is a random variable whose distribution is
given by the probability function of the task it comes frofg,(-), and it is assumed to be
independent of other jobs of the same task and those of other tasks. The response time
of a job[j is a random variable, denoted B4, whose probability function has to be
obtained by the analysis.

D; is the task relative deadline aiM] the maximum allowable probability of missing
deadlineD;. Task7; is said to be schedulablef{R;>D;} < M;, beingX; the response
time of 1;.

Throughout this report we use a calligraphic typeface to denote random variables, @.gR, etc.
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The scheduling policy we assume is a general, preemptive, priority-driven policy that
assigns a static priority to each job and schedules jobs according to this priority. The
scheduler guarantees that the running job is the one with the highest priority among the
ready jobs. We are not concerned with the policy used to assign priorities to jobs, as
long as they are assigned in a deterministic way. This model includes well-known fixed
priority policies such a®eadline Monotoni¢DM), and non-fixed priority policies such
asEarliest Deadline Firs{EDF).

The probability function of the response time of a task can be theoretically obtained
by averaging the response time probability functions of the jobs that the task generates.
The problem is that this sequence of jobs is infinite. However, due to the periodic nature
of the release pattern of the jobs it is to be expected that the probabilities of deadline
misses of these jobs also exhibit a periodic pattern.

Diaz et al. [5] proved that the statistical distribution of the response time of the job
released at instafj is the same than that of the job released at instantT, i.e, one hy-
perperioff|later, wheneveld ™ < 1. Moreover, ifU < 1, even ifu™a > 1, the statistical
distribution of the response time of the jobs releasedljat; + T,A; + 2T,...,A; + kT
converges towards a steady-state distribution.

This means that, in order to compute the response time probability function of a task, it
suffices to obtain the response time probability functions of the jobs generated by this task
within an hyperperiod. Diaz et al.|[5] provided algorithms for obtaining the probability
function of the initial backlog in the stady-state hyperperiod, and from this backlog the
response time for all jobs in the steady-state hyperperiod can be derived.

These algorithms operate on probability functions which are assumed ézaog
The computational cost of these algorithms is high. If the model has to be extended for
overcoming some of its limitations, the complexity will grow exponentially. There is a
need for reducing this complexity, at the cost of lossing some precision in the results.
However, in order to these results be useful for design decissions in the field of real-
time systems, the loss of precision must be on the safe side. That is, the probabilities of
deadline misses provided by the approximated solution must be greater than the exacto
probabilities. In the next section we formalize the concept “worse than” which will allow
us to design this kind of safe simplifications and extensions.

3 The concept of pessimism and its basic properties

It is possible to define an ordering among the random variables, such that we can say
that one random variable is “worse than” other, in the context of real-time systems. This
allows us, to compare different analysis techniques and approximations. We will state that
a analysis technigue or approximatiompesssimisticif the resultant response times of the
tasks are stochastically worse than the real ones. The concept of “worse than” in the real-
time stochastic analysis coincides with the concept of “first order stochastic dominance”
introduced in statistics and further used in economics. Its formal definition is as follows:

Definition 1. Given two random variable¥ andY, we will say that ‘X is worse than
Y”, and denote it by = Y if Fy(x) < Fy(X).

Graphically, this means that the curf/g(-) never goes above the curtg(-) (see
fig[I). Note that if the curveBy(-) andFy(-) cross, the variable¥ andy are not compa-
rable, and it is not true thaf >= Y norY >= X. In this case, all what can be stated(is£ Y

2The hyperperiodT, is defined as the least common multiple of the periods of all the tasks.
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%

Figure 1: Graphical meaning of the relationship “worse than”

andy # X (see fig[ 1). The relationship “worst than” provides a partial ordering among
the random variables.

This kind of ordering is useful for the stochastic analysis of real-time systems. Sup-
pose thatR’ is the approximated response time of a task provided by an approximated
stochastic analisis, whil® is the exact response time. If we could guarantee (i.e, mathe-
matically prove) thafR’ ;= R, then the analysis would be safe, because this would imply
P{R>D} < P{R’'>D}, that is, for any deadline, the “true” probability of deadline misses
is inferior to the probability provided by the analysis.

