Probabilistic Analysis of the Response Time in a Real-Time System

Jo<t Luis Diaz, Jo€ Maria Lopez, Daniel Fernando Garta
Universidad de Oviedo
Departamento de Infornatica
Campus de Viesques, 33204, @ij, Spain

{jdiaz, chechu, daniel}@atc.uniovi. es

Abstract

Classical analysis of real-time systems focuses on guaranteeing the schedulability of the system when all jobs use
their worst computation time. In this report, the computation time of each job is modeled as an stochastic variable
of known probability density function. Thus, we consider not only the worst-case computation time, but all the
possible computation times and their probabilities. We present an algorithm to calculate the statistical distribution of
the response time for each job. This result allows us to assess the feasibility of the system from a statistical point of
view. We also show that the statistical analysis can be do@fin’n?), wherem is the number of jobs andis the
maximum number of points defining the statistical distribution of their computation times. Finally, we discuss briefly
how the model can be applied to periodic task sets.

INTRODUCTION

Traditional scheduling algorithms and analysis methods have focused on strict “hard” deadlines, by which a system is
deemed schedulable only if every instance of every task in the system is guaranteed to meet its deadline. To achieve
such a guarantee, the engineer must provide the activation period and “worst-case computation time” for each task in
the system. Once this information is provided, two classic analysis methods are available [1, chap. 3]. The first is
the processor utilization analysiR, 3], which guarantees the schedulability whenever the total utilization is below

a bound which depends on the number of tasks and the scheduling policy. The second methoelsisotiee time
analysis[4, 5, 6, 7], which uses a different approach: the exact value of the worst-case response time is obtained for
each task, which allows the analyst to assess the system feasibility by means of comparing this worst-case response time
against the task deadline.

Both approaches are very restrictive, as the worst computation time assumed for each task may be too pessimistic, and the
situation under which each task would suffer the maximum interference from other tasks may be very unlikely, especially

if we allow for variable computation times in the tasks. Both these factors lead to very high calculated response times,
which could occur in theory, but with littlgorobability in practice. There are many soft real-time applications whose

tasks have highly variable computation requirements and deadlines are not hard. For these applications, the probability
of missing a deadline could serve as a measurement of its Quality of Service (QoS). Moreover, knowledge of these
probabilities can still be useful for the design of hard real-time systems, as long as the application allows for a given
failure rate (for example, the probability of missing a deadline could be as small as the probability of hardware failure).

Variance of computation times from their worst-case may cause an excess of capacity which can be used by soft real-
time tasks. Many algorithms have been developed to schedule them together with hard real-time periodic tasks, as for
example the deferred and sporadic server algorithms [8, 9] or the more recent slack-stealing algorithms [10, 11]. These
algorithms focus on enhancing the responsiveness of the soft real-time tasks without jeopardizing deadlines of the hard
real-time ones. However, the statistical characterization of the system’s behavior is poor, as no statistical distribution
is obtained for the response times of the tasks (except for the average response time of soft real-time tasks, usually by
means of simulation).

A different approach to relax the assumption of fixed resource requirements is the one proposed by Atlas and Besta-
vros [12]. In their paper, a modification of the scheduler is introduced. This new scheduler allows a task to be executed
in a variable amount of time, within a pre-fixed limit callalowance Atlas and Bestavros determine the necessary
allowances for guaranteeing that no more than a given percentage of deadlines is missed. Due to the need for a suitable
scheduler, this analysis is not valid for the classic priority based scheduler, which is the one implemented in most real-
time operating systems.

Mok and Chen [13] introduce the multiframe model, in which the computation time of a task may vary greatly from one
instance to another, but this variation follows a known pattern. This behavior is modeled by specifying the computation
time of a task not as a single (worst-case) number, but as a finite list of numbers from which computation times of
successive instances will be generated. They investigated this model under the fixed priority preemptive scheduler,
deriving new utilization bounds which improved those of Liu and Layland [2]. Whenever the system under analysis has
an total utilization lower than Mok and Chen’s bound, all deadlines will be met. However, when the utilization bound is
exceeded, there is no clue about the probability of deadline misses for each task.

Tia et al[14], address this problem by modeling the computation time of the tasks as a random variable, and extending
the time-demand analysis method, substituting the sums of fixed computations by convolutions. They restrict the analysis
to the first activation of the task, and assume that deadlines cannot be greater than periods. This assumption is lifted
by Gardner in his PhD. thesis [15], which extends the technique oéfTéiby computing the probability of deadline

misses for each task instance released in the first busy-period, and picking the minimum of these probabilities. This
way, a lower bound on the probability of deadline misses is found. However, this approach fails when the busy-period
can have an infinite length, and indeed this will be the case when the worst-case total utilization is greater than one.
Moreover, by restricting the analysis to the first busy period, the obtained probability of deadline misses is optimistic,
since in the next hyperperiod the probability of having pending workload is not null, and then the response times would
be greater.

