
Some Notes on Stochastic Analysis Using EDF
Scheduling

José Luis Dı́az, José Marı́a López
Universidad de Oviedo

Technical report SNSAUES07
September 2007

Abstract

This technical report describes how to apply the stochastic analysis of real-time systems
presented in [3] to EDF systems. Although the stochastic analysis is general enough to
cover both fixed-priority and EDF scheduling, and a detailed explanation on how to deal
with EDF is published also in [3] (section 4.4), the lack of published examples using EDF
make it difficult to understand.

In addition, we present in this technical report a new approach to apply the stochastic
analysis to EDF, which is mathematically equivalent to the one presented in [3], but it
is conceptually much simpler. Then, we refine this approach in order to allow a more
efficient implementation in an analysis tool.

1 Introduction
Real-time systems must provide some kind of guarantee about the ratio of deadline misses.
Classical analysis of hard real-time systems focused on guaranteeing that all deadlines
(100%) are met. In order to provide such a guarantee, the worst-case scenario has to be
found, and the worst-case response time in that scenario has to be computed. If this worst-
case response time is not greater than the deadline for all tasks in the system, the system
is feasible. Otherwise it is deemed unfeasible. This over-pessimistic approach leads to
oversized systems, in order to provide such a guarantee.

Stochastic analysis of real-time systems focuses on computing the probability of dead-
line misses. This does not require any worst-case scenario, nor the use of a single-valued
worst-case computation time. Instead, all possible computation times and their probabili-
ties are required, and all possible scenarios are analyzed. The result of the analysis is the
probability function (PF) of the response times of all tasks in the system. This probability
function gives the probability of each possible response time. From it, the probability of
deadline misses is easily derived.

The problem of obtaining the PF of the response time, given the periods, offsets, prior-
ities and the PFs of the computation times of the tasks, is apparently unaffordable. This is
why some authors imposed simplifications in the model [8, 5, 6] or in the scheduler [2, 1].

The first analysis which did not impose any of these restriction was published in [3]
and [7], and then expanded in [4]. The proposed analysis is general enough to be appli-
cable both to fixed-priority and EDF schedulers. However, the explanations about how
to apply the analysis to the EDF case in [3, 7] are unnecessarily complex. In addition,
the published examples, which clarify how the analysis is carried out, are fixed-priority
systems in all cases. As a consequence, the algorithm for applying the proposed analysis
to the EDF case remains difficult to understand.

In this report we present a new approach to EDF, conceptually simpler than the one
published before. In addition we provide a detailed step-by-step example.

2 System model and overview of the analysis
In this section we formalize the system model used in the analysis, and summarize the
algorithm.

2.1 System model
The system is composed of a set of N independent periodic tasks S = {τ1, . . . ,τi, . . . ,τN},
each task τi being defined by the tuple (Ti,Φi,Ci,Di,Mi), where Ti is the period of the
task, Φi its initial phase, Ci its execution time and the pair (Di,Mi) define the real-time
constraint of the task.

The execution time is a discrete random variable1 with a known probability function
(PF), denoted by fCi(·), where fCi(c) = P{Ci =c}. Alternatively, the execution time distri-
bution can also be specified using its cumulative distribution function (CDF), denoted by
FCi(·), where FCi(x) = ∑

x
c=0 fCi(c). In the stochastic analysis three system utilizations are

defined, namely Umin, Umax and Ū , which are calculated using the minimum, maximum
and average task execution times, respectively.

1Throughout this report we use a calligraphic typeface to denote random variables, e.g. C, W, R, etc.

1

Each periodic task gives rise to an infinite sequence of jobs, Γ j, with deterministic
release times λ j. Each job requires an execution time which is a random variable whose
distribution is given by the probability function of the task it comes from, fCi(·), and it is
assumed to be independent of other jobs of the same task and those of other tasks. The
response time of a job Γ j is a random variable, R j, whose probability function has to be
obtained by the analysis. Di is the task relative deadline and Mi the maximum allowable
probability of missing it. Task τi is said to be schedulable if P{Ri >Di} ≤ Mi, Ri being
the response time of τi.

The scheduling policy we assume is a general, preemptive, priority-driven policy that
assigns a static priority to each job and schedules jobs according to this priority. The
scheduler guarantees that the running job is the one with the highest priority among the
ready jobs. We are not concerned with the policy used to assign priorities to jobs, as
long as they are assigned in a deterministic way. This model includes well known fixed
priority policies such as Deadline Monotonic (DM), and non-fixed priority policies such
as Earliest Deadline First (EDF).

