
Debugging Time Behavior of Probabilistic Real-Time Systems

Joaquín Entrialgo, Javier García, José Luis Díaz, Daniel F. García
University of Oviedo

{joaquin, javier, jdiaz, daniel}@atc.uniovi.es

Abstract

In order to detect bugs in the temporal behavior
of real-time systems (i.e., discrepancies between the
theoretical and the actual behavior), measurements
of the running system can be taken. These
measurements must then be compared with the
specifications and the model used to analyze the
feasibility of the system. This comparison, which is
straightforward when a deterministic model is used,
becomes more difficult when probabilistic
constraints and models are used. In this paper we
discuss this problem and explore some solutions. We
propose two heuristic metrics, optimism and
pessimism, and show, by means of a case study, how
they help in finding bugs.

1. Introduction

In order to prove that a real-time system fulfills all
of its timing constraints, various methods have been
proposed. Traditional techniques, such as the
processor utilization analysis [1, 2] and response
time analysis [3], use a model of the tasks of the
system in which the execution time of the tasks is
represented by the worst case execution time
(WCET). Using this value, these analyses can obtain
an upper bound for the response time of the tasks.
Thus, it is possible to determine if all of the tasks will
fulfill their deadlines even in the worst
circumstances. However, in modern systems, the
great variability of the execution times results in
overly pessimistic WCETs, which leads to oversized
systems.

To overcome this problem, another set of
techniques, which model the execution time as a
random variable, were developed [4, 5, 6]. These
probabilistic techniques do not guarantee that all the
deadlines are met; instead, they compute the
probability of meeting them. The system is deemed
feasible if this probability is high enough. This
significantly decreases the pessimism of the analysis.

However, when analyzing a real-time system the
results of the analysis must be pessimistic even in the

probabilistic case, i.e., the probability of missing a
deadline in reality must be less than the probability
obtained by the analysis technique. This way the
analysis is safe. However, some practical problems
may arise: the assumptions made by the model might
be false, or the techniques may be applied
incorrectly. In addition, the actual implementation of
the system could have bugs which make the temporal
behavior of the real system different from the
modeled one.

Measuring the final system and comparing it with
the results of the analysis model can reveal these
problems. Although measuring cannot be used to
prove the correctness of the system, it can bring out
bugs or, in their absence, increase the confidence in
the system.

We have developed tools for measuring real-time
systems and for comparing the measurements with a
traditional (non-stochastic) model of the system [7].
In this paper we explore how this can be carried out
when a stochastic model of the system is used in the
analysis. The paper is organized as follows: first, the
system model is presented; then, the problem of
comparing measured values and model distributions
is exposed; next, some solutions are discussed; and
finally, the conclusions summarize the most
important points of the paper and outlines some open
issues.

2. System model

We use the system model presented in [8]. The
system is composed of a set of N independent
periodic tasks S = {τ1,..., τi,..., τN}. Each task, τi, is
defined by the tuple (Ti, Φi, Ci, Di, Mi) where Ti is the
period of the task, Φi is its initial phase, Ci is its
execution time, Di is its deadline and Mi its maximum
allowable ratio of deadline misses.

The execution time, Ci, is a discrete random
variable with a known probability function (PF),

denoted by (·)
iCf , where }{)(cCPcf iCi

== ,

i.e., the probability of the execution time being c.
Alternatively, the execution time distribution can also

be specified using its cumulative distribution function

(CDF), denoted by (·)
iCF , where

∑
=

=
x

c
iCiC cfxF

0

)()(.

3. Comparing measurements and model
values

In the non-stochastic case, measuring the final
system can reveal errors [7]. These errors may be that
the system does not follow the specifications (i.e., a
deadline miss in a hard real-time system), or that the
analysis model and reality are different, for instance
an execution time is in fact greater than the WCET
used in the model. We refer to both kinds of errors as
timing bugs.