As an initial step towards a more complete analysis, we formalize and extend the ideas of [14], providing mathematical
proofs and detailed algorithms for finding the probability distribution functions of the response times. We present a
model in which the system is not seen as a set of periodic tasks, but as a set of jobs released in a given sequence. This
broader model will provides us a framewaork for reasoning about the stochastic behaviour of the system.

The paper is organized as follows. Section 2 introduces our model, defines some terminology, and shows a simple
example. Section 3 is the core, in which the methodology of analysis is displayed, the main theorems and propositions
are proved, the complexity of the algorithm is investigated and some experimental results are shown. Section 4 explores
some ideas for applying our methods to the classical system model in which jobs are instances of periodic tasks. Section 5
presents the conclusions and future work.

SYSTEM MODEL

The system is modeled as a set of jdbs}, each job being a three-tup(&;, R, C;) whereA; is the release instant of the
job, B is the priority under which the job runs, afis the required computation time, which is a random variaith
a known probability density function (PDF), denotedtyy, wheref, (c) = P{Ci=c}.

Note that our model does not use the classical concept of periodic tasks; each job is released only once. However, the
periodic task model can be considered as a particular case, as will be shown in section 4.

Without loss of generality, we assume that release times are integers, and that job sub-indexes are ordered in increasing
release times (that & < A;j for i < j). The computation timeg;, is a discrete random variable and its maximum value

is bounded. This way, its PDF can be represented as a finite vector of ydues), fo (1),..., fe, (C"®)} whereC"®

is the worst-case computation time required byljebNo other assumption is made about the PDR;of

For example, consider the system shown in Table 1, made up of four jobs, with release times 0, 6, 9 and 17. The
computation time of each job is a random discrete variable, uniformly distributed between two given values. The table
shows, for instance, that the computation time of the firstljgbis U[5, 7]; this means that it can take value of 5, 6 or 7

with an equal probability ot/3.

IThroughout this paper we use a calligraphic typeface for denoting random variable, like etc.

Table 1: A simple example system

Job A R fe

10 Discrete U[5,7]
15 Discrete U[8,9]
rs 9 5 Discrete U[3,5]
M, 17 10 Discrete U[5,7]

—
N R
o O

4 Priority

151411 P P
10 [[4
SRS 5] i1
0 5 10 15 20 25 time

(a) Best case scenario

4 Priority
s T T L
10 [[4
5L T3
0 5 10 15 20 25 time

(b) Worst case scenario

Fig. 1: Scheduling of the example in two possible scenarios

The scheduler assumed is a priority-based preemptive scheduler, i.e. it guarantees that the job which gains access to the
processor (theunningjob), is the one with the highest priority among the ready jobs. We are not concerned with the
policy used to assign priorities to jobs.

We will denote byR; the response time of jdiy, and by¢; the instant when this job finishes its executionRse= &; — A;.

Note that®; is a random variable. For example, in Fig. 1 the Gantt diagram of two possible execution scenarios are
shown. In this figure, the shaded rectangles represent ready jobs unable to run because some other ready job(s) of greater
priority exists, and white rectangles represent running jobs. In the first diagram, all the jobs require their minimum
computation time; in this best-case scenario thdjgbnishes a3 = 17, with a response time &t = 8. In the second

diagram, all the jobs require their maximum computation time, which ca&lises28 and thusR; = 19.

Our goal is to compute the probability of occurrence of each possible response time over all the possible execution
scenarios, for each job in the system, i.e.:

fo (r)=P{Ri-r} i=12... 1)

Ri

CALCULATION OF THE STATISTICAL DISTRIBUTION OF THE RESPONSE TIME

In this section we will derive a set of propositions and theorems allowing us to determine the probability density function
(PDF) of the response time for any of the jobs in the system. To calculate the response time of a job, we have to take into
account not only the computation time required by the job and the interference that future jobs could cause on it due to
preemption, but also the pending workload not yet serviced at the instant the job is released. So, we first investigate how
to determine the PDF of the pending workload at any instant.

Calculation of the pending workload PDF

We will define the pending workload in relation to a certain priority level, because we are interested in its influence on
the response time of a job, and there is no influence from jobs of lower priority.

Definition 1. The pending workload of priority levél at timet, noted asWe; is the sum of all computation times not
yet serviced for all jobs of priority greater than or equalRat timet.