We will show then some general properties of the relation “worse than”. Most of
these are very intuitive, and their proof is very simple. However, once proved, these
properties constitute a kind of “algebra” which can be used to prove important properties
of the stochastic analysis method. The motivation is to provide a theoretical ground for
mathematically prove wether a given approximated analysis technique is safe or not.

As it is known, the probability function of a sum of random variables can be obtained
by convolution of the probability functions of these variables. However, the notion of
“worse than” relies on the cumulative distribution function (CDF) and not on the proba-
bility function. Next lemma provides a way to directly obtain the CDF of a sum of random
variables. This will be used in the proof of several properties.

Lemma 1. BeingX andY two random variables whose PF arg (f) and f(-) respec-
tively, and whose CDF areyK-) and Fy(-), respectively, the CDF of their sum can be
calculated by:

Feiy(®) = (Fr @ fy) (x) = (fx @ Ry) (x) 1)
Proof. By definition,

X

Fy () = Z fay () =3 (fe® fy)(] Z Z Fe (i) - fy (5 —1)

j=—00 j=—0o i=—00 j=—00

The coefficientfy (i) does not depend oj so it can be taken out of the inner sum:

Fyiy(x) = Z fx (i) z fy(j—1i) taking fy (i) out of the sum
ji=—o0 j=—00
= Z fx Ry (X—1) by definition ofFy (-)
j=—o0
= (fx ®Fy) () by definition of®

Moreover, since the convolution operator is conmutative, this also prieyes(x)

(Fr® fy) (%) 0



Computing the CDF using the formulae given in this lemma is not practical. An
implementation of the analysis should use the convolution of the PFs, because this convo-
lution involves a finite number of operations (only the non-zero elements of the PF need
to be convoluted). The convolution of a CDF with a PF, instead, would require an infi-
nite number of operations, because the CDF has an infinite number of non-zero elements.
However, the formulae given in lemmé 1 will be useful for the proofs related with the
“worse than” relation. Also note that the lemma still holds if any of the functigi(s) or
fz(-) hasintegral less than 1. In this case, there is a “probability deficit” which can be pic-
tured as a pulse at the infinity, with a probability equal to the deficit. The corresponding
F4 () simply never reaches the value 1.

In order to simplify the notation, we will say that a random varigbles positive if
X = O, beingO the random variable whose probability function is defined as:

fox) = {cl) o @
Now, we can state and prove the following properties.

Property 1. Reflexivity:A = A.

Proof. The proof is direct from definition| 1. O

Property 2. Transitivity: if A = B andB = C, thenA = C.

Proof. The proof is direct from definition| 1. O

Property 3. If A = B, then for all C positiveA + C = B + €. That is, we can add any
positive variable to both members of an inequality, without altering it.

Proof. By lemma 1,F4¢(-) = (F4 ® fe)(-), and analogousi¥s ¢ (-) = (Fs ® fe) ().
Developing these convolutions into summatories, and di¢e < Fg(-) by hypothesis,
we conclude tha, ¢ (-) < Fq.5(+), which, by definition, impliesAi+C > B+ €. [

Property 4. For all positiveA, B, itis true thatA + B = A and A+ B = B. That is, the
result of adding two positive random variables is always worse than any of them.

Proof. By hipothesisB = O. According with property [3 we can add a positive random
variable to both members, sb+ B = A+ Q. Itis trivial to prove that(f4 ® fp)(:) =
fa(-), soA+ O = A, and the proof of the first inequality is complete. The second in-
equality is proved the same way. O

Property 5. For any positiveA,B,C andD such thatA > B and C = D, it holds that
A+C =B+ D. Thatis, we can add two inequalities member by member.

Proof. By hipothesys,A = B, and sinceC is positive,A + C = B + C by property B.
Analogously, sinc& = D andB is positive, we havé3 + C = B + D. By the transitive
property, we conclude that + C = B+ D. O



4 Properties of the stochastic analysis

Using the above general properties, we can prove now some properties of the stochastic
analysis in([5]. In order to simplify the notation and the proofs, we will reformulate as
mathematical functions some of the algorithms presented in [5].

