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Abstract

Classical analysis of real-time systems focuses on guaranteeing the schedulability of the system when all jobs use
their worst computation time. In this report, the computation time of each job is modeled as an stochastic variable
of known probability density function. Thus, we consider not only the worst-case computation time, but all the
possible computation times and their probabilities. We present an algorithm to calculate the statistical distribution of
the response time for each job. This result allows us to assess the feasibility of the system from a statistical point of
view. We also show that the statistical analysis can be done inO(m3n2), wherem is the number of jobs andn is the
maximum number of points defining the statistical distribution of their computation times. Finally, we discuss briefly
how the model can be applied to periodic task sets.

INTRODUCTION

Traditional scheduling algorithms and analysis methods have focused on strict “hard” deadlines, by which a system is
deemed schedulable only if every instance of every task in the system is guaranteed to meet its deadline. To achieve
such a guarantee, the engineer must provide the activation period and “worst-case computation time” for each task in
the system. Once this information is provided, two classic analysis methods are available [1, chap. 3]. The first is
the processor utilization analysis[2, 3], which guarantees the schedulability whenever the total utilization is below
a bound which depends on the number of tasks and the scheduling policy. The second method is theresponse time
analysis[4, 5, 6, 7], which uses a different approach: the exact value of the worst-case response time is obtained for
each task, which allows the analyst to assess the system feasibility by means of comparing this worst-case response time
against the task deadline.

Both approaches are very restrictive, as the worst computation time assumed for each task may be too pessimistic, and the
situation under which each task would suffer the maximum interference from other tasks may be very unlikely, especially
if we allow for variable computation times in the tasks. Both these factors lead to very high calculated response times,
which could occur in theory, but with littleprobability in practice. There are many soft real-time applications whose
tasks have highly variable computation requirements and deadlines are not hard. For these applications, the probability
of missing a deadline could serve as a measurement of its Quality of Service (QoS). Moreover, knowledge of these
probabilities can still be useful for the design of hard real-time systems, as long as the application allows for a given
failure rate (for example, the probability of missing a deadline could be as small as the probability of hardware failure).

Variance of computation times from their worst-case may cause an excess of capacity which can be used by soft real-
time tasks. Many algorithms have been developed to schedule them together with hard real-time periodic tasks, as for
example the deferred and sporadic server algorithms [8, 9] or the more recent slack-stealing algorithms [10, 11]. These
algorithms focus on enhancing the responsiveness of the soft real-time tasks without jeopardizing deadlines of the hard
real-time ones. However, the statistical characterization of the system’s behavior is poor, as no statistical distribution
is obtained for the response times of the tasks (except for the average response time of soft real-time tasks, usually by
means of simulation).

A different approach to relax the assumption of fixed resource requirements is the one proposed by Atlas and Besta-
vros [12]. In their paper, a modification of the scheduler is introduced. This new scheduler allows a task to be executed
in a variable amount of time, within a pre-fixed limit calledallowance. Atlas and Bestavros determine the necessary
allowances for guaranteeing that no more than a given percentage of deadlines is missed. Due to the need for a suitable
scheduler, this analysis is not valid for the classic priority based scheduler, which is the one implemented in most real-
time operating systems.



Mok and Chen [13] introduce the multiframe model, in which the computation time of a task may vary greatly from one
instance to another, but this variation follows a known pattern. This behavior is modeled by specifying the computation
time of a task not as a single (worst-case) number, but as a finite list of numbers from which computation times of
successive instances will be generated. They investigated this model under the fixed priority preemptive scheduler,
deriving new utilization bounds which improved those of Liu and Layland [2]. Whenever the system under analysis has
an total utilization lower than Mok and Chen’s bound, all deadlines will be met. However, when the utilization bound is
exceeded, there is no clue about the probability of deadline misses for each task.

Tia et al.[14], address this problem by modeling the computation time of the tasks as a random variable, and extending
the time-demand analysis method, substituting the sums of fixed computations by convolutions. They restrict the analysis
to the first activation of the task, and assume that deadlines cannot be greater than periods. This assumption is lifted
by Gardner in his PhD. thesis [15], which extends the technique of Tiaet al.by computing the probability of deadline
misses for each task instance released in the first busy-period, and picking the minimum of these probabilities. This
way, a lower bound on the probability of deadline misses is found. However, this approach fails when the busy-period
can have an infinite length, and indeed this will be the case when the worst-case total utilization is greater than one.
Moreover, by restricting the analysis to the first busy period, the obtained probability of deadline misses is optimistic,
since in the next hyperperiod the probability of having pending workload is not null, and then the response times would
be greater.