As an example, Fig. 2 shows the evolution in time of the pending workload of priority level 5, for the best and the worst
execution scenarios of the example presented in Table 1. In this figure, each vertical arrow represents the release of a
job, and the length of the arrow (labeled to its right) is the computation time required by this job.

The reader can see from this example that the pending workload of pifotity, at the instand,, can take two possible
values: 0 units (best case) or 1 unit (worst case). In geriérgl,is a random variable, which can take any value at a

)
2,=0 Ay=6 A4=9 A=17 1
(a) Best case scenario
AWS,'[
‘)
9
7
2,=0 Ay=6 A4=9 A=17 1

(b) Worst case scenario

Fig. 2: Pending workload of priority 5, in two different scenarios
given time. We are now interested in determining the probability of occurrence for each value.

It is easy to determine the PDF of the pending workload at any ingtdnte know the PDF of the pending workload at
another previous instahtand we know that no new jobs were released in the interim. See for example Fig. 3(a), which
represents a hypothetic PDF for the pending workload of pritit a given instartt Let us consider another instant,
t’, 6 units of time aftet, and suppose that no new jobs of priority greater than or equédte released betweeandt’.
If the pending workload dtis 6 or less, the pending workloadtatvill be zero. The probability for this, in the example
of Fig. 3, is:

P{Wpy -0} = P{Wpy<6} = 1/27+3/27+1/27=5/27 2)

If the pending workload atis greater than 6, the pending workload’awill be 6 units less, as this is the time elapsed.
Thus, we can build the PDF of the new pending workload by “shifting” the PD®Wgef 6 units to the left, and “accu-
mulating” in the origin the values witlv < 0 after the “shift”. The result of this manipulation is shown in Fig. 3(b). This
idea is formalized in the following proposition.

Proposition 1. If no job with priority greater tharP, is released in the intervat,t’], then

fro. (1) forw=0
Py (W) = i; Wt / (3)
fWP,t(W+t —1) forw >0

Proof. Since no workload is added to the system betwesmdt’, the workload irt’ will be equal to the one ity minus
the elapsed timé&’ —t). However, the pending workload cannot be negative, so if the workldzaid &ss than or equal
tot’ —t, the workload at’ will be zero. From these considerations, the proof of the proposition is immediate. [

Let us now address the case in which the workload is increased by the release of a new job, atinStanfollowing
proposition relates the PDF of the workload just after the inskamtith the PDF just befordy.

P{Wei=w} -

3 427
3027 | 327

2027 2127

1127 1127

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 W
—t —t——

(a) For the instartt

P{WRt’ :W}
5/27

5127
4/27

20127 227
127

1 2 3 456 7 8 9 101112 13 14 15 16 17 W
(b) For the instant’ =t +6

Fig. 3: Example of the PDF of the pending workload in two different instdradt’, separated by 6 units of time

Proposition 2. Let Wp, denote the pending workload of priorifat instant(Ax —), whene — 0, and letWp)+
denote the workload of prioriti? at instant(Ax + €) whene — 0. If a single jobly, with priority B > Pis released at
instantAy, then:

o (W) = (fwmkf @ fe,) (W) (4)

where® is the discrete convolution operator (see appendix).

Proof. The pending workload at instaig suffers a discontinuity, since it is increased by the job releasd, &ty an
amount equal to its computation tinGg. The pending workload and the computation time are both random variables,
so, by elementary statistical theory, the PDF of their sum is obtained by convolution of their respective PDFs, as stated

in (4). O

These propositions give us an algorithm for calculating the PDF of the pending workload for a given priorify d¢vel
any instant\,, as follows:

1. Start at instartt= Ag. At this instant the PDF of the pending workload is assumed to be known (in fact, the initial
pending workload is usually zero).
2. Repeat until reaching the desired instant

(a) Advance to the instait in which the next job with priority greater than or equaktis released. Calculate
the PDF of the pending workload at this instant using Proposition 1. The result is the pending workload
just before the release of the joR.

(b) Calculate the PDF of the pending workload just after the release of the new job, using Proposition 2.

Calculation of the response time PDF

In this section we will derive the method for obtaining the PDF of the responseRjmef an arbitrary jol™; released
at instanty; (that is, the probability ok, being equal to any given value).

Preliminary example

In order to clarify the problem and the method for solving it, we develop a simple example. Once the ideas are presented
through this example, the method will be formalized in a theorem.

Consider the system shown in Table 2. We want to obtain the PDF of the response time fortheybich is released
at/\]_ =0.

For this example we will assume that no pending workload is present in the system wieneleased. So, if the
computation time of joli'; is less than or equal to\, — A;), its response time will be equal to this computation time,
becausé ; will be finished before any other job in the system can preempt it. However, if the computation requirement
is greater tharfA, — A1), then jobl", will preemptl;, increasing its response time by an amount equé&,toOn the

other hand, if¢; > (A2 — A1) and(Cy + C2) > (A3 — A1), then jobl 3 will interfere, and thuR; = (€1 + €2 + C3).