However, trying to apply this idea to stochastic
real-time systems is not straightforward. Let us
consider the system in Table 1 in order to present the
problems.

Task Ti (=Di) Φi Mi Ci P(Ci)

T0 100 0 0.1 10 1
T1 200 0 0.1 20 0.8

100 0.2
T2 300 0 0.1 30 0.1

50 0.9
T3 400 0 0.1 10 0.1

30 0.5
90 0.39
300 0.01

Table 1. System example. All times are in ms

Let us assume that the system is measured for two
seconds and that in two of the ten releases of task T1
there were deadline misses. This means that the
measured deadline miss ratio is 0.2, higher than the
maximum allowable ratio M1, which is 0.1. However,
this does not imply an error. There is a certain
probability of this happening even when there is no
error in the system. If the probability of missing a
deadline were exactly M1 = 0.1, then the probability
of observing two deadline misses in ten releases can
be calculated (assuming independence between
deadline misses) with a binomial distribution:

xnx pp
xxn

n
pnxp −−

−
=)1(

!)!(
!

),;((1)

where x is the number of “successes” (deadline
misses in our case, 2), n the number of experiments
(10), and p the probability of “success” (0.1).
Applying this formula the probability obtained is
0.19371024. This means that, even with a valid
system, in our experiment there is an almost 20 % of
chance of obtaining a deadline miss ratio double that
specified.

This example has shown one of the problems of
applying measurement to find errors in a system
where a certain deadline miss probability is accepted.
This problem arises from the fact that the
measurements are just a sample of reality.

Another way of finding errors in a traditional
(non-stochastic) system is comparing, for all the
tasks, the measured execution times with the
execution times of the model. If a task presents an
execution time higher than specified, the analysis is
not valid, because is not pessimistic enough, and
must be redone. The power of this comparison is that
it can find potentially unfeasible systems even when
no deadline miss is observed.

Applying this to stochastic real-time systems is
not straightforward either. In deterministic systems,
the operation for determining whether the model is
pessimistic enough consists only of comparing two
numbers for each task: the WCET in the model
against the measured WCET. In stochastic systems,
what must be compared are two probability
distributions: the distribution of execution time of the
model and the distribution (profile) of the measured
execution time.

For example, in another experiment with the
system presented in Table 1, we might measure that
nine of the ten releases of task T1 had an execution
time of 10 ms, and the remaining release had an
execution time of 105 ms. Is this measured
distribution better or worse than the model
distribution?

Obviously, the observed execution profile does
not follow the PF of the model exactly, but this
perfect fit would be impossible, due to the low
number of observations. Even with a high number of
observations, both functions are not required to be
equal because the model is allowed to be
approximate, as long as this approximation is safe,
i.e., pessimistic, as defined in [8]. So the kind of
comparison to be performed is one which can tell us
whether the distribution assumed in the model is
more pessimistic than the one derived from the
measurement. The one-sided Kolmogorov-Smirnov
goodness-of-fit test carries out this kind of
comparison for continuous and independent random
variables. However, we have initially discarded this
test because execution profiles are not continuous
and, in many systems, independence cannot be
assumed.

In [8], the pessimism (or "worse than" relationship
among random variables) is formalized as the first-
order stochastic dominance. In this work, a random
variable X is said to be "worse than" another random
variable Y if FX(x) ≤ FY(x) for all x. Graphically this
means that the CDF of X is always below the CDF of
Y.

This suggests that we could simply check whether
the measured CDF is always above the CDF derived

from the model and the analysis. But again, this kind
of test would not be valid. Fig. 1 depicts the CDF of
the measured computation time, and the one derived
from the analysis. It can be seen that the two curves
cross. Since neither of the curves is always above the
other, the relationship "worse than", as defined in [8]
does not apply.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Model (Fa)

Measurements (Fm)

P

F(x)

Execution time

O

Fig. 1. CDF of model and measurements for
task T1

It can be seen in Fig. 1, that in the aforementioned
example there is more probability of obtaining an
execution time shorter than or equal to 10 ms in the
measurements than in the model. This means that for
that point the model distribution is more pessimistic
than the measurements, i.e., the model gives more
probability for longer execution times. However, in
100 ms this trend changes: there is a greater
probability of obtaining an execution time of 100 ms
in the model than in the measurements; i.e., for this
value, the model is optimistic. Clearly, it is not
straightforward to draw a conclusion about the
validity of the model.