As an initial step towards a more complete analysis, we formalize and extend the ideas of [14], providing mathematical
proofs and detailed algorithms for finding the probability distribution functions of the response times. We present a
model in which the system is not seen as a set of periodic tasks, but as a set of jobs released in a given sequence. This
broader model will provides us a framework for reasoning about the stochastic behaviour of the system.

The paper is organized as follows. Section 2 introduces our model, defines some terminology, and shows a simple
example. Section 3 is the core, in which the methodology of analysis is displayed, the main theorems and propositions
are proved, the complexity of the algorithm is investigated and some experimental results are shown. Section 4 explores
some ideas for applying our methods to the classical system model in which jobs are instances of periodic tasks. Section 5
presents the conclusions and future work.

SYSTEM MODEL

The system is modeled as a set of jobs{Γi}, each job being a three-tuple(λi ,Pi ,Ci) whereλi is the release instant of the
job, Pi is the priority under which the job runs, andCi is the required computation time, which is a random variable1 with
a known probability density function (PDF), denoted byfCi

, where fCi
(c) = P{Ci =c}.

Note that our model does not use the classical concept of periodic tasks; each job is released only once. However, the
periodic task model can be considered as a particular case, as will be shown in section 4.

Without loss of generality, we assume that release times are integers, and that job sub-indexes are ordered in increasing
release times (that isλi ≤ λ j for i < j). The computation time,Ci , is a discrete random variable and its maximum value
is bounded. This way, its PDF can be represented as a finite vector of values{ fCi

(0), fCi
(1), . . . , fCi

(Cmax
i )} whereCmax

i
is the worst-case computation time required by jobΓi . No other assumption is made about the PDF ofCi .

For example, consider the system shown in Table 1, made up of four jobs, with release times 0, 6, 9 and 17. The
computation time of each job is a random discrete variable, uniformly distributed between two given values. The table
shows, for instance, that the computation time of the first job,Γ1, is U[5,7]; this means that it can take value of 5, 6 or 7
with an equal probability of1/3.

1Throughout this paper we use a calligraphic typeface for denoting random variables, likeCi ,Ri , etc.

Table 1: A simple example system

Job λi Pi fCi

Γ1 0 10 Discrete U[5,7]
Γ2 6 15 Discrete U[8,9]
Γ3 9 5 Discrete U[3,5]
Γ4 17 10 Discrete U[5,7]
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Fig. 1: Scheduling of the example in two possible scenarios

The scheduler assumed is a priority-based preemptive scheduler, i.e. it guarantees that the job which gains access to the
processor (therunning job), is the one with the highest priority among the ready jobs. We are not concerned with the
policy used to assign priorities to jobs.

We will denote byRi the response time of jobΓi , and byEi the instant when this job finishes its execution, soRi = Ei−λi .
Note thatRi is a random variable. For example, in Fig. 1 the Gantt diagram of two possible execution scenarios are
shown. In this figure, the shaded rectangles represent ready jobs unable to run because some other ready job(s) of greater
priority exists, and white rectangles represent running jobs. In the first diagram, all the jobs require their minimum
computation time; in this best-case scenario the jobΓ3 finishes atE3 = 17, with a response time ofR3 = 8. In the second
diagram, all the jobs require their maximum computation time, which causesE3 = 28and thusR3 = 19.

Our goal is to compute the probability of occurrence of each possible response time over all the possible execution
scenarios, for each job in the system, i.e.:

f
Ri

(r) = P{Ri =r} i = 1,2, . . . (1)

CALCULATION OF THE STATISTICAL DISTRIBUTION OF THE RESPONSE TIME

In this section we will derive a set of propositions and theorems allowing us to determine the probability density function
(PDF) of the response time for any of the jobs in the system. To calculate the response time of a job, we have to take into
account not only the computation time required by the job and the interference that future jobs could cause on it due to
preemption, but also the pending workload not yet serviced at the instant the job is released. So, we first investigate how
to determine the PDF of the pending workload at any instant.

Calculation of the pending workload PDF

We will define the pending workload in relation to a certain priority level, because we are interested in its influence on
the response time of a job, and there is no influence from jobs of lower priority.