The proposed approach for obtaining the PDRRefwill require several steps. In step zero, we obtain the PDR;of
without considering any future preemption. In step one, we modify this PDF considering the first preemption that
could suffer. In step two, we modify it again considering the next possible preemption, and so @31.1 ldetnote the
PDF obtained this way in stejp

Step zero: In our exampIeG‘r’1 will be equal toC;, because we assumed there was no pending workload whén job
was released. In a more general ca§¢,will be the convolution of2; with the pending workload of priorit at instant
Ai. The plot ofGP1 is shown at the top of Fig. 4(a). This function, gives part of the PDRgbecause:

P{Rr,-r} =GP () forr<Aa—M 5)
Fig. 4(a) shows that the functic(B?1 splits into two functions, which we will caﬂ;l‘r’1 (I for low) andgh?l (h for high).
The splitting point is 3, which i$A; — A;). Functiongh?1 can be saved as part of the desirf%jl.

Step one:Let us consider the calculation B R,=r}, withr > (A, — A1) = 3, for example for = 5. Since this event
can only happen whe@; > (A, — A1), we have to calculate the probability of an intersection of events:

P{Rr,-5} =P{(C1 > 3)~(C1+C2=5)} (6)
This probability can be obtained by adding the probabilities of all possible cases in the intersection:
5
P{Rr,-5} = S P{C1-i}-P{C2-5-i} (7)
i=4

This summation is indeed the convolution, foe 5, of the PDF ofC; with the functiongl‘nfi1 shown in Fig. 4(a). This
argument is true for any > (A, — A;). On the other hand, far < (A, — A;) the probabilities were the ones “saved” in
functiongl‘r)l from the previous step. We can then write:

Gt (1) = gl (1) + (gh2, @ fe,) (1) (8)
Fig. 4(b) illustrates this operation.

Step two: The ideas presented above are also applicable to this step. The ftﬁép«nh)tained in the previous step,
splits into functiongyl?, andght,, the splitting point being equal to 6 (which Ag — A1), as shown in Fig. 5(a). The
function gl%l gives us the first points 0@%1, and the functiorgh,l1 is convolved with the PDF 0€3 to obtain the
remaining points oG?l. This process is presented graphically in Fig. 5(b).

Table 2: Second example system

Job A R fe

' 0 5 Discrete U[2,5]
', 3 10 Discrete U[1,2]
'3 6 15 Discrete U[1,3]

GY, /I\sz\l =21

14 14 14 14

V4 14 V4 14

0123456787 101234586781l
(a) “Splitting” the functionG?, atr =3

aip, g, @ fe,

1/4 1/4 1/4
8 /8

01 23 45¢6 78100123 45¢67829.°7"
1

14 14 14
18 1/8

012345¢672829°T"
(b) Construction of the functioﬁ;ll1

Fig. 4: Calculations for step one

Since no more jobs are released in this system, the funGﬁgrmbtained in the last step, is the PDFR{. If more jobs
were released, the calculation would continue with new steps, analogous to the ones already seen.

In the following section we formalize these ideas.
Iterative method for calculating the PDF of the response time

Suppose that we want to determine the PDF of the response time of an arbitrdiry jbht is, the functiorf., - In
order to simplify the notation, we will denote &%,5, ..., all jobs of priority greater thaR which are released after
the instantd;. Computation times of these jobs will be denoted®asCs, ..., and their release instants &5 A,
For completeness, we will also denote the [glasT, its computation time aSy, and its release instant a§. In the
interest of simplicity, we also change the time origin to the insdanthis situation is shown in Fig. 6.

We defineGP, as:
GP, (1) = (fy95 © e, (1) 9)

This function can be understood as the PDRRpff no new jobs are released after instant= Aj. As a generalization
of this concept, we define the functi@}i as the PDF of; if no new jobs are released after instant

Given the functior\S}i , we obtain from it two new functions by “splittingﬁ}i at point(A{,; —Ag). These new functions
are defined as follows (note th@t],; —Ag) = A{,, due to the time origin shift):

Glll)\3 —)\.1 =)\é

JJ4 V4

>

6123456789
1

glrl
14 1/4 14
8 18
012345678 0T 0123450678907
(a) “splitting” the functionG, atr =6
1
gl gr%]_@f@g,
111
24 24 24
LR _,
123456 7001234567 8 1011
2
Gr,
14 14 14
v8 111
24 24 24
0123405678 9101112°7
(b) Construction of the functioﬁ:rz-1
Fig. 5: Calculations for step two
(o /
/ (G
o I GIZ Ij
I/ .l .I ./ >t
)\i:)\ozo /\1 Az)\I

gll (r) £ {GJ“ oo (10)
' 0 forr>Afyq
. 0 forr <Al
i A j+1

ghy. (r) = {Gl (r) forr>Aj4q (11)

The following theorem gives a method for calculating the response time PDF of any given job.