2.2 Analysis
The response time of a job Γ j is given by

R j = W(λ j)+C j + I j (1)

where W(λ j) is the backlog at time λ j, which represents the workload of priorities Pj
and higher that have not yet been processed immediately prior to λ j, the release time of
Γ j. Term C j is the execution time of job Γ j and I j is the interference in Γ j of all the
jobs of higher priority than job Γ j released at or after job Γ j. Note that all the terms
in Equation (1) are random variables. This equation is the stochastic counterpart of a
well known deterministic equation, which provides the response time of a job under any
preemptive priority-driven scheduling policy.

In order to simplify the mathematical expressions, all the jobs with priority lower than
Γ j will henceforward be removed, since they do not affect its response time.

The backlog at the release time of any job Γ j, denoted W(λ j), can be calculated using
the following iterative equation:

W(λ1) = 0
W(λk) = SHRINK(W(λk−1)+Ck−1,λk−λk−1) for k > 1

(2)

where λ1 is the release time of the first high priority job. Note that the backlog at λ j does
not account for the computation time of job Γ j. Equation (2) starts with zero backlog and
continues with a new iteration for each high priority job released before Γ j. Each iteration
step requires the following operations on the Probability Functions (PFs):

• Convolution of the PF of the backlog calculated in the previous iteration, at time
λk−1, with the PF of the execution time Ck−1, of the high priority job released at
that time.

• Shift ∆ = (λk−λk−1) time units to the left of the result of the previous step.

• Accumulate at zero the probabilities of negative time values.

2

The last two operations are summarized in function SHRINK(·), whose PF is defined
by Equation (3).

fSHRINK(W,∆)(x) =


0 if x < 0

0

∑
w=−∞

fW(w+∆) if x = 0

fW(x+∆) if x > 0

(3)

Once the backlog at the release time of Γ j is known, it is added to its execution time
C j, as given by Equation (1). The PF of the addition is calculated by convolving the PF of
both random variables. This provides the partial response time R

[0,λ j+1−λ j]
j = W(λ j)+C j,

where λ j+1 is the release time of the first high priority job released at or after Γ j. Partial
response time R

[0,λ j+1−λ j]
j is the response time of job Γ j assuming that high priority jobs

Γ j+1 and subsequent do no exist, so they can not interfere with Γ j. Therefore, P{R j =r}=
P{R[0,λ j+1−λ j]

j =r} for all r ∈ [0,λ j+1−λ j].
The sequence of partial response times of Γ j can be calculated using Equation (4)

R
[0,λ j+1−λ j]
j = W(λ j)+C j

R
[0,λk+1−λ j]
j = AF(R[0,λk−λ j]

j ,λk−λ j,Ck) for k > j
(4)

Equation (4) is an iterative equation, which starts with partial response time R
[0,λ j+1−λ j]
j

and continues with a new iteration for each high priority job released at or after Γ j. Each
iteration step requires a special addition of the previous partial response time, R

[0,λk−λ j]
j ,

with the execution time of the next high priority job, Ck. The special “addition”, called
Addition From (AF), provides a random variable whose PF is defined by Equation (5)

fAF(R,∆,C)(x) =


fR(x) for x≤ ∆

∞

∑
i=∆+1

fR(i) · fC(x− i) for x > ∆
(5)

This PF is calculated by performing a special convolve operation, named convolve-
from. It is special in the sense that it leaves the PF of R in interval [0,∆] unchanged,
convolving the PF of R with that of C only in interval [∆+1,∞].

Note that under EDF this iterative procedure can stop when all future jobs have abso-
lute deadlines greater than (λ j + D j), because all these jobs are lower priority jobs, and
so cannot interfere with the job under analysis. At maximum, this condition will be met
for jobs arriving after the instant (λ j +D j). Due to this fact, this step will usually require
few iterations for EDF systems.

On the contrary, under fixed-priority scheduling there is an infinite number of inter-
fering jobs (all future jobs from higher priority tasks). This requires an infinite number
of iterations to obtain the exact distribution of the response time of the job. However,
in order to calculate the probability of Γ j missing its deadline D j, it is enough to iter-
ate on Equation (4) until δ = λk+1−λ j ≥ D j, because P{R j >D j} = 1−P{R j≥D j} =
1−∑

k=D j
k=0 P{R[0,δ]

j =k}.
In theory, the probability of a task missing its deadline is calculated by averaging the

probabilities of all its jobs missing that deadline, but in practice the number of these jobs
is infinite. However, when Ū < 1 the system reaches a periodic steady-state [3]. In the

3

Task τ1 Task τ2

Phase Φ1 = 20 Φ2 = 50
Period T1 = 40 T2 = 60

Deadline D1 = 50 D2 = 90
Execution Time C1 = C2 = C

Table 1: Parameters of the example system

steady-state, the probability of a job missing its deadline becomes constant for the same
job released one, two or any number of hyperperiods later. Thus, the probability of a task
missing its deadline can be calculated by considering only those of its jobs released in one
hyperperiod.