The random nature of the system and the
measurements makes an exact comparison
unfeasible, but if models are pessimistic,
measurement CDFs are expected to be over the
model CDFs “most of the time”. We will use this
idea to define a heuristic to compare the model and
the measurements.

4. Metrics for comparison

In order to overcome some of the problems
presented in the previous section, we propose using
two heuristic metrics which will be called optimism
and pessimism. These metrics can be used to find
bugs in the system (undesired behavior and
differences from the model) and to discover in which
task the bug is found.

Both metrics are defined comparing the execution
time CDFs of the model and the measurements.

Let Fm be the CDF of the measurements, Fa be the
CDF of the analysis model, XO={x|Fa(x)>Fm(x)},
XP={x|Fa(x)<Fm(x)} and xmax=min{x|Fm(x)=1 and
Fa(x)=1}. Without loss of generality we assume that
all the execution times are scaled so they are integers.

Definition 1. Optimism is defined as

 ∑
∈

−=
OXx

ma

max

xFxF
x

O))()((
1

(2)

Definition 2. Pessimism is defined as

 ∑
∈

−=
PXx

am

max

xFxF
x

P))()((
1

(3)

Pessimism is defined as the area between the
model CDF and the measurements CDF when the
model CDF is under the measurements CDF.
Optimism is the area between the model CDF and the
measurements CDF when the model CDF is over the
measurements CDF. Both quantities are divided by
xmax so that their range is [0, 1].

In Fig. 1 optimism is marked with an O and
pessimism with a P. When pessimism is positive,
and optimism is zero, this means that the model CDF
is always below the measurements CDF. This is
good, because it means that the model provides
pessimistic estimations. Similarly, having low
pessimism and high optimism in the measurement is
bad, because this means that the model is probably
being optimistic.

In order to show the utility of these metrics, a case
study is now presented. A system with the parameters
shown in Table 1 has been implemented in a Pentium
III at 800 MHz running QNX 6.1.

Table 1 represents the parameters of the "real"
system. These parameters are actually unknown to
the analyst. The analysis will use instead an
approximated model of the system. For the analysis
to be valid, this approximation has to be pessimistic.
In order to simulate this pessimism, we will use as
the system model the parameters of Table 1, but
increasing the execution times by 10%. With this
model, we have carried out a probabilistic response
time analysis (using [5]), which gives the results
presented in Table 2. The CDF resulting from this
analysis will be compared against the measurements
of the real system (whose parameters are those of
Table 1). It is to be expected that the analysis model
will show pessimism when compared to the
measurements.

Task Deadline miss
probability

Deadlines misses
forecasted in 60 seconds

T0 0 0
T1 0 0
T2 0 0
T3 0.0312 4.68

Table 2. Case study analysis

In order to test the ability of the metrics to find
bugs, an error has been introduced in the
implementation of the system. The two execution

times of task T1 are the consequence of a conditional
sentence with two paths. The condition has been
reversed and, so, the probabilities of the two
execution times of task T1 have been interchanged.
Therefore, in the implemented system there is a 0.2
probability of having an execution time of 20 ms and
an 0.8 probability of having an execution time of 100
ms.

The system was measured for 60 seconds using
the tools presented in [7] and the pessimism and the
optimism have been computed using Eq. (2) and (3).
Table 3 presents the metrics for each task, with
pessimism and optimism given in percentage.