Theorem 1. The PDF of the response time of jbbis given by function:

fi (1) = Ggi(r), forr <Al g (12)

beingG] (r) calculated as

Glj_i(r) = gllli_l(r) + (ghlj_i_1® fe)(r) (13)

and beingGPi calculated as in (9).

Proof. Equation 12 is simply derived from the deflmtlon@g since we defined this function as the PDF of the response

time R, if no new jobs were released after instant The probablllty ofR; taking a valug belowA|, , is given directly
by function G',, because for these cases the [Ql:ilnlshes before the instadt, ;, and then none of the jobs arriving

after/\ can mfluence it.

We will prove the recurrence relation in (13), dividing the proof in two cases, depending on the value of

Case 1r <)\j’

For these values, functicg‘rﬂi*l(r) is zero by definition, so the convolution is zero, and (13) is reduced to:

G}i (r)= glgi_l(r) r<Aj (14)

Moreover, forr < A{ according to (10) this can be rewritten as:

Ggi (r) = G}i—l(r) r <Al (15)

According to the meaning given to functi@i, the above equation implies that the probabilitie®pfaking any value

r below A| are the same, whether the job released;as taken into account or not. This is true, because the job
cannot preemgt;, whenever < Aj (as this condition implies thdt has finished before the releaser¢y.

Case 21 >)\j’

Let R~ be the response time &f without considering the influence of jabj, andR* be the response time after
considering its influence. The probability &" = r, whenr > A{ is the probability of an intersection, because two
conditions must be met for such an event to occur:

1. The jobli must still be active at instant]. This means that the response tigen without consideringhe
interference of jolij, is greater thai |, that is:R™ > Aj.

2. The sum of the response timéthout considerindghe interference of job’, plus the computation requirements
of this job, must be equal tq that is: R~ + €] =r.

To obtain the probability of this intersection, we have to consider, from all possible cases, only those which fulfil both
conditions. The sum of probabilities of these cases is the desired result. Thus; fqr

P{RT=r} = % P{R™ -k} -P{€j-r —k} (16)
k=AT+1

By definition,P{R~ =k} = Girifl(k), so the above sum can be rewritten as:

Fl v el
PRty = Y el o
k=AT+1

(r—Kk) (17)

The functionG}ifl(k) can be substituted bgh}ifl(k), since both functions are equal in the rangg+ 1,), which is
the range fok in the summation. Moreover, if we make this change, we can extend the lower limit of the summation to
—oo, because the functiogm}i*l(k) is zero for allk < A{. This leads to:

00

PR -1} = § gh}i—l(k)-fe,ja—k):(gh}ﬁ@fe,j)(r) forr > A/ (18)

Adding glgi‘l(r) to the second member of this equation does not alter it, bemliléér) is zero for allr > A{. This way
we obtain the same expression as in (13). On the other hand, by defiﬁiﬁicﬁn) is the probability of the response time
R taking the value, when the interference of jdD is taken into account, that iB{R* =r}. Thus:

Ggi (N =P{R -r} = glgi—l(r) + (gh}i—1 @fe)(r) forr> M (19)
O

This theorem provides an iterative method for findihgR;=r } for any givenr. Starting fromG?i, the functionG,li is
calculated, and the@%i, and so on, until reaching jasuch that{ , >r. The functionG}i obtained this way, gives the
wanted probabilities for any < A{_ ;

It is worth noting some facts of practical interest:

e Under some circumstances, it is not necessary to itgréitees to obtaerl If at some iterationk, we find
thatgHS is zero in all its points, then all successive iterations will give the same funG}ionln this case, the
complete PDF of; has been found, since:

fr (r)= G'Fi (r) forallr (20)

e Given a deadlin€; for the jobl;, the probability of the response time exceeding this deadline can also be obtained
from functionGJ with dj < A, 4, using the formula:

d
P{Ri>di} =1-P{Ri<di} =1- Y Gl (r) fordi <Ajy (21)
r=o '

This observation is of practical interest, since it means that, to obtain the probability of deadline misses, is not
necessary to know the complete PDFRf It is enough to know its firsti points, which can be obtained aftgr
(or less) iterations of Theorem i being the smallest integer such tidat< A, ;.