The algorithm ‘tonvolve and shririkcan be expressed as an iterative formula in the
following way:

W(A) =0

3
W(Aj) = SHRINK(W(Aj-1) +Cj_1,4j —Aj—1) forj>1 ®)

where SHRINK'W),A) is a function, which takes the random variabfeand the integer

A and produces a new random-variable whose probability function is equal to the proba-
bility function of W, left-shifted the amoum and with all values for negative abscissae
accumulated at zero. That is:

0 if x<O
0
fsHRINK(W,2) (X) = _ Z fy (X+4) if x=0 (4)
i=—o0
fyo (X+A4) if x>0

The algorithm %plit, convolve and mer§ean be expressed as an iterative formula in
the following way:

RO =W(A) + €

{
j
®)
R = CHRY, 4—4y,€0) fork>0
where CKER, A, €) is the function “convolve from”, which takes two random varialdkes
andC, and the integef\, and produces a new random variable whose probability function
is equal to

f (X) forx<A
ferrae) (X) = fr(i)- fo(x—i) forx> A (©6)
i=A+1

The following lemma provides a way for obtaining the cummulative distribution func-
tion (CDF) of the random variable CR, A, C). This will be useful to prove some prop-
erties of the CF function.

Lemma 2. The cummulative probability functior:fx 4 ¢)(X) can be calculated with the
following expression:

Fr(X) forx <A
F X) = 7
crr.a.e)(X) {FR(A)—i-Fme(x) for x> A (7
BeingDAQ the random variable whose probability function is:
0 ifx <A
f~(x) = - 8
2 () {fgq(X) if x> A ®



Proof. Looking at the definition ofcrx 4 ¢) (<) in eq.@), we can see that the second case
is like a convolution, but the sum index starts from A+ 1 instead of = —c. However,

if we changefx (x) by fz(x) in the sum, the result will be the same, and the sum index
can now be extended ta= —o without altering the result. This second case can thus be
rewritten asfcgp a ¢)(X) = (fA ® f@) (x), for x > A.

By definition, Fcrz a.¢)( Z ferae)(X). Itis not difficult to see, using the

same techniques than in the proof of lenjrha 1, that this CDF can be computed by

Fr (X) forx <A
F X) = 9
CF(:R’A’G)( ) {FR(A) + (Fﬁ ® fe)(x) forx > A ©
And, since(F; ® fe)(x) = Fg, (X), the proof of the lemma is complete. O

Next, we prove some properties of the functions SHR(N&nd CK) defined above,
related with the pessimism concept.

Property 6. For any A = B, A > 0, it holds thatSHRINK(A,A) = SHRINK(3B,A).

Proof. Let us callA’ and B’ to the “shrinked” versions afl and B, respectively. By
definition,F4/(x) is equal to zero fox < 0, and equal té4 (x+A4), for x> 0. In addition,
by hypothesisk, (x) < Fg(x) for all , so, trivially, F4/(X) < Fz/(x) for all x. N

Property 7. The operator “convolve from” defined in eq.|(6), has the following proper-
ties:

a) If 1 3= Gy, thenCF(R,A, C1) 3= CF(R,A, Cy)
b) If Ry = R, thenCF(Ry,A, @) = CF(R2,A, Q)
c) IfA>0andC = O, thenCHR,A,C) =R

d) If A; < Ay, thenCH(R,Aq, ) = CR(R, A, €)
Proof.

(@) Forx <A, looking at the first case in eq).|(7), since it does not deperehoror Cy, it
is clear thaFcrx a ¢,)(X) = Ferx.a,e,) (X)-
For x > A, by hyphotesis®; = C», so, by propertﬂ3ﬂ%+ C1 = R+ €y, which im-
plies by deflnltlongHe (x) < F3 e, (x), and thuscrg ae,)(X) < Fermoae,)(X), by
lemma2.

(b) Forx <A, since by hyphotesigg, () < Fg,(+), from the first case in ec[](?) it follows
thatFerx, a,0)(X) < Fer@a.a,e) (X)-
Forx > A, by hypothesifR; = Ry, so aIstl 3%2, and theriR1+ C= 3%2-1— ©, which
impliesF5 +e( X) < Fz, Le(X). Thus,Fer, ae)(X) < Fermaa,e)(X), by Iemma}}.

(c) Itis trivial to prove thatR = CF(R,A,0), and then, by property|(a), the properfy ( c)
follows.