Definition 1. The pending workload of priority levelP at timet, noted asWP,t is the sum of all computation times not
yet serviced for all jobs of priority greater than or equal toPat timet.

As an example, Fig. 2 shows the evolution in time of the pending workload of priority level 5, for the best and the worst
execution scenarios of the example presented in Table 1. In this figure, each vertical arrow represents the release of a
job, and the length of the arrow (labeled to its right) is the computation time required by this job.

The reader can see from this example that the pending workload of priorityP= 5, at the instantλ2, can take two possible
values: 0 units (best case) or 1 unit (worst case). In general,WP,t is a random variable, which can take any value at a
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Fig. 2: Pending workload of priority 5, in two different scenarios

given time. We are now interested in determining the probability of occurrence for each value.

It is easy to determine the PDF of the pending workload at any instantt ′ if we know the PDF of the pending workload at

another previous instantt, and we know that no new jobs were released in the interim. See for example Fig. 3(a), which

represents a hypothetic PDF for the pending workload of priorityP, at a given instantt. Let us consider another instant,

t ′, 6 units of time aftert, and suppose that no new jobs of priority greater than or equal toPare released betweent andt ′.
If the pending workload att is 6 or less, the pending workload att ′ will be zero. The probability for this, in the example

of Fig. 3, is:

P{WP,t ′ =0}= P{WP,t ≤6}= 1/27+3/27+1/27= 5/27 (2)

If the pending workload att is greater than 6, the pending workload att ′ will be 6 units less, as this is the time elapsed.
Thus, we can build the PDF of the new pending workload by “shifting” the PDF ofWP,t 6 units to the left, and “accu-
mulating” in the origin the values withw≤ 0 after the “shift”. The result of this manipulation is shown in Fig. 3(b). This
idea is formalized in the following proposition.

Proposition 1. If no job with priority greater thanP, is released in the interval[t, t ′], then

f
WP,t′ (w) =





t ′−t

∑
i=0

f
WP,t

(i) for w = 0

f
WP,t

(w+ t′− t) for w > 0

(3)

Proof. Since no workload is added to the system betweent andt ′, the workload int ′ will be equal to the one int, minus
the elapsed time(t ′− t). However, the pending workload cannot be negative, so if the workload att is less than or equal
to t ′− t, the workload att ′ will be zero. From these considerations, the proof of the proposition is immediate.

Let us now address the case in which the workload is increased by the release of a new job, at instantλk. The following
proposition relates the PDF of the workload just after the instantλk with the PDF just beforeλk.
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Fig. 3: Example of the PDF of the pending workload in two different instants,t andt ′, separated by 6 units of time

Proposition 2. Let WP,λ−k denote the pending workload of priorityP at instant(λk− ε), whenε → 0, and letWP,λ+
k

denote the workload of priorityP at instant(λk + ε) whenε → 0. If a single jobΓk, with priority Pk ≥ P is released at

instantλk, then:

f
WP,λ+

k
(w) =

(
f
WP,λ−k

⊗ f
Ck

)
(w) (4)

where⊗ is the discrete convolution operator (see appendix).

Proof. The pending workload at instantλk suffers a discontinuity, since it is increased by the job released atλk, by an
amount equal to its computation timeCk. The pending workload and the computation time are both random variables,
so, by elementary statistical theory, the PDF of their sum is obtained by convolution of their respective PDFs, as stated
in (4).

These propositions give us an algorithm for calculating the PDF of the pending workload for a given priority levelP at
any instantλn, as follows:

1. Start at instantt = λ0. At this instant the PDF of the pending workload is assumed to be known (in fact, the initial
pending workload is usually zero).

2. Repeat until reaching the desired instant

(a) Advance to the instantλk in which the next job with priority greater than or equal toPis released. Calculate
the PDF of the pending workload at this instant using Proposition 1. The result is the pending workload
just before the release of the jobΓk.

(b) Calculate the PDF of the pending workload just after the release of the new job, using Proposition 2.

Calculation of the response time PDF

In this section we will derive the method for obtaining the PDF of the response timeRΓi of an arbitrary jobΓi released
at instantλi (that is, the probability ofRΓi being equal to any given value).

Preliminary example

In order to clarify the problem and the method for solving it, we develop a simple example. Once the ideas are presented
through this example, the method will be formalized in a theorem.