Computational complexity

At first glance it might seem that the calculation of the response time PDF should take all the possible interactions
between all jobs into account, thus leading to a combinatorial explosion. However this is not the case; the algorithm has
polynomial complexity, as will be shown in this subsection. The reason for this is that at any instant, the whole past of

the system is summarized in the PDF of the pending workload for each priority level.

Letmbe the number of jobs in the system, arige the maximum number of points defining the PDF of their computation
times. Let us consider the number of operations required to calculate the PDF of the response timé& gfesgalming

that all other jobs in the system have a priority greater fhaand that their computation times are such that all of them
can interfere with (preempt) the jd. This is the case which requires the maximum number of calculations, since it is
necessary to perform convolutions.

Each convolution required by the algorithm is performed between two functions: one is the PDF resulting from the
previous iteration, the other is always the computation time PDF of a job, which pamts. This means that each

new convolution performed will increase the size of the resutt jioints. In general, the result of thieth convolution
will have a size ofjn points, causing the next convolution to requdgjn?) operations (see appendix). To do all the
convolutions, the number of operations required is:

g jn? = O(nPn?) (22)
j=1

Since these operations have to be performed for each job in the system, and therghbse the total number of
operations for obtaining the response time PDF for all jobs wilOgen?). Note that this is a pessimistic bound, as
in practice the number of convolutions to perform for each job will be less thaiMoreover, the complexity of the
convolution calculation can be reduced using the Fast Fourier Transform.

Experimental results

We have implemented a preliminary, non-optimized version of our algorithm in a simple tool. We have fed the tool
with several synthetic, randomly generated, system models. Each synthetic system was compopgdi ofvhose

PDF were defined by points at maximumm andn being the parameters for the experiment. The release instants of
these jobs were selected randomly, but ensuring that the system had a high load. On average, the sum of the maximum
computation time required by all the jobs was around 120% of the release instant of the last job.

The time required by the tool to solve these systems on a personal computer is shown in Fig. 7. For each point in the
graph several simulations were performed, and the average time was plotted. The linearity of the logarithmic plot is to
be noted, as this corroborates the polynomial complexity of the algorithm, with the exception of systems with a small
number of jobs, in which the aspects of initialization and input/output of the tool prevail over the computational aspects.

APPLICATION TO THE PERIODIC TASKS MODEL

In the classic analysis, the system is modelled as a finite set of$askg; }. A task is a process in the system, which
periodically executes at a given priority, does its job, and finishes until the next activation. Eachdasibe modelled
with three parameters: its peridg its priority B, and its computation timé;, which traditionally was a fixed amount,
but will be replaced in this paper by a random variable of known PDF.

Our model can be considered a particular case of the periodic task model if we consider each instance of a task as a
new job. This way, the original syste8) composed of a finite number of tasBs= {7;} can be transformed in another
systemS composed of an infinite number of jo8s= {I";}. Each tasks in Sgives rise to an infinite number of jobs

[, My, ... all with the same priority? and the same computation time POE,. The arrival instants of these jobs will
be)\il,/\iz, ... with ()\ij 7/\i'—1) = T,. Once systen® has been transformed in®), it can be analysed by the methods
presented in previous sections. However, since the sequence of jobs generated this way is infinite, we have to investigate
how to obtain valid and useful predictions by using only a finite subset of them.

The arrival instants of the jobs, and the PDF of their computation times follow a regular pattern, whose period is equal

10 —
: 4
s AT]
g 1t n=45 X~ A
c Pie K4
o P .
Q A
2 o1 ti =5
b +--F L
Q -
£ [. /4/4’ ’a/'()]
= N i
0'01§ ki + P
2N Sl
R RS
0.001 e e
10 100 100c¢

Numberof jobs(m)

Fig. 7: Time required to run the algorithm (experimental)

to the hyperperiod of the system. This is the least common multiple (LCM) of the task periods. This regularity in the
arrival of the jobs points towards a possible repetitive behaviour of the response times.

When the maximum total utilization of the system is less than one, the amount of workload generated by the jobs does
not exceed the hyperperiod lenght, even in the worst-case scenario. So an hyperperiod cannot affect to the following
hyperperiod, and the analysis can be restricted to a single hyperperiod.

However, if the maximum total utilization is greater than one, there exists a probability of having pending workload at the
end of each hyperperiod. This modifies the initial conditions for the next hyperperiod, and thus the PDF of the response
times of the jobs are different over time. We have found experimentally that, even when the maxmimum utilization
factor is greater than one, if the averege utilization factor is less than one, the PDF of the pending workload at the end of
each hyperperiod “converges” towards a stationary distribution. We have found a formal proof of this behaviour, and a
method for obtaining the “steady state” PDF. These results are not included in this paper, for the sake of brevity.