Figure 2: Effect of different\ on the CF operator (propeijty[7d)

(d) Consider first the case< Ap. On one hand, according to em (BhrR.ap,0)(X) =
Fr(X). on the other hand, for any Fcrx a,.¢)(X) < Fx(X), because CfR,A1,C) =
R, as demonstrated in proper@] (c) (cf. fig@e 2). So we hayes a, c)(X) <
Ferm.ap.e)(X) for x < Ap.
The case > Ay is slightly more complex. Starting from €q.(7)), by IeAmﬁ]|a 1 we can
computeFs  o(-) as(fz ®Fe)(-) = 32« fr (i) - Fe(x—1i). Noting thatfy (i) is zero
fori <A, and equal tdg (i) for i > A, we can finally write:

(o]

Fermae)(X) =Fr(B1)+ 5 fr(i)-Fe(x—1i) (10)
i=A1+1

Fermage)(X) =Fr(B2)+ > fx(i)-Fe(x—1) (11)
i=0Ay+1

The sum in eq.[(J0) can be split in two sums, one fiomA; + 1 to Ay, and other
fromi = A+ 1 toc. Then, substracting eq. (10) from €g.](11) we obtain

1Y)

Fer®.00,0)(X) — Fermoag,e)(X) = Fr(82) — Fr(A1) — f (i)Fe(x—1)
i= 1+1

then, by definition ofx(-)

and finally, taking common factor df; (i)

14y

= 3 fr()(1-Fe(x—i)
i=Ar+1

This sum non-negative, becausg-) < 1, SOFcrx a, ¢)(X) < Fer@x.a,,¢)(X) also for
x> Ay, g.e.d

]

The above properties have important implications in the stochastic analysis. The main
idea can be informally stated as “pessimistic input data will produce pessimistic results”.
This idea seems obvious when the input data managed by the analysis algorithms are
deterministic numbers. We prove that it is also true when the input data are random
variables.



Theorem 1. Lets S and ‘Sbe two systems with identical parameters, but with different
initial backlog W(0) and W’(0) respectively. 1fW'(0) = W(0), thenW'(t) = W(t) for
allt > 0.

Proof. Letst; be equal to the arrival instant of the next job which contributes to the
backlog, sinc&sandS have the same parameters, this instant is the same for both. For all
t <ty, the backlog at instantis obtained simply as SHRIN®Y(0),t), so, by propert}|6,

W (t) = W(t) fort < t;.

At instantt =t;, the backlog is increased by the computation time of the arriving job.
LetsC be the random variable which represents this computation time, which is the same
for both systemS$andS. By property 3,W'(t1) + C = W(t1) + €. Takingt; as the new
time origin, the same reasoning can be repeated until reaching any future instant!

This theorem implies that, whéw(0) = O, the backlog “worsens” with time. It also
implies that, when a new job is added to the system, the backlog worsens from the instant
of relase of this new job, in relation with the case in which this job was not present.
Finally, it also implies that, if the execution time of a job is replaced by one “worse” (in
the stochastic sense), the backlog from the release instant of that job will be also worse.

Theorem 2. Let S and Sbe two real-time systems, with identical parameters, except for
one of the jobs, safk, whose execution time & in system S an@, in system S If

« = Cx, then the response times obtained by the stochastic analysis of these systems fulfil
SQ’j =Rjforall ;.

Proof. All jobs with priority greater thar are unnafected blyk, so their response time
remain unnafected, and triviall}}’j = R for these jobs (because the “worse than” relation
is reflexive). So we will focus only on jobs with priority less thBn Let us consider an
arbitrary jobl;.

If j <k, we have that the backlog for any instant prioriipis the same for both
systems, because the sequence of arrivals and the execution times are the same. As a
consequence, if jobj cannot be preempted Iy, the response time will be the same for
both systems. IFj can be preempted Wy, thenﬂ%’j = Rj, by the hypothesi§, = Cx and
property 7l(a).

If | =k, we are calculating the response time of [gb As in the previous case, the
backlog is the same in both systems. But the responseXimeill be worse tharRy,
because; = Cy, in virtue of propertie§[f{a) arid[7(b) we will ha® = Ry.