The procedure above outlined makes no assumption about the scheduler, as long as
the priorities of the jobs do not change during job execution. Thus, it is valid both for
fixed-priority and EDF schedulers. However, some observations should be made:

• The term W(λ j) in eq. (1) represents the backlog to be completed before job Γ j can
start its own execution. For the steady-state, this term is computed differently under
fixed-priority and EDF schedulers.

In the case of fixed-priorities, W(λ j) is the sum of all execution times, still not
serviced, of all jobs belonging to tasks with priority greater than (or equal to) Pj.

In the case of EDF, W(λ j) is the sum of all the execution times, still not serviced,
of all preceding jobs which have earlier deadline than job Γ j, no matter to which
task they belong. These are the jobs whose absolute deadline is less than, or equal
to, (λ j +D j).

• Once W(λ j) is obtained, the rest of the analysis is carried out in the same way for
fixed-priorities and EDF schedulers. However, as noted in previously, under EDF
the number of jobs which can cause interference is finite (indeed, it is usually very
small), and thus it is possible to obtain the exact response time of each job.

In the next section, a detailed example is solved; afterwards, the procedure used to
solve it is generalized.

3 Example for EDF
Table 1 shows the parameters of a real-time system. The execution times of both tasks
are identically distributed random variables, following the probability function given in
Table 2. The maximum utilization (when all jobs use their WCET) is 2.0833, and the
average utilization (when all jobs use their average execution time) is 0.9417. Since
the maximum utilization is greater than one, the backlog computation must iterate over
several hyperperiods until convergence is reached. Since the average utilization is less
than one, the convergence is guaranteed.

Figure 1 shows the release pattern of the jobs across the two first hyperperiods. In
this figure, the release instants of the jobs are represented by upwards pointing arrows,
while their absolute deadline are represented by downwards pointing hollow arrows. The
release instant and the absolute deadline of each job are connected by a horizontal line.

4

c P{C=c}

10 0.1
20 0.4
21 0.2
22 0.2
50 0.1

Table 2: Probability function of C

t20

Γ1

70

60

Γ3

110

100

Γ4

150

140

Γ6

190

180

Γ8

230

220

Γ9

270

260

Γ11

310

0

Hyperperiod 0 Hyperperiod 1

Task τ1

t50

Γ2

140

110

Γ5

200

170

Γ7

260

230

Γ10

320

Task τ2

0

Figure 1: Release pattern over the two first hyperperiods

In this figure, jobs were numbered by arrival ordering, no matter the task to which they
belong.

Figure 2 is a generalization of Fig. 1. It can be seen that all hyperperiods repeat the
same pattern, and the only difference is that the value of k increases. This notation will
be useful for reasoning about the steady-state hyperperiod.

We are interested in the probability function of the response time of both tasks, τ1 and
τ2. Figure 3 gives a quick overview of the computation procedure. Next, we detail the
required steps.

tλ5k+1

Γ5k+1

λ5k+3

Γ5k+3

λ5k+4

Γ5k+4

λ5k+1

Γ5k+1

λ5k+3

Γ5k+3

λ5k+4

Γ5k+4

λ5k+1

Γ5k+1

Hyperperiod k = N−1 Hyperperiod k = N Hyperperiod k = N +1

Task τ1

tλ5k+2

Γ5k+2

λ5k+5

Γ5k+5

λ5k+2

Γ5k+2

λ5k+5

Γ5k+5
Task τ2

0

Figure 2: Generalization of Figure 1

5

1. CALCULATION OF THE STEADY-STATE SYSTEM BACKLOG

W(20) = 0
W(50) = SHRINK(W(20)+C1, 50−20)
W(60) = SHRINK(W(50)+C2, 60−50)

W(100) = SHRINK(W(60)+C1, 100−60)
W(110) = SHRINK(W(100)+C1, 110−100)
W(140) = SHRINK(W(110)+C2, 140−110)
W(20) = W(140)
W(50) = SHRINK(W(20)+C1, 50−20)

...