Example with total utilization less than 1

We present a simple example with two periodic tasks. This example is based on the one presented by Lehoczky in [4]
to illustrate the busy-period concept. The original example had two tasks, of periods 70 and 100, and fixed computation
times of 26 and 62, respectively. The rate-monotonic policy assigns a higher priority to the first task. These settings
give rise to a worst-case response time of 118 for the second task, as was calculated in [4]. Because the deadline of the
task was greater than its period, its worst response time did not necessarily have to occur in its first activation. Indeed, it
occurred in the fifth one.

We use the same set of tasks, with the same periods, but we now assume that the computation times are not deterministic,
but random. The computation time for the first task can take two values, 25 or 26 with equal probability, and the
computation time for the second task can be 61 or 62, also with equal probability. This information is summarized in
Table 3.

The maximum utilization factdd ™ is 0.991429. Sincd " < 1, the analysis can be restricted to the first hyperperiod,
which is of 700 time units. The analysis foris trivial, since it cannot suffer interference from other tasks.

Task 1, will execute 7 times within the hyperperiod, and in general, the PDF of the response time will be different in
each of these activations. For finding these PDFs, it is necessary to “develop” the task model into a job model. This
leads to a system with 17 jobs (10 instances,gflus 7 instances af,), whose release times will all be the multiples of

70 or 100. This gives the situation depicted in Fig. 8.

Note that the sub-indexes of the jobs are ordered in timej, &ej implies thatA; < Aj, as required by our model. Also
note that jobs 0 and 1 arrive at same instanfAgis equal toA;. The computation time of jobs 0, 2, 4,6, 7,9, 11, 12, 14
and 16 is that of task;, while the computation time of jobs 1, 3, 5, 8, 10, 13 and 15 is that oftask

Applying the techniques exposed in this paper, we calculate the PDF of the response time for jobs 1, 3, 5, 8, 10, 13
and 15, which are the activations of task within the hyperperiod. The results are shown in Table 4 (dashes denote a

Table 3: A simple periodic system

Task T, PR fe,
i 70 2 U[25.26]

T, 100 1 U[61,62]

Fig. 8: Release instants for the jobs generated by the tasks in the example

Table 4: Probability ofR = r for taskt, of the example

Activation
r 1 2 3 4 5 6 7 Average
86 — — — — 0.186035 — — 0.031006
87 — — — — 0.418457 — 0.031151 0.074935
88 — — — — 0.293701 — 0.155846 0.074925
89 — — — — 0.078613 — 0.311974 0.065098
90 — — — — 0.020019 — 0.312462 0.055414
91 — — — — — — 0.156746 0.026124
92 — — — — — — 0.031685 0.005281
93 — — — — — — 0.000130 0.000022
94 — — — — — — 0.000008 0.000001
95 — — — — — — — —
96 — — — — — — — —
97 — 0.031250 — 0.025391 — — — 0.009440
98 — 0.156250 — 0.131836 — — — 0.048014
99 — 0312500 — 0.279297 — — — 0.098633
100 — 0312500 — 0.307617 — — — 0.103353
101 — 0.156250 — 0.185547 — 0.124603 — 0.077733
102 — 0.031250 — 0.059570 — 0.374176 — 0.077499
103 — — — 0.009766 — 0.374939 — 0.064117
104 — — — 0.000977 — 0.125793 — 0.021128
105 — — — — — 0.000458 — 0.000076
106 — — — — — 0.000031 — 0.000005
107 — — — — — — — —
108 — — — — — — — —
109 — — — — — — — —
110 — — — — — — — —
111 0.125000 — 0.101562 — — — — 0.037760
112 0.375000 — 0.324219 — — — — 0.116537
113 0.375000 — 0.367188 — — — — 0.123698
114 0.125000 — 0.171875 — — — — 0.049479
115 — — 0.031250 — — — — 0.005208
116 — — 0.003906 — 0.001465 — — 0.000895
117 — — — — 0.001587 — — 0.000264
118 — — — — 0.000122 — — 0.000020
P{R=r}
0.1
0.05
85 90 95 100 105 110 115 r

Fig. 9: Probability distribution of the response time for taskamong all its possible executions

probability of zero). It is worth noting that the worst case response time (of 118 units) coincides with that calculated
with the classic analysis, occurring in the fifth activation of the task, but our method provides additional information,
showing us that the probability of occurrence of this worst case time is very small.

The table also shows the average probability of each response time, among all the activations of task 2. This information
is shown graphically in Fig. 9. From this PDF, we can compute the probability of the response time being greater than
any given value, by simple addition. For example, if the deadline of the second task were 115, the probability of missing
it would be 0.001179, so we could still consider the system schedulable if we were willing to admit 0.1179% of deadline
misses.

