
Stochastic Metrics for Debugging the Timing Behaviour of Real-Time Systems

Joaquı́n Entrialgo, Javier Garcı́a, José Luis Dı́az, Daniel Fernando Garcı́a
Departamento de Informática

Campus de Viesques, 33204, Gijón, Spain
{joaquin,javier,jldiaz,dfgarcia}@uniovi.es

Abstract

Stochastic analysis techniques for real-time systems
model the execution time of tasks as random variables.
These techniques constitute a very powerful tool to study
the behaviour of real-time systems. However, as they can
not avoid all the timing bugs in the implementation, they
must be combined with measurement techniques in order to
gain more confidence in the implemented system. In this pa-
per, a set of tools to measure, analyze and visualize traces
of real-time systems is presented. These tools are driven by
stochastic models. In order to find bugs in the timing be-
haviour of the system, two metrics, called “pessimism” and
“optimism”, are proposed. They are based on two random
variables, the optimistic and the pessimistic execution time,
which are also introduced in this paper. These metrics are
used in the debugging tools to compare the model and the
measured system in order to find errors. The metrics are
examined in three case studies.

1 Introduction

In order to prove that a real-time system fulfills all of
its timing constraints, various methods have been proposed.
Traditional techniques, such as the processor utilization
analysis [8, 7] and response time analysis [13], use a model
of the tasks of the system where the execution time of
the tasks is represented by the worst case execution time
(WCET). Using this value, these analyses can obtain an up-
per bound for the response time of the tasks. Thus, it is
possible to determine if all of the tasks will fulfill their dead-
lines even in the worst circumstances. However, in modern
systems, the great variability of the execution times results
in too pessimistic WCETs, which leads to oversized sys-
tems.

To overcome this problem, another set of techniques
for guaranteeing the timing behaviour of real-time systems
have been developed [1, 9, 3]. These techniques analyse
the timing properties of the system based on a stochastic

model of its timing properties. Usually, the execution time
of each task in the system, instead of being modeled just
with the worst case execution time, is modeled with a prob-
ability function which assigns probabilities to each possible
execution time. From these execution times, the analysis
computes the response time for each task, which is also a
probability function. The response time is computed taking
into account the fact that the tasks share a CPU. The prob-
ability of fulfilling the deadlines can be obtained from the
probability distributions of the response time. However, any
mistake in the model or in the application of the techniques
can lead to an error in the system. Thus, they can not be the
only technique guaranteeing the system performance — the
system must also be measured in order to find errors.

One important step to remove the errors from a system,
i.e., to debug it, is finding where the errors lie. In the context
of timing analysis, this means finding which parameter or
parameters of the model do not reflect reality. In order to
find errors in probabilistic parameters, probability functions
must be compared. In this paper the problems involved in
this process are explored and two metrics are proposed to
solve them.

The rest of the paper is organized as follows: Section 2
presents related work; Section 3 gives a general vision of
the debugging strategy, including the system model and the
toolset where the metrics are used; in Section 4 the prob-
lems of debugging a system analyzed with stochastic mod-
els are introduced and the metrics to solve them are defined;
Section 5 examines the metrics through case studies; and,
finally, Section 6 summarizes the most important contribu-
tions of this paper.

2 Related Work

This work is related to two fields: stochastic analysis
techniques of real-time systems and monitoring systems for
debugging temporal behaviour of real-time systems.

Stochastic analysis techniques are used as a base for
analysing of the measurements, so no contribution is made
to the techniques themselves; however one of them must be



chosen. The one presented in [6] has been chosen because
it provides the most exact analysis without needing strong
restrictions, as shown in [2].

Much work has been done dealing specifically with mon-
itoring real-time systems. A compilation of the most signif-
icant work can be found in [15] and [14]. None of these
papers deal with stochastic analysis techniques and most
of them do not relate their measurements with any kind
of analysis model, which are the main contributions of the
work presented here. More recent research deals with some
of these topics, but not all. [10] measures blocks of code in
order to feed stochastic models, but is not aimed at debug-
ging. [12] shows how to obtain metrics from a trace, but
does not take stochastic techniques into account. [11] aims
to find bugs comparing measurements and models, but uses
a non-stochastic model, with a very restricted implementa-
tion.

3 Debugging Strategy

3.1 Overview

In order to understand how the metrics presented in this
paper work, it is necessary to know the general debugging
strategy in which they are included. The strategy addresses
timing —not functional— errors. These are defined as fol-
lows:

Definition 1 A timing error is a non-fulfillment of the tim-
ing requirements of the system, or an optimistic deviation
from the model which guarantees the requirements.

Notice that this definition emphasizes two different kind
of errors. On the one hand, there are errors that are non-
fulfillments of the specifications. On the other hand, there
are errors that are differences between the timing behav-
iour of the system and of the model in a way that makes
the model optimistic, that is, makes the model obtain higher
probabilities of fulfilling the deadline than the real probabil-
ity, so there is a false security of fulfilling the specifications.