Consider the system shown in Table 2. We want to obtain the PDF of the response time for the jobΓ1, which is released
at λ1 = 0.

For this example we will assume that no pending workload is present in the system whenΓ1 is released. So, if the
computation time of jobΓ1 is less than or equal to(λ2−λ1), its response time will be equal to this computation time,
becauseΓ1 will be finished before any other job in the system can preempt it. However, if the computation requirement
is greater than(λ2−λ1), then jobΓ2 will preemptΓ1, increasing its response time by an amount equal toC2. On the
other hand, ifC1 > (λ2−λ1) and(C1 +C2) > (λ3−λ1), then jobΓ3 will interfere, and thusR1 = (C1 +C2 +C3).

The proposed approach for obtaining the PDF ofR1 will require several steps. In step zero, we obtain the PDF ofR1

without considering any future preemption. In step one, we modify this PDF considering the first preemption thatΓ1

could suffer. In step two, we modify it again considering the next possible preemption, and so on. LetG j
Γ1

denote the
PDF obtained this way in stepj.

Step zero: In our example,G0
Γ1

will be equal toC1, because we assumed there was no pending workload when jobΓ1

was released. In a more general case,G0
Γi

will be the convolution ofCi with the pending workload of priorityPi at instant

λi . The plot ofG0
Γ1

is shown at the top of Fig. 4(a). This function, gives part of the PDF ofR1, because:

P{RΓ1
=r}= G0

Γ1
(r) for r ≤ λ2−λ1 (5)

Fig. 4(a) shows that the functionG0
Γ1

splits into two functions, which we will callgl0Γ1
(l for low) andgh0

Γ1
(h for high).

The splitting point is 3, which is(λ2−λ1). Functiongh0
Γ1

can be saved as part of the desiredfRΓ1
.

Step one:Let us consider the calculation ofP{R1=r}, with r > (λ2−λ1) = 3, for example forr = 5. Since this event

can only happen whenC1 > (λ2−λ1), we have to calculate the probability of an intersection of events:

P{RΓ1
=5}= P{(C1 > 3)∧(C1+C2 = 5)} (6)

This probability can be obtained by adding the probabilities of all possible cases in the intersection:

P{RΓ1
=5}=

5

∑
i=4
P{C1=i} ·P{C2=5− i} (7)

This summation is indeed the convolution, forr = 5, of the PDF ofC2 with the functiongh0
Γ1

shown in Fig. 4(a). This

argument is true for anyr > (λ2−λ1). On the other hand, forr ≤ (λ2−λ1) the probabilities were the ones “saved” in

functiongl0Γ1
from the previous step. We can then write:

G1
Γ1

(r) = gl0Γ1
(r)+

(
gh0

Γ1
⊗ f

C2

)
(r) (8)

Fig. 4(b) illustrates this operation.

Step two: The ideas presented above are also applicable to this step. The functionG1
Γ1

obtained in the previous step,
splits into functionsgl1Γ1

andgh1
Γ1

, the splitting point being equal to 6 (which isλ3−λ1), as shown in Fig. 5(a). The
function gl1Γ1

gives us the first points ofG2
Γ1

, and the functiongh1
Γ1

is convolved with the PDF ofC3 to obtain the
remaining points ofG2

Γ1
. This process is presented graphically in Fig. 5(b).

Table 2: Second example system

Job λi Pi fCi

Γ1 0 5 Discrete U[2,5]
Γ2 3 10 Discrete U[1,2]
Γ3 6 15 Discrete U[1,3]
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Since no more jobs are released in this system, the functionG2
Γ1

obtained in the last step, is the PDF ofR1. If more jobs
were released, the calculation would continue with new steps, analogous to the ones already seen.

In the following section we formalize these ideas.

Iterative method for calculating the PDF of the response time

Suppose that we want to determine the PDF of the response time of an arbitrary jobΓi , that is, the functionfRΓi
. In

order to simplify the notation, we will denote asΓ′1,Γ′2, . . . , all jobs of priority greater thanPi which are released after
the instantλi . Computation times of these jobs will be denoted asC′1,C

′
2, . . . , and their release instants asλ ′1,λ ′2, . . . .

For completeness, we will also denote the jobΓi asΓ′0, its computation time asC′0, and its release instant asλ ′0. In the
interest of simplicity, we also change the time origin to the instantλi . This situation is shown in Fig. 6.