Iterate

Compute one hyperperiod

STEADY-STATE SYSTEM BACKLOG = W(20) = W(140)

2. CALCULATION OF THE STEADY-STATE BACKLOG AFFECTING JOB Γ1

W(20) = Steady-state system baklog
W(50) = SHRINK(W(20)+C1, 50−20)
W(60) = SHRINK(W(50)+C2, 60−50)

W(100) = SHRINK(W(60)+C1, 100−60)
W(140) = SHRINK(W(100)+C1, 140−100) ⇐ Job at 110 is skipped
W(20) = W(140)

3. CALCULATION OF THE RESPONSE TIME OF JOB Γ1

R
[0,50−20]
1 = W(20)+C1 =AF(W(20),0,C1)

=⇒ STOP since all future jobs have later deadlines ⇒ R
[0,∞]
1 = R

[0,50−20]
1

4. CALCULATION OF THE RESPONSE TIME OF JOB Γ2

W(20) = Steady-state system baklog
W(50) = SHRINK(W(20)+C1, 50−20)

R
[0,60−50]
2 = W(50)+C2 = AF(W(50),0,C2)

R
[0,100−50]
2 = AF(R[0,60−50]

2 ,60−50,C1)
=⇒ STOP since all future jobs have later deadlines ⇒ R

[0,∞]
2 = R

[0,100−50]
2

6. CALCULATION OF THE RESPONSE TIME OF TASK τ1

F
R

[0,t]
1

= 1
3(F

R
[0,t]
1

+F
R

[0,t]
3

+F
R

[0,t]
4

)

7. CALCULATION THE RESPONSE TIME OF TASK τ2

F
R

[0,t]
1

= 1
2(F

R
[0,t]
2

+F
R

[0,t]
5

)

8. CALCULATION OF THE PROBABILITIES OF MISSING DEADLINES

P{R1 >D1}= 1−F
R

[0,t]
1

(D1) = 0.304 P{R2 >D2}= 1−F
R

[0,t]
2

(D2) = 0.306

5. Analogous for jobs Γ3,Γ4, . . .

Figure 3: Example of calculation of the random response time of a task

6

Accumulated
Probability

Time value
0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W(20)

W(140)

W(260)

W(20+120k), k→ ∞

Figure 4: Cumulative distribution functions of system backlog at the release instant of the
first job in the hyperperiod.

1. Calculation of the steady-state system backlog The first step in the procedure
is to obtain the system backlog at the instant in which the first job in the steady-state
hyperperiod is released. In our case, the first job in the hyperperiod belongs to τ1, and
it is Γ1 in the first hyperperiod, Γ6 in the second hyperperiod, and so on. In general, it
is job Γ5k+1, being k the hyperperiod under consideration, numbered from zero (refer to
Fig. 2). This job is released at instants 20, 140, 260,. . . ; in general at λ5k+1 = 120k +20.
Therefore, we need to obtain the system backlog at instant (120k +20), when k→ ∞.

The procedure for obtaining this backlog consists of iterating Eq. (2) through several
hyperperiods, until the same result is obtained in two consecutive hyperperiods. Figure 4
shows how the convergence is reached and the cumulative probability function of this
system backlog.

2. Calculation of the steady-state backlog affecting job Γ1 Let us suppose that con-
vergence is reached for hyperperiod k = N in Fig. 2. The system backlog obtained in
step 1 is then the system backlog at instant λ5k+1 in this hyperperiod. This system back-
log includes the contribution of all preceding jobs. However, looking at Figure 2, it is
clear that job Γ5k+5 from the hyperperiod (N−1) does not affect to the job under analy-
sis, because its absolute deadline is greater. So, the system backlog obtained in step 1 is
not directly usable to compute the response time of Γ5k+1. In general, the adequacy of the
computed backlog can be algorithmically assessed if, while computing the steady-state
system backlog, a variable is used to keep the maximum of the absolute deadlines of the
involved jobs.

The algorithm used to obtain this backlog does not maintain any “memory” of pre-
vious steps, so it is not possible to “rewind” the computation up to the point in which
the extra job was included, and re-compute the backlog from this point. Instead, it is

7

much simpler to apply the backlog computation procedure for one more hyperperiod,
until reaching Γ5k+1 again in the next hyperperiod, (N + 1). Since the steady state is as-
sumed to have been reached, the response time of job Γ5k+1 does not depend on k. In
this additional iteration through hyperperiod N, only jobs with absolute deadline less than
(λ5k+1 +D1), for k = (N +1), have to be included. In this example this means jobs Γ5k+1,
Γ5k+2, Γ5k+3 and Γ5k+4 from hyperperiod N (see Fig. 2), excluding Γ5k+5 from hyperpe-
riod N, whose absolute deadline is greater than that of Γ5k+1 from hyperperiod (N + 1).
A simple way of skipping this job is to consider its computation time equal to zero, while
applying Eq. (2).

The rest of jobs in the hyperperiod do not suffer from this problem, so the backlog
affecting them can be directly derived from the system backlog at λ5k+1, W(20).