Finally, if j > k, we have thaW’(4;) = W(4;), because at instatk the backlogW
is increased by, while the backlog®V’ is increased ir€}, beingC, = Cx. In virtue of
Theoreni 1L, the backlog will be worse for any fugure instant. Then, for any job released
after 'y, the initial backlog is worse, and thus, by properfigs 7(a) [ghfl 7(b) again, we
conclude’R’j = Rj. O

This theorem implies that, if required, the analyst can replace the computation time
of any job by one more pessimistic in the stochastic sense. The results obtained after this
replacement are pessimistic, but safe. This mechanism will allow for introducing several
simplifications and extensions in the model.

As a corollary, introducing artificially a new job (or task) will also increase the pes-
simism of the results, in the sense that the response times obtained with this extra job are
worse (in the stochastic sense) than without it. This can be easily proved by assuming
that systen§ has an additional job witl = O (which does not alter the analysis), while
systemS has the same job witf’ := ©. Now, Theoren) R can be directly applied.
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Figure 3: Construction of the supremum of a set of random variables

5 Blocking in shared resources

Shared resources, like shared memory areas, are useful to communicate tasks. Resource
access protocols are used to preserve the consistency of the shared data, guaranteeing at
the same time bounded blocking times. Examples of these protocols are the Priority Inher-
itance Protocol (PIP) and Priority Ceiling Protocol (PCP) for fixed priority scheduling, as
well as the Stack Resource Protocol (SRP) for fixed and non-fixed priority scheduling [4].
Under a deterministic analysis, the response time of agakkt can suffer blocking is
calculated by artificially increasing its execution timeByunits, whereB; is the blocking
time of the taskl[4]. Since the exact blocking time can vary between different releases of
the same task or be difficult to calculai,is used instead d8;, whereB; is a bound on
the exact blocking timeB;.
Under the stochastic analysis the situation is analogous. The execution time of a task
7;, of execution time?; should be increased by adding the blocking tiBaewhich is now
a random variable. The result is a transformed task with execution@jrmeB; (being
fe,rs, = fe, ® fz,). Now the problem is analogous to that found in the deterministic
analysis, i.e., how to calculate the exact distribution of the random vari&bleThe
solution is to find a bound valid for all scenarios. In stochastic terms, this means finding a
random variablé3/, worse than the exad; for all possible scenarios. Let us define how
to construct a random variable worse than any of a set of random variables.

Definition 2. Given a set of random variablgs(; }, we define theupremunof that set,
and denote it asup{X;}, the random variable whose CDF is

Fsup{xi} (X> = miin FOCi (X) (12)

Figure@; shows how the function is construﬁduy taking the minimum of allFy, (-).

By construction, sufi(;} = X for all i. Thus, the idea of the supremum of a set of
random variables is analogous to the maximum of a set of real numbers. Using this idea,
the classical results for resource access protocols can be easily translated to the stochastic
analysis as well.

The system model has to be extended to hold information about the set of semaphores
(S¢) used by the system to guard the shared resources, and the length of the critical sec-
tions in the tasks. In the classical analysis, the typical information stored in the model
consists of a set of real numbeds, which represent, for each pdit;, S¢), the length of
the longest critical section that tagkcontains, guarded by semaph&e From this set of
real numbers, the maximum blocking tirBeof each task is obtained. The way in which

3Please, note that the plot of the supremum has been slightly shifted down for better legibility of the
figure.
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Si(P) S(P1)

7t D11 Di2
> Do1 Do

3 D31 D3>

Table 1: Cumulative distributions of the critical sections for the blocking examples.

this is done depends on the resource sharing protocol. For example, PCP guarantees that
each task is blocked only once by any task of less priority, while PIP only guarantees
that a task cannot be blocked twice by the same semaphore or by the same task. These
different properties lead to different algorithms to obt&jn

These ideas can be translated to the stochastic case, using the cormgpeaium
defined above. The length of a critical section is now a random variable whose proba-
bility function is assumed known (it can be obtained by measurement, or using hybrid
techniques such as the ones describediin [3]). Then, a random vabigbkeconstructed
as the supremum of the length of all the critical sections of tagkarded by semaphore
S From thesé&;  an estimatiorB; of the blocking timeB; of each task can be obtained.
Once3B] is obtained, the stochastic analysis can be done as described in Diaz &t al. [5],
but using(B{ + Ci) instead ofC;. If we can guarantee th&/ = B;, then the analysis
will be pessimistic, becausg + C; = B + Cj, from propertﬂS. Thus, by Theoreﬁ] 2, the
response times will be also pessimistic.