We defineG0
Γi

as:

G0
Γi

(r) =
(

f
WPi ,λ ′-0

⊗ f
C′0

)
(r) (9)

This function can be understood as the PDF ofRi if no new jobs are released after instantλi = λ ′0. As a generalization
of this concept, we define the functionG j

Γi
as the PDF ofRi if no new jobs are released after instantλ ′j .

Given the functionG j
Γi

, we obtain from it two new functions by “splitting”G j
Γi

at point(λ ′j+1−λ ′0). These new functions
are defined as follows (note that(λ ′j+1−λ ′0) = λ ′j+1 due to the time origin shift):
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gl j
Γi

(r) ,
{

G j
Γi

(r) for r ≤ λ ′j+1

0 for r > λ ′j+1
(10)

ghj
Γi

(r) ,
{

0 for r ≤ λ ′j+1
G j

Γi
(r) for r > λ ′j+1

(11)

The following theorem gives a method for calculating the response time PDF of any given job.

Theorem 1. The PDF of the response time of jobΓi is given by function:

f
Ri

(r) = G j
Γi

(r), for r < λ ′j+1 (12)



beingG j
Γi

(r) calculated as

G j
Γi

(r) = gl j−1
Γi

(r)+
(
ghj−1

Γi
⊗ f

C′j

)
(r) (13)

and beingG0
Γi

calculated as in (9).

Proof. Equation 12 is simply derived from the definition ofG j
Γi

, since we defined this function as the PDF of the response
timeRi , if no new jobs were released after instantλ ′j . The probability ofRi taking a valuer belowλ ′j+1 is given directly
by functionG j

Γi
, because for these cases the jobΓi finishes before the instantλ ′j+1, and then none of the jobs arriving

afterλ ′j can influence it.

We will prove the recurrence relation in (13), dividing the proof in two cases, depending on the value ofr.

Case 1:r ≤ λ ′j

For these values, functionghj−1
Γi

(r) is zero by definition, so the convolution is zero, and (13) is reduced to:

G j
Γi

(r) = gl j−1
Γi

(r) r ≤ λ ′j (14)

Moreover, forr ≤ λ ′j according to (10) this can be rewritten as:

G j
Γi

(r) = G j−1
Γi

(r) r ≤ λ ′j (15)

According to the meaning given to functionG j
Γi

, the above equation implies that the probabilities ofRi taking any value
r below λ ′j are the same, whether the job released atλ ′j is taken into account or not. This is true, because the jobΓ′j
cannot preemptΓi , wheneverr ≤ λ ′j (as this condition implies thatΓi has finished before the release ofΓ′j ).

Case 2:r > λ ′j
Let R− be the response time ofΓi without considering the influence of jobΓ′j , andR+ be the response time after
considering its influence. The probability ofR+ = r, whenr > λ ′j is the probability of an intersection, because two
conditions must be met for such an event to occur:

1. The jobΓi must still be active at instantλ ′j . This means that the response timeeven without consideringthe
interference of jobΓ′j , is greater thanλ ′j , that is:R− > λ ′j .

2. The sum of the response timewithout consideringthe interference of jobΓ′j , plus the computation requirements
of this job, must be equal tor, that is:R−+C′j = r.

To obtain the probability of this intersection, we have to consider, from all possible cases, only those which fulfil both

conditions. The sum of probabilities of these cases is the desired result. Thus, forr > λ ′j :

P{R+=r}=
∞
∑

k=λ ′j+1
P{R−=k} ·P{C′j =r−k} (16)

By definition,P{R−=k}= G j−1
Γi

(k), so the above sum can be rewritten as:

P{R+=r}=
∞
∑

k=λ ′j+1
G j−1

Γi
(k) · f

C′j
(r−k) (17)



The functionG j−1
Γi

(k) can be substituted byghj−1
Γi

(k), since both functions are equal in the range[λ ′j + 1,∞), which is

the range fork in the summation. Moreover, if we make this change, we can extend the lower limit of the summation to

−∞, because the functionghj−1
Γi

(k) is zero for allk≤ λ ′j . This leads to:

P{R+=r}=
∞
∑

k=−∞
ghj−1

Γi
(k) · f

C′j
(r−k) =

(
ghj−1

Γi
⊗ f

C′j

)
(r) for r > λ ′j (18)