3. Calculation of the response time of job Γ1 Once the backlog affecting the job is
obtained, the response time of the job is computed using Eq. (4) as explained in sec-
tion 2.2. Note that this step use the same algorithm for fixed-priority and EDF systems,
and the only difference is the stopping condition. Also note that, under EDF, the algo-
rithm requires usually a small number of iterations, because the most habitual case is
that future jobs have greater absolute deadline (lower priority) and then they do not cause
interference.

In particular, looking at job Γ5k+1 in Fig. 2, it can be seen that al future jobs have later
deadlines, so they are lower priority jobs which do not interfere job Γ5k+1. In this case,
with a single convolution, we have obtained the exact PF of the response time, valid for
all t.

4. Calculation of the response time of job Γ2 The case of job Γ5k+2 (which belong to
task τ2) is slightly more interesting. Looking again at Fig. 2, it can be seen that job Γ5k+3
(belonging to task τ1) has an earlier absolute deadline, so it causes interference. This is
however the only job which interferes, so in this case the exact PF of response time of
Γ5k+2 is obtained after one “normal” addition and one “addition from” operation.

5. Analogous for jobs Γ3, Γ4, . . . The response time PF for the rest of the jobs in the
steady-state hyperperiod is computed in the same way. Note also that the computation
of the response time requires a single “normal” addition for all jobs in the hyperperiod,
except for job Γ2 (as explained above) and job Γ5, for the same reasons than job Γ2. In
this case, Γ5 suffers interference from job Γ1 released in the next hyperperiod.

6. Calculation of the response time of task τ1 Once the PF of the response time of
each job is found, the PF of the response time each task is obtained by averaging the
response time PFs of the jobs belonging to this task. In the case of τ1, the jobs whose
response time has to be averaged are Γ1, Γ3, and Γ4. The result is shown in Figure 5.

7. Calculation of the response time of task τ2 It is obtained in the same way, by
averaging the response time PF of jobs Γ2 and Γ5. The result is also shown in Figure 5.

8. Calculation of the probabilities of missing deadlines Once the cumulative prob-
ability distributions of the response time of the tasks are obtained, the probability of
meeting the deadline can be easily computed, by simply evaluating those functions for

8

Accumulated
Probability

Time value
0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D1

0.696

FRΓ1

FRΓ3

FRΓ4

FRτ1

D2

0.694

FRΓ2

FRΓ5

FRτ2

Figure 5: Cumulative distribution functions of response time for both tasks in the system

the deadline. Figure 5 shows this evaluation, and the result for each task. The dead-
line miss probability is 1 minus the probability of deadline meeting, and the result is
(1−0.696) = 0.304 for τ1, and (1−0.694) = 0.306 for τ2.

4 Generalization of the backlog computation method
Firstly, the total system backlog at the instant of activation of the first job in the steady-
state hyperperiod is computed by iteratively applying Eq. (2), including all the jobs in
the system, no matter their absolute deadlines (i.e., irrespective of their priorities). As
described for fixed-priorities, this computation may require iterating over several hyper-
periods until convergence is reached. Let W be the steady-state system backlog (W(20 in
the previous example), and let DW be the maximum of all absolute deadlines for all jobs
whose workload was included in W.

Then, for each job, Γ j, in the hyperperiod the backlog at its release time, W(λ j), can
be computed as follows:

• If DW is not greater than the absolute deadline of job Γ j (i.e.: if DW ≤ λ j +D j), the
pre-calculated backlog W is correct, since it includes only jobs with priority greater
than job Γ j. In this case, Eq. (2) is iteratively applied, starting with the steady-
state system backlog, until reaching the release time of job Γ j. While applying this
equation, only jobs with absolute deadline not greater than (λ j +D j) are considered.

• Otherwise, i.e: if DW > λ j + D j, the pre-calculated backlog is not valid, since it
includes at least one job with a priority less than priority of job Γ j. In this case, we
must “discount” the workload caused by these jobs.

9

In [3] a elaborated method is presented to “rewind” the computation up to the point
in which all jobs included have earlier deadlines than the job under analysis. This
method is unnecessarily complex, because rather than “rewinding” the algorithm, it
is much simpler to advance it up to the next hyperperiod. This is possible because,
once the steady-state is reached, all future hyperperiods are equivalent.

The new proposed method consists of actualizing W by repeatedly applying Eq. (2)
until the next hyperperiod is reached, but now including only the jobs with absolute
deadline earlier than the absolute deadline of Γ j in next hyperperiod. This pro-
cedure is repeated if necessary over several hyperperiods more, until no jobs with
later absolute deadline are included in W. Note that the relative deadlines of the
jobs are rarely greater than the length of the hyperperiod, which guarantees that this
condition is usually met iterating on a single iteration. Once the condition is met,
we are in the first case.