5.1 Priority Ceiling Protocol

It is well known that, under PCP, a taskcan be blocked only once by tasks of lower
priority. This property ensures that the maximum blocking tBhtéhat a tasks; can suffer
coincides with the length of the longest critical section among all the lower priority tasks
which can cause blocking . Translating the deterministic method presented in [14] to
the stochastic case, we will computéas the supremum of the sgb; «|P; < B,C(S() >

R}, C(&) being the priority ceiling of the semaphogg, defined as the highest priority
among the tasks which use that semaphore.

For example, consider a system with three tasks and two semaphores (s€g Table 1).
The priority ceiling of each semaphore is indicated in parentheses. Each cell in the table
contains the length of the critical section of taglkjuarded by semapho&. If a taskr;
does not have any critical section guarded by semapBgrdenD; , = O. If a taskr
contains several sections guardedyD; \ is computed as the supremum of the lengths
of these sections, as explained before.

Taskt1 can be blocked by any of the critical sections in lower priority tasks, because
the priority ceiling of both semaphores®. Then, B} = sup{D21,D22,D31,D32}.

The same applies to tagls, so B, = sup{D31,D32}. Taskrs cannot suffer blocking
because it is the lowest priority task, $g = O. Once allB] have been obtained this
way, they are added to the correspondii@nd the stochastic analysis is carried out as
explained in[[5].
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5.2 Periority Inheritance Protocol

If the resource sharing protocol is PIP instead of PCP, the method for obtairgy
different. Under PIP it has been provéd|[14] that any taskill be blocked once at most

by the same semapho®, or by the same lower priority task (P; < B). However, it is
possible that the task gets blocked several times on different semaphores and by different
lower priority tasks. In these cases, the blocking time will be the sum of the lengths of
the critical sections which caused blocking. This implies Bashould be computed by
examining all possible blocking scenarios, and taking the worst (supremum) of all these
blocking times.

For instance, consider again the example in Thple 1. Taskn be blocked by tasks
T and 13, but not by the same semaphore twice. Therefore, if it gets blocket by
on semaphoré&;, taskts can only cause additional blocking on semapHsreand vice-
versa. As a consequend, = sup{(D21+D32),(D22+D31)}. Note that, since we are
dealing with random variables, each sum requires a convolution of the probability func-
tions. Taskr, can be blocked only bys, becauses is the only lower priority task. But,
since it cannot be blocked twice by the same task, we conchijde sup{D3z 1, D3>}

Finally, taskrs cannot suffer blocking by lower priority tasks, $§ = O.

An exhaustive analysis of all blocking scenarios is not difficult to perform, altough
its computational cost can be high. The exhaustive analysis, however, can be completely
avoided using a different method, at the cost of introducing even more pessimism. This
method is the stochastic counterpart of the one presented in [4] for the deterministic case.
In order to obtain a more pessimistic approximatisfi, of the blocking time the follow-
ing steps should be performed:

e For eachj such thatP; < R, compute the supremum of the 62, |C(S) > R}.
Add all these supremi and call the resBk.

e For eachk such thaC(S,) > R, compute the supremum of the €@, |P; < R}.
Add all these supremi and call the resBh;.

e Construct the random variatii’ as one whose CDF By (x) = max{Fgj; (x), Fzs (X) }.
This concept is the inverse of the concept of supremum defined before, so we call
it the infimum Thus, B! = inf{Bl;, Bs }.

Applying this approximation to the example on Ta@@jl’,: inf{(sup{D21, D22} +
sup{D31,D32}), (sup{D21, D31} +sup{Da2,D32}) }.

This method uses the function inf, which is the contrary than the sup. At first sight
it could appear as if this will not preserve the pessimism in the results. The following
theorem shows that, in facg’ = B.

Theorem 3. Let B{ be the blocking time obtained by exhaustively analyzing all possible
blocking scenarios for a task, computing the blocking time in each, and taking the
supremum of all of them. L&' be the approximation to the blocking time obtained by
the method described above. Th&l,:= B!.