Addinggl j−1
Γi

(r) to the second member of this equation does not alter it, becausegl j−1
Γi

(r) is zero for allr > λ ′j . This way

we obtain the same expression as in (13). On the other hand, by definition,G j
Γi

(r) is the probability of the response time

Ri taking the valuer, when the interference of jobΓ′j is taken into account, that is,P{R+ =r}. Thus:

G j
Γi

(r) = P{R+=r}= gl j−1
Γi

(r)+
(
ghj−1

Γi
⊗ f

C′j

)
(r) for r > λ ′j (19)

This theorem provides an iterative method for findingP{Ri =r} for any givenr. Starting fromG0
Γi

, the functionG1
Γi

is
calculated, and thenG2

Γi
, and so on, until reaching aj such thatλ ′j+1 > r. The functionG j

Γi
obtained this way, gives the

wanted probabilities for anyr < λ ′j+1.

It is worth noting some facts of practical interest:

• Under some circumstances, it is not necessary to iteratej times to obtainG j
Γi

. If at some iteration,k, we find

thatghk
Γi

is zero in all its points, then all successive iterations will give the same functionGk
Γi

. In this case, the

complete PDF ofRi has been found, since:

f
Ri

(r) = Gk
Γi

(r) for all r (20)

• Given a deadlinedi for the jobΓi , the probability of the response time exceeding this deadline can also be obtained

from functionG j
Γi

, with di ≤ λ ′j+1, using the formula:

P{Ri >di}= 1−P{Ri ≤di}= 1−
di

∑
r=0

G j
Γi

(r) for di ≤ λ ′j+1 (21)

This observation is of practical interest, since it means that, to obtain the probability of deadline misses, is not
necessary to know the complete PDF ofRi . It is enough to know its firstdi points, which can be obtained afterj
(or less) iterations of Theorem 1,j being the smallest integer such thatdi ≤ λ ′j+1.

Computational complexity

At first glance it might seem that the calculation of the response time PDF should take all the possible interactions
between all jobs into account, thus leading to a combinatorial explosion. However this is not the case; the algorithm has
polynomial complexity, as will be shown in this subsection. The reason for this is that at any instant, the whole past of
the system is summarized in the PDF of the pending workload for each priority level.

Letmbe the number of jobs in the system, andn be the maximum number of points defining the PDF of their computation
times. Let us consider the number of operations required to calculate the PDF of the response time of a jobΓi , assuming
that all other jobs in the system have a priority greater thanPi , and that their computation times are such that all of them
can interfere with (preempt) the jobΓi . This is the case which requires the maximum number of calculations, since it is
necessary to performmconvolutions.

Each convolution required by the algorithm is performed between two functions: one is the PDF resulting from the

previous iteration, the other is always the computation time PDF of a job, which hasn points. This means that each



new convolution performed will increase the size of the result inn points. In general, the result of thej-th convolution

will have a size ofjn points, causing the next convolution to requireO( jn2) operations (see appendix). To do all them

convolutions, the number of operations required is:

m

∑
j=1

jn2 = O(m2n2) (22)

Since these operations have to be performed for each job in the system, and there arem jobs, the total number of
operations for obtaining the response time PDF for all jobs will beO(m3n2). Note that this is a pessimistic bound, as
in practice the number of convolutions to perform for each job will be less thanm. Moreover, the complexity of the
convolution calculation can be reduced using the Fast Fourier Transform.

Experimental results

We have implemented a preliminary, non-optimized version of our algorithm in a simple tool. We have fed the tool
with several synthetic, randomly generated, system models. Each synthetic system was composed ofm jobs, whose
PDF were defined byn points at maximum,m andn being the parameters for the experiment. The release instants of
these jobs were selected randomly, but ensuring that the system had a high load. On average, the sum of the maximum
computation time required by all the jobs was around 120% of the release instant of the last job.

The time required by the tool to solve these systems on a personal computer is shown in Fig. 7. For each point in the
graph several simulations were performed, and the average time was plotted. The linearity of the logarithmic plot is to
be noted, as this corroborates the polynomial complexity of the algorithm, with the exception of systems with a small
number of jobs, in which the aspects of initialization and input/output of the tool prevail over the computational aspects.

APPLICATION TO THE PERIODIC TASKS MODEL

In the classic analysis, the system is modelled as a finite set of tasksS= {τ j}. A task is a process in the system, which
periodically executes at a given priority, does its job, and finishes until the next activation. Each taskτi can be modelled
with three parameters: its periodTi , its priority Pi , and its computation timeCi , which traditionally was a fixed amount,
but will be replaced in this paper by a random variable of known PDF.