CONCLUSION AND FUTURE WORK

In this paper we have introduced stochastic response-time analysis, a model and a conceptual framework which allows
statistical analysis of job response times. The model reqain@sori knowledge of the probability density function

(PDF) of the computation time required by each job. We have derived formulae for calculating the pending load PDF
at any instant, and the response time PDF of any job. The statistical information given by our method can be combined
with deadlines, thus obtaining the probability of deadline misses for any job in the system, which can be used as a
measurement of Quality of Service. If this probability is zero for a task, then its deadline is guaranteed. In this sense our
analysis subsumes the classic response-time analysis.

The analysis can be applied to the classic periodic task model, provided that the maximum total utilization is less than
one. In this case, it is sufficient to perform the analysis to the jobs released within a single hyperperiod.

However, the model does not allow for uncertainty in the release instants of the jobs, and assumes all tasks to be
independent. Our future work will focus on extending the analysis by taking into account the léteasend the
possibility of blocking jobs in the access of shared resources.

APPENDIX. DISCRETE CONVOLUTION CALCULATION

The convolution of two discrete functiorfsandg is defined as

00

(fog)= > f)gx-i (23)

i:—OO

Note that, in all the cases presented in this paper, functions are zero for negative values of their arguments, so the lower
limit of the summation can be changed te 0.

If functions f andg are defined by vectors of sine andng, the number of operations required to perform the convolution
is O(n;ng), and the resulting function will be a vector of sigg +nyg— 1).

REFERENCES

[1] G. C. ButtazzoHard Real-Time Computing Systems. Predictable Scheduling Algorithms and Appliclioner
Academic Publishers, 1997.

[2] C.L.LiuandJ. Layland. “Scheduling algorithms for multiprogramming in a hard real-time environndeACM
vol. 20(1), pp. 4671, 1973.

[3] J. P. Lehoczky, L. Sha, and Y. Ding. “The rate monotonic scheduling algorithm: Exact characterization and average
case behavior.” IfProceedings of the IEEE Real-Time Systems Sympppjurt66—171. Dec 1989.

[4] J. P. Lehoczky. “Fixed priority scheduling of periodic task sets with arbitrary deadlineBfoceedings 11th IEEE
Real-Time Systems Symposipm. 201-209. Dec 1990.

[5] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. “Hard real-time scheduling: The deadline mono-
tonic approach.” IrProceedings 8th IEEE Workshop on Real-Time Operating Systems and Sofflagr&991.

[6] K. Tindell and J. Clark. “Holistic schedulability analysis for distributed real-time systeMgtoprocessing and
Microprogrammingvol. 50(2-3), pp. 117-134, Apr 1994.

[7] A. Burns. “Preemptive priority based scheduling: An appropiate engineering approach.” In S. H. Sdxd-ed.,
vances in Real-Time SysterRsentice Hall, 1994.

[8] B. Sprunt, L. Sha, and J. P. Lehoczky. “Aperiodic task scheduling for hard real-time sysfiemsial of Real-Time
Systemsvol. 1(1), pp. 27-60, 1989.

[9] J. P. Lehoczky, L. Sha, and J. Strosnider. “Enhanced aperiodic responsiveness in hard real-time environments.” In
Proceedings of the 8th Real-Time Systems Sympppur261-270. Dec 1987.

[10] J. P. Lehoczky and S. Ramos-Thuel. “An optimal algorithm for scheduling soft-aperiodic tasks in fixed-priority
preemptive systems.” IRroceedings of the Real-Time Systems Symposgipni10-123. Dec 1992.

[11] R.I. Davis, K. Tindell, and A. Burns. “Scheduling slack time in fixed priority preemptive systemPidceedings
of the Real-Time Systems Symposipm 222—-231. IEEE Computer Society Press, Dec 1993.

[12] A. K. Atlas and A. Bestavros. “Statistical rate monotonic schedulingPrvceedings of the 19th IEEE Real-Time
Systems SymposiuMadrid, Spain, Dec 1998.

[13] A. K. Mok and D. Chen. “A multiframe model for real-time task$EEE Trans. Softw. Engvol. 23(10), pp. 635—
645, Oct 1997.

[14] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-S. Liu. “Probabilistic performance guarantee
for real-time tasks with varying computation times."Rmceedings of the Real-Time Technology and Applications
Symposiuppp. 164-173. Chicago, lllinois, May 1995.

[15] M. K. Gardner.Probabilistic analysis and scheduling of critical soft real-time systetsD. thesis, University of
lllinois, Urbana-Champaign, 1999.