Task Pessimism Optimism Missed deadlines
T0 9.18 % 0 % 0
T1 2.11 % 43.00 % 0
T2 8.14 % 0.15 % 0
T3 1.11 % 2.51 % 15

Table 3. Case study metrics

From these results, the debugging tool can check
if the number of missed deadlines for each task is
"reasonable" or not, according to the model. For
example, task T3 had 15 deadline misses. According
to the model, the probability of deadline misses of
task T3 is 0.0312. From this figure and using the
binomial cumulative probability function, we can
compute the probability of having 15 or more
deadline misses in 60 seconds of execution (which
represents a total of 150 releases of the task). This
probability is 7.92·10-5, which is extremely low. So
the debugging tool detects a problem with the
response time of task T3.

Without the metrics, the first place where an
analyst would look for the error would be in task T3.
However, a problem in the response time of task T3
does not necessarily imply a problem in the
implementation of task T3.

Using the metrics in Table 3, it can be seen that
there is much more optimism in task T1 than in task
T3, which (correctly) indicates that the bug is in task
T1.

5. Conclusions

Although measurement can not prove the
correctness of a real-time system, measuring is a way
to detect bugs and increase the confidence in the
system. Measurement provides more valuable
information when its results are compared with a
model of the system and not just with the
specifications. This comparison is easier to carry out
when a traditional (non-probabilistic) analysis
technique is used than with a probabilistic technique.

In this paper we have described some of the
problems that arise in measuring and detecting timing

bugs with probabilistic techniques. The first problem
is that constraints are probabilistic and, therefore,
finding a deadline miss does not necessarily mean a
bug. The second problem is that in order to
determine if the execution time distribution of the
model is not as pessimistic as the real distribution,
both distributions must be compared and this
comparison is not straightforward.

Two metrics have been proposed to detect bugs in
the system: optimism and pessimism. These metrics
are based on comparing the CDFs of the execution
time distributions. A case study has been shown in
order to demonstrate its applicability.

The problems presented here are an open field in
which more work must be carried out. This includes,
for example, finding new metrics, developing a set of
problems in order to compare different metrics,
relating the measurement length with the reliability of
the metrics, and assessing the use of hypothesis tests
such as the Kolmogorov-Smirnov test to find errors.

6. References

[1] L. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment.
Journal of ACM, 20(1):46–61, 1973.

[2] J. P. Lehoczky. Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines. In Proc. of the 11th

IEEE Real-Time Systems Symposium, pages 201–209, Dec.
1990.

[3] K. Tindell, A. Burns, and A. J. Wellings. An
Extendible Approach for Analyzing Fixed Priority Hard
Real-Time Tasks. Real-Time Systems, 6:133–151, 1994.

[4] G. Bernat, A. Colin, and S. Petters. WCET Analysis of
Probabilistic Hard Real-Time Systems. In Proc. of the 23rd

IEEE Real-Time Systems Symposium, Dec. 2002.

[5] J. L. Díaz, D. F. García, K. Kim, C.-G. Lee, L. L.
Bello, J. M. López, S. L. Min, and O. Mirabella. Stochastic
Analysis of Periodic Real-Time Systems in a Real-Time
System. In Proc. of the 23rd IEEE Real-Time Systems
Symposium, pages 289–300, Austin, Texas, Dec. 2002.

[6] M. K. Gardner. Probabilistic Analysis and Scheduling
of Critical Soft Real-Time Systems. PhD thesis, University
of Illinois, Urbana-Champaign, 1999.

[7] J. Entrialgo, J. García and D.F. García. Measurement-
based Analysis of Real-time POSIX Applications. In Proc.
of the 7th IASTED International Conference on Software
Engineering and Applications, Nov. 2003.

[8] J.L. Díaz and J.M. López. Safe Extensions to the
Stochastic Analysis of Real-Time Systems. Technical
Report, Departamento de Informática, University of
Oviedo, 2004. Also available at http://www.atc.uniovi.es/
research/SESARTS04.pdf