5 Optimization of the backlog computation method
Previous section described a general method to calculate the steady-state backlog af-
fecting a job Γ j at its release time, i.e, term W(λ j) in Equation (1). Starting from the
steady-state system backlog, the backlog affecting a job was calculated by iterating on
Equation (2) until λ j, skipping all the jobs with absolute deadline higher than the absolute
deadline of Γ j. The only nuisance appeared when the steady-state system backlog were
not valid for Γ j, since it included jobs with absolute deadline higher than that Γ j. How-
ever, the solution was simple, just calculate the backlog for job Γ j released one or more
hyperperiods later.

Although this calculation method is correct, its performance can be improved. There
are two simple optimizations that can greately decrease the computational cost.

1. The steady-state backlog affecting the first job of a task is a valid starting point
in the calculation of the steady-state backlog affecting its second job. In the same
way, the steady-state backlog affecting the second job of a task is a valid starting
point in the calculation of the steady-state backlog affecting its third job, and so
on. For example, the steady-state backlog at t = 110 affecting job Γ5 of task τ2 in
the example, can be calculated by iterating from the steady-state backlog at t = 50
affecting job Γ2 of the same task. That is to say, we do not have to iterate from the
steady-state system backlog at t = 20. The proof is simple. Since both Γ2 and Γ5
belong to the same task, the absolute deadline of Γ2 is lower than that of Γ5, so the
backlog affecting Γ2 is valid for Γ5.

2. The second optimization can be applied whe the steady-state system backlog is
not valid for a job, as happened with job Γ1 in the example. In that case, we it-
erated starting from the steady-state system backlog during one hyperperiod more
until reaching the same job one hyperperiod later, skipping all the jobs with higher
absolute deadline. However, we can observe in Figure 1 that the steady-state sys-
tem backlog is valid for Γ3, since the absolute deadline of Γ3 is higher than the
maximum absolute deadline of the jobs included in the steady-state system back-
log. Therefore, the steady-state system backlog is valid to calculate the backlog
affecting Γ3 at its release time. Next, applying the first optimization, the steady-
state backlog affecting Γ3 at its release time is a valid starting point to calculate the

10

steady-state backlog of Γ4. Finally, the steady-state backlog affecting Γ4 at its re-
lease time is a valid starting point to calculate the steady-state backlog of Γ6. Now,
in order to calculate the response time of τ1 we consider jobs Γ3, Γ4 and Γ6, instead
of Γ1, Γ3 and Γ4. However, both sets of jobs are equivalent, because the system is
supposed to be in the steady-state.

Since stochastic analysis of real-time systems is costly in computational terms, it is
suitable to apply the optimization techniques showed in this section when dealing with
complex real-time systems.

A Implementation
This appendix provides a minimal implementation of the procedure described in the re-
port. It is written in Python language. The aim is not speed, efficiency or elegance.
Instead, the code tries to mimic the steps and notation used in the report, so in some sense
this is a repetition of Fig. 3. But it is an executable description, so anyone can try it and
obtain the same results presented in the report. If you want to generate plots like Figs. 4
and 5, you may insert calls to function PF_save at appropiates points in the code. Refer
to last lines in the code for the appropiate syntax.

The code in this appendix is available for download at http://www.atc.uniovi.
es/rsa/starts/downloads/python-example.tgz.

In addition, a much more complete and versatile tool called stochan was developed
by the authors. This tool is capable of dealing with complex systems including block-
ing, release jitter, mixed priorities models, different rounding methods, etc. The tool is
written in C language, and it is optimized for speed and memory consumption. Stochan
is available for download (in binary form for Windows and Linux platforms) at http:
//www.atc.uniovi.es/rsa/starts/tools.php

The reader may be interested in knowing the time required to perform the analysis
for the system presented in this report. The parameters of the system were carefully
choosen in order to have an interesting behaviour with a small number of jobs. The high
average system utilization, 0.9417, and specially, the use of computation times greater
than periods2, causes a slow convergence of the iterative method. In order to obtain the
stationary system backlog with an error less than 10−6, it was neccesary to iterate over
125 hyperperiods and the resulting backlog probability function contained 11462 points.
Using the python code, the time required to complete the analysis was 2 minutes 27
seconds. Using stochan it was only 0.915 seconds.

A.1 Python code

Main procedure (file example-edf.py)
15 from analysis import PF, PDF, shrink, convolve, AF,\

difference, average, PF_save
17

Execution time probabilities (both tasks have the same distribution)
19 C=PF({10: 0.1, 20: 0.4, 21: 0.2, 22: 0.2, 50: 0.1})

2Assuming that jobs missing their deadlines are removed from the running queue by the operating
system, execution time 50 of task τ1 may be substituted by execution time D1 + 1 = 41, which would
reduce the pessimism and decrease the analysis time.