Our model can be considered a particular case of the periodic task model if we consider each instance of a task as a
new job. This way, the original systemS, composed of a finite number of tasksS= {τi} can be transformed in another
systemS′ composed of an infinite number of jobsS′ = {Γi}. Each taskτi in S gives rise to an infinite number of jobs
Γi1

,Γi2
, . . . all with the same priorityPi and the same computation time PDF,fCi

. The arrival instants of these jobs will
be λi1

,λi2
, . . . with (λi j

−λi j−1
) = Ti . Once systemS has been transformed intoS′, it can be analysed by the methods

presented in previous sections. However, since the sequence of jobs generated this way is infinite, we have to investigate
how to obtain valid and useful predictions by using only a finite subset of them.

The arrival instants of the jobs, and the PDF of their computation times follow a regular pattern, whose period is equal
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Fig. 7: Time required to run the algorithm (experimental)



to the hyperperiod of the system. This is the least common multiple (LCM) of the task periods. This regularity in the
arrival of the jobs points towards a possible repetitive behaviour of the response times.

When the maximum total utilization of the system is less than one, the amount of workload generated by the jobs does
not exceed the hyperperiod lenght, even in the worst-case scenario. So an hyperperiod cannot affect to the following
hyperperiod, and the analysis can be restricted to a single hyperperiod.

However, if the maximum total utilization is greater than one, there exists a probability of having pending workload at the
end of each hyperperiod. This modifies the initial conditions for the next hyperperiod, and thus the PDF of the response
times of the jobs are different over time. We have found experimentally that, even when the maxmimum utilization
factor is greater than one, if the averege utilization factor is less than one, the PDF of the pending workload at the end of
each hyperperiod “converges” towards a stationary distribution. We have found a formal proof of this behaviour, and a
method for obtaining the “steady state” PDF. These results are not included in this paper, for the sake of brevity.

Example with total utilization less than 1

We present a simple example with two periodic tasks. This example is based on the one presented by Lehoczky in [4]
to illustrate the busy-period concept. The original example had two tasks, of periods 70 and 100, and fixed computation
times of 26 and 62, respectively. The rate-monotonic policy assigns a higher priority to the first task. These settings
give rise to a worst-case response time of 118 for the second task, as was calculated in [4]. Because the deadline of the
task was greater than its period, its worst response time did not necessarily have to occur in its first activation. Indeed, it
occurred in the fifth one.

We use the same set of tasks, with the same periods, but we now assume that the computation times are not deterministic,
but random. The computation time for the first task can take two values, 25 or 26 with equal probability, and the
computation time for the second task can be 61 or 62, also with equal probability. This information is summarized in
Table 3.

The maximum utilization factorUmax is 0.991429. SinceUmax< 1, the analysis can be restricted to the first hyperperiod,
which is of 700 time units. The analysis forτ1 is trivial, since it cannot suffer interference from other tasks.

Taskτ2 will execute 7 times within the hyperperiod, and in general, the PDF of the response time will be different in
each of these activations. For finding these PDFs, it is necessary to “develop” the task model into a job model. This
leads to a system with 17 jobs (10 instances ofτ1 plus 7 instances ofτ2), whose release times will all be the multiples of
70 or 100. This gives the situation depicted in Fig. 8.

Note that the sub-indexes of the jobs are ordered in time, i.e.i < j implies thatλi ≤ λ j , as required by our model. Also
note that jobs 0 and 1 arrive at same instant; soλ0 is equal toλ1. The computation time of jobs 0, 2, 4, 6, 7, 9, 11, 12, 14
and 16 is that of taskτ1, while the computation time of jobs 1, 3, 5, 8, 10, 13 and 15 is that of taskτ2.