Proof. Let us callQ to the set of the durations of each critical sections which could cause
blocking to7; in different scenarios. I.e, the set of durations of any critical section in tasks
with priority lower thanR, guarded by semaphores with priority ceiling greater than or
equal toR. Formally:

Q={DjkP;<R,C(S) >R} (13)
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Let 22 be the power set o, i.e., the set of all its possible subsets. Each element
in 22 is a set which represents a blocking scenario (in which taskffers interference
from all of D;  in that set). However, some of these sets are to be excluded, because they
represent scenarios in which the properties of the PIP are violated. We will say that the
setG, G € 2% represents an illegal blocking scenario if it contains at least two elements
Dj kD1 m such thatj = | or k=m, because this would imply two blockings caused by
the same taskj(= 1) or by the same semaphote=£ m).

An algorithm which compute®; by exhaustive search should do the following steps:

1. Construct the sebd
2. For eaclG e 29 do:

e If Grepresents a legal scenario, compute

Be= ) Dik (14)
Di"kEG

e If Grepresents an illegal scenaribg = O

3. ComputeB] has the supremum of @i calculated before. That is:

Bj = sup{Bg} (15)
Ge2

If we picture the random variableB;  arranged in an array, like the one presented
in table[1, each rowwill contain all the critical sections of task, while each columik
will contain all the critical sections guarded by semapHorny setG < 29 contains a
subset of thes®j k, but if G has to represent a legal blocking scenario, tGemill not
contain twoD; j in the same row, or in the same column.

On the other side, the approximated algorithm described in pgge 12 computes first
Bl;, as the sum of all the supremi among each row, Bgdas the sum of all the supremi
among each column, and finally takes the “best” (infimum) of both. We will prove that
any of Bl; or Bs is worse tharB{, so even if we take the “best” of them, the result will
be still worse tharB;.

Let us consider any s& in 22, which represents a valid scenario. As said, this set
will have at maximunone element of each row. Let us suppose the worst case in which all
rows contribute tds, each with a differenD; . By definition, Bg is the sum of all these
Dj j. But Bl is worse, because it is the sum of the supremi of each row. This supremi
is, by definition, worse than any of the elements of the row, so in particular is worse than
the element which contributes #®. So the sum of all of them will also be worse, by
property[$, i.eBl; = Bg. Since the above is true for age 22 , it is also true for the
worst (supremum) of alBg. This, by definition, isB{ as computed by the algorithm
previously described. SBI; = B.

With an analogous reasoning it can be proved B&t= B{. Both conclusions can be
written in terms of the respective cumulative distribution functions, that is:

Fpi,(X) < Fp(X)
Fzs (X) < Fp/(X)

SinceB!' is the infimum ofBl; andBs;, which is built by taken the maximum, point by
point, amongFg; (X) andFgy;(x), we conclude thafz, (x) < Fg:(x) which by definition
implies B! = B;. O
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6 Conclusions and future work

This report has introduced the relatisorse tharbetween two distributions of a random
parameter of the analysis, which defines a stochastic ordering in the context of real-time
systems. This relation and its properties define a theoretical framework that opens the
door to safe stochastic analysis approximations. Whenever the distribution of a parameter
of the stochastic analysis is substituted by a worse distribution, the resultant response time
distributions coming from the analysis are worse for all the tasks, i.e, the probabilities of
missing deadlines are higher and so the analysis becomes safe.

The most interesting characteristic of the relatworse thanis that it allows us to
order different distributions of the same random parameter of the analysis. For example,
it allows us to state that one execution time distribution is worse than another, that a
blocking time distribution is worse than another, that a response time distribution is worse
than another, etc. The ordering between random variables is a valuable tool that permits a
rapid translation of well-known real-time deterministic results to the stochastic scenario.
Deterministic analysis becomes a particular case of the stochastic analysis. This way, any
deterministic analysis is always more pessimistic than its stochastic counterpart. Using
these translations we have introduced the analysis of task sets that can block on shared
resources, but many others are possible.

Future work will focus on applying the pessimistic analysis to deal safely with other
real-time problems, such as optimal priority assignment, release jitter or stochastic de-
pendencies.
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