11

http://www.atc.uniovi.es/rsa/starts/downloads/python-example.tgz
http://www.atc.uniovi.es/rsa/starts/downloads/python-example.tgz
http://www.atc.uniovi.es/rsa/starts/tools.php
http://www.atc.uniovi.es/rsa/starts/tools.php

21 ##
CALCULATION OF THE STEADY STATE SYSTEM BACKLOG

23 ##

25 # Set initial backlog equal to zero with probability 1
W0=PF({ 0:1 })

27

Advance to instant 20, in which the first job arrives
29 W20=shrink(W0,20)

31 # Iterative procedure
iteration=1; diff=1

33 while(diff>0.00001):
W50 = shrink(convolve(C, W20), 50-20)

35 W60 = shrink(convolve(C, W50), 60-50)
W100 = shrink(convolve(C, W60), 100-60)

37 W110 = shrink(convolve(C, W100), 110-100)
W140 = shrink(convolve(C, W110), 140-110)

39 diff = difference(W140, W20)
iteration=iteration+1

41 # Copy the backlog at the end of the previous hyperperiod
as the backlog at the beginning of the new hyperperiod

43 W20=W140
print "# Iteration %d. diff=%2.10f. Backlog size=%d" %\

45 (iteration, diff, len(W140))

47 ##
CALCULATION OF THE STEADY STATE BACKLOG AFFECTING JOB 1

49 ##
W50 =shrink(convolve(C, W20), 50-20)

51 W60 =shrink(convolve(C, W50), 60-50)
W100=shrink(convolve(C, W60), 100-60)

53 W110=shrink(convolve(C, W100), 110-100)
W140=shrink(W110, 140-110) # No convolve in this step

55 # this way Job5 (at 110) is excluded
W20=W140

57

CALCULATION OF THE RESPONSE TIME OF Job1
59 ##

Rj1=convolve(W20, C)
61

CALCULATION OF THE RESPONSE TIME OF Job2
63 ##

Rj2=convolve(W50, C)
65 Rj2=AF(Rj2, 60-50, C) # Interference of job3

67 # CALCULATION OF THE RESPONSE TIME OF Job3
##

69 # The backlog affecting Job3 must be recomputed, since W60
includes Job2, with lower priority

71 W60 =shrink(W50, 60-50) # Do not include Job2
Rj3=convolve(W60, C)

73

CALCULATION OF THE RESPONSE TIME OF Job4
75 ##

Rj4=convolve(W100, C)
77

CALCULATION OF THE RESPONSE TIME OF Job5
79 ##

Rj5=convolve(W110, C)
81 Rj5=AF(Rj5, 140-110, C) # Interference of job1 in next hyperperiod

83 # CALCULATION OF THE RESPONSE TIME OF TASK1
##

85 Rt1=average([Rj1, Rj3, Rj4])

87 # CALCULATION OF THE RESPONSE TIME OF TASK2
##

89 Rt2=average([Rj2, Rj5])

91 ##
CALCULATION OF PROBABILITIES

93 ##

12

D1=50 # Deadlines
95 D2=90 #

print "Probability of deadline misses for Task1 = %2.10f" %\
97 (1-PDF(Rt1)[D1])

print "Probability of deadline misses for Task2 = %2.10f" %\
99 (1-PDF(Rt2)[D2])

Save cumulative distributions for plotting (only first 201 points)
101 PF_save(PDF(Rt1[:201]), "Task-1-pdf.dat")

PF_save(PDF(Rt2[:201]), "Task-2-pdf.dat")

Analysis module (file analysis.py)
"""

3 This module implements a minimal set of funtions which allow to perform
the stochastic analysis of real-time systems in a semi-manual way.

5 For more information see technical report available at
http://www.atc.uniovi.es/research/SNSAUE07.pdf

7 """

9 # CORE SET OF FUNCTIONS
==

11 def convolve(f,g):
"""

13 Implements the convolution of two probability functions
"""

15 r=[0.0]*(len(f)+len(g)-1) # Make up space for result
for i in range(len(f)):

17 for j in range(len(g)):
r[i+j]+=f[i]*g[j]

19 return r

21 def shrink(f, c):
"""

23 Implements the ’shrinking’ of a probability function in the amount c
"""

25 return [sum(f[:c+1])]+f[c+1:]

27 def AF(r,t,c):
"""

29 Implements the ’Addition From’ operation, which provides the response
time of Job_a, including the interference of Job_b, being

31 r: provisional response time of Job_a
t: arrival time of Job_a, with respect of arrival time of Job_b