Applying the techniques exposed in this paper, we calculate the PDF of the response time for jobs 1, 3, 5, 8, 10, 13
and 15, which are the activations of taskτ2, within the hyperperiod. The results are shown in Table 4 (dashes denote a

Table 3: A simple periodic system

Task Ti Pi fCi

τ1 70 2 U[25,26]
τ2 100 1 U[61,62]

0

Γ0

Γ1

70

Γ2

100

Γ3

140

Γ4

Γ5

210

Γ6

280

Γ7

Γ8

350

Γ9

400

Γ10

420

Γ11

490

Γ12

Γ13

560

Γ14

600

Γ15

630

Γ16

700

Fig. 8: Release instants for the jobs generated by the tasks in the example



Table 4: Probability ofR = r for taskτ2 of the example

Activation
r 1 2 3 4 5 6 7 Average

86 — — — — 0.186035 — — 0.031006
87 — — — — 0.418457 — 0.031151 0.074935
88 — — — — 0.293701 — 0.155846 0.074925
89 — — — — 0.078613 — 0.311974 0.065098
90 — — — — 0.020019 — 0.312462 0.055414
91 — — — — — — 0.156746 0.026124
92 — — — — — — 0.031685 0.005281
93 — — — — — — 0.000130 0.000022
94 — — — — — — 0.000008 0.000001
95 — — — — — — — —
96 — — — — — — — —
97 — 0.031250 — 0.025391 — — — 0.009440
98 — 0.156250 — 0.131836 — — — 0.048014
99 — 0.312500 — 0.279297 — — — 0.098633

100 — 0.312500 — 0.307617 — — — 0.103353
101 — 0.156250 — 0.185547 — 0.124603 — 0.077733
102 — 0.031250 — 0.059570 — 0.374176 — 0.077499
103 — — — 0.009766 — 0.374939 — 0.064117
104 — — — 0.000977 — 0.125793 — 0.021128
105 — — — — — 0.000458 — 0.000076
106 — — — — — 0.000031 — 0.000005
107 — — — — — — — —
108 — — — — — — — —
109 — — — — — — — —
110 — — — — — — — —
111 0.125000 — 0.101562 — — — — 0.037760
112 0.375000 — 0.324219 — — — — 0.116537
113 0.375000 — 0.367188 — — — — 0.123698
114 0.125000 — 0.171875 — — — — 0.049479
115 — — 0.031250 — — — — 0.005208
116 — — 0.003906 — 0.001465 — — 0.000895
117 — — — — 0.001587 — — 0.000264
118 — — — — 0.000122 — — 0.000020

P{R=r}

r85 90 95 100 105 110 115

0.05

0.1

Fig. 9: Probability distribution of the response time for taskτ2, among all its possible executions

probability of zero). It is worth noting that the worst case response time (of 118 units) coincides with that calculated
with the classic analysis, occurring in the fifth activation of the task, but our method provides additional information,
showing us that the probability of occurrence of this worst case time is very small.

The table also shows the average probability of each response time, among all the activations of task 2. This information
is shown graphically in Fig. 9. From this PDF, we can compute the probability of the response time being greater than
any given value, by simple addition. For example, if the deadline of the second task were 115, the probability of missing
it would be 0.001179, so we could still consider the system schedulable if we were willing to admit 0.1179% of deadline
misses.

CONCLUSION AND FUTURE WORK

In this paper we have introduced stochastic response-time analysis, a model and a conceptual framework which allows
statistical analysis of job response times. The model requiresa priori knowledge of the probability density function
(PDF) of the computation time required by each job. We have derived formulae for calculating the pending load PDF
at any instant, and the response time PDF of any job. The statistical information given by our method can be combined
with deadlines, thus obtaining the probability of deadline misses for any job in the system, which can be used as a
measurement of Quality of Service. If this probability is zero for a task, then its deadline is guaranteed. In this sense our
analysis subsumes the classic response-time analysis.

The analysis can be applied to the classic periodic task model, provided that the maximum total utilization is less than
one. In this case, it is sufficient to perform the analysis to the jobs released within a single hyperperiod.

However, the model does not allow for uncertainty in the release instants of the jobs, and assumes all tasks to be
independent. Our future work will focus on extending the analysis by taking into account the releasejitter and the
possibility of blocking jobs in the access of shared resources.



APPENDIX. DISCRETE CONVOLUTION CALCULATION

The convolution of two discrete functionsf andg is defined as

( f ⊗g)(x) =
∞
∑

i=−∞
f (i)g(x− i) (23)

Note that, in all the cases presented in this paper, functions are zero for negative values of their arguments, so the lower
limit of the summation can be changed toi = 0.

If functions f andg are defined by vectors of sizenf andng, the number of operations required to perform the convolution
is O(nf ng), and the resulting function will be a vector of size(nf +ng−1).
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