33 c: execution time of Job_b
"""

35 if t>len(r): return r # No interference is possible
return r[:t+1]+convolve(r[t+1:], c)

37

Utility functions
39 # ==

def difference(f,g):
41 """

Computes the quadratic difference between two probability functions
43 """

m=min(len(f), len(g))
45 M=max(len(f), len(g))

if (M==len(f)): longest=f
47 else: longest=g

r=0.0
49 for i in range(m): r=r+abs(f[i]-g[i])

for i in range(m,M):
51 r=r+longest[i]

return r
53

def average(PFs):
55 """

Given a list of probability functions, it returns the average
57 """

maxsize=max(map(len, PFs))
59 for pf in PFs:

pf.extend([0]*(maxsize-len(pf)))
61 r=[]

for i in range(maxsize):

13

63 r.append(sum([x[i] for x in PFs]))
return [x/len(PFs) for x in r]

65

def PDF(pf):
67 """

Given a probability function (pf), it returns the cumulative
69 distribution function (pdf).

"""
71 pdf=[]; acum=0

for v in pf:
73 acum+=v

pdf.append(acum)
75 return pdf

77 def PF(d):
"""

79 Given a PF implemented in a dictionary (pairs of time:probability)
returns a list (array) of probabilities indexed by time. For

81 example, the dictionary {0:0.2, 7: 0.3, 15:0.5} would produce
the list [0.2, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0.5]

83 with 16 elements.
The first form is more suitable for input disperse functions, but

85 the second is more suitable for the analysis.
"""

87 m=max(d.keys())
lista=[]

89 for i in range(0,m+1):
if d.has_key(i): lista.append(d[i])

91 else: lista.append(0)
return lista

93

Input/Output functions
95 # ===

def PF_load(filename):
97 """

Given the name of a file, this functions reads it an returns a
99 list (array) in which the index is the time and the value

the probability.
101 The file is expected to contain in each line a pair ’time probability’

separated by tab (’\t’)
103 """

105 d={}
fil=open(filename, "r")

107 for l in fil:
c=l.split(’\t’)

109 if len(c)==2:
d[int(c[0])]=float(c[1])

111 return PF(d)

113 def PF_save(pf, filename, decimal_places=15):
"""

115 Saves the probability function pf in a file, in a format suitable
for plotting with gnuplot or tikz.

117 """
format="%%10i\t%%2.%df" % decimal_places

119 fil=open(filename, "w")
for i in range(len(pf)):

121 print >> fil, format % (i, pf[i])

123 # END of module

A.2 Execution
In order to test the python code, you need only put both files in the same directory and
issue the command

$ python example-edf.py

provided that you have the python interpreter installed.

14

References
[1] L. Abeni and G. Buttazzo. Stochastic Analysis of a Reservation Based System. In

Proc. of the 9th Int. Workshop on Parallel and Distributed Real-Time Systems, Apr.
2001.

[2] A. K. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. In Proc. of the
19th IEEE Real-Time Systems Symposium, pages 123–132, Dec. 1998.

[3] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. Lo Bello, J. M. López, S. L. Min,
and O. Mirabella. Stochastic Analysis of Periodic Real-Time Systems in a Real-Time
System. In Proc. of the 23rd IEEE Real-Time Systems Symposium, pages 289–300,
Austin, Texas, Dec. 2002.

[4] J. L. Dı́az, J. M. López, M. Garcı́a, A. M. Campos, K. Kim, and L. Lo Bello. Pes-
simism in the stochastic analysis of real-time systems: Concept and applications. In
Proc. of the 25rd IEEE Real-Time Systems Symposium, Lisboa, Portugal, Dec. 2004.

[5] M. K. Gardner. Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems. PhD thesis, University of Illinois, Urbana-Champaign, 1999.

[6] M. K. Gardner and J. W. S. Liu. Analyzing Stochastic Fixed-Priority Real-Time
Systems. In Proc. of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Mar. 1999.

[7] K. Kim, J. L. Dı́az, L. Lo Bello, J. M. López, C.-G. Lee, and S. L. Min. An exact
stochastic analysis of priority-driven periodic real-time systems and its approxima-
tions. IEEE Trans. on Computers, 54(11):1460–1466, 2005.

[8] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-S. Liu. Probabilis-
tic Performance Guarantee for Real-Time Tasks with Varying Computation Times.
In Proc. of the Real-Time Technology and Applications Symposium, pages 164–173,
Chicago, Illinois, May 1995.

15

	Introduction
	System model and overview of the analysis
	System model
	Analysis

	Example for EDF
	Generalization of the backlog computation method
	Optimization of the backlog computation method
	Implementation
	Python code
	Execution