As shown in Figure 1, the debugging strategy proposed
works by measuring an implementation of the system and
comparing the values obtained with the values in the model.
In order to make this comparison, three elements must be
available: a model of the system, an implementation, and
a monitoring tool. In addition, to make debugging easier,
the measurements obtained from the monitor should be an-
alyzed and presented with a graphical tool. The final goal
of the strategy is finding errors and pinpointing in which
tasks and in which parameters of the tasks they occur. The
metrics presented in this paper, which are calculated by the
analysis and visualization tool, help in making the compar-
ison between the measurements and the model in order to
find the errors.

System
implementation

Monitoring tool

Measurements

Analysis and
visualization tool

Errors

System model

Figure 1. Overview of the debugging strategy

Although the basic principles of the strategy are applica-
ble to any real-time system, in order to test it and demon-
strate its capabilities a definition of the model, the imple-
mentation, the monitor, and the analysis and visualization
tool must be chosen. In the following sections these ele-
ments are described.

3.2 System model

The system model used is based on the model presented
in [6]. The system is composed of a set of n independent
periodic tasks Γ = {τ1, τ2, . . . , τn}. With no loss of gen-
erality, we assume that the tasks are sorted in decreasing
order of priority. Each task, τi, is defined by the tuple
(Ti,Φi, Ji,Ci, Di,Mi), where Ti is the period of the task,
Φi is its initial phase, Ji is its release jitter, Ci is its execu-
tion time, Di is its deadline and Mi is its maximum allow-
able ratio of deadline misses.

The execution time, Ci, is a discrete random variable
which assigns probabilities to the possible execution times
of the task. It can be defined with a probability function,
denoted by fCi

(·), where fCi
(c) = P{Ci = c}, i.e., fCi

(c)
is the probability of the execution time being c. Alterna-
tively, the execution time distribution can also be defined



using its cumulative distribution function (CDF), denoted
by FCi , where

FCi
(c) , P{Ci≤ c} =

c∑
i=−∞

fCi
(i) (1)

Using the equations in [2], the probability function of
the response time of each task can be computed. From this
probability function, the probability of missing the deadline
according to the model can be computed. If this probabil-
ity is greater than the corresponding maximum allowable
ratio of deadline misses for all tasks, the system is feasible
according to the model, i.e., the model guarantees that the
system will fulfill its requirements. A summary of how the
analysis works, along with a step-by-step example of calcu-
lation of a job random response time can be found in [6].

3.3 System Implementation

An implementation based on POSIX [5] has been chosen
because it is the most common standard in real-time operat-
ing systems, so it provides a wide applicability of the ideas
presented in this paper.

In order to identify all the elements of the model in the
measured system, some constraints must be applied to the
implementation. Firstly, in POSIX, the most common ways
to implement a real-time system that follows the model pre-
sented in the previous section are several processes with one
thread or one process with several threads. We have cho-
sen the second alternative because POSIX has protocols to
avoid priority inversion problems that arise when the model
is extended to share resources between tasks.

In the proposed implementation, there is a master thread
that creates a thread for each task in the model and then
goes to sleep. Each of the created threads mounts a timer
with its period that generates a signal when it expires. Each
thread waits for its signal and, when it is received, the thread
carries out the computation corresponding to one of its jobs.

3.4 Monitoring tool

In order to measure the system implementation presented
in the previous section, a monitoring tool has been devel-
oped. Portability across POSIX real-time operating systems
was one of its basic objectives, so it works at source level,
as this is the only level standardized by POSIX.

The monitoring tool instruments the source code by
adding some instructions which capture the occurrence of
the events needed to debug the system. The events always
have an associated timestamp and may have some other pa-
rameters depending on their type.

The monitoring tool does not introduce more threads in
the system. Its instructions are executed in the thread where

events are gathered. In order to avoid sharing a resource
between all the threads, which would change significantly
the system model, there is an event buffer for each thread.

The maximum error in a timestamp depends on the
precision of the clock that can be accessed with POSIX
functions. In the test platform described in Table 2, it is
0.499504 milliseconds.

At the end of the system execution, the events from all
the threads are saved to disk, thus becoming traces that can
be analyzed and visualized by the tool described in the next
section. A more detailed description of the monitoring sys-
tem, including a discussion on intrusiveness, can be found
in [4].

3.5 Analysis and visualization tool

The analysis and visualization tool reads both the traces
generated by the monitoring tool and the model used in the
schedulability analysis. With this information, the analysis
and visualization tool carries out an analysis looking for er-
rors and then presents information to the user in order to
help debug them.

First, the tool shows a summary of the system state in the
“Metrics Windows”, which provides a series of metrics for
each task, based on the system model, the measurements
and a comparison of both. One of the main areas of the
window shows a list of problems found, which the user can
further investigate with the help of the metrics and by using
supplementary windows with other graphs, such as Gantt
diagrams or probability functions.

In order to find errors, the tool compares the values in
the model and values obtained from the trace. How this
comparison is carried out for stochastic values is discussed
in the following section.

4 Comparison of stochastic values

When a stochastic model is used to analyze a real-time
system, the execution time of each task is characterized as a
random variable. As proved in [3], the analysis guarantees
the deadline miss ratio as long as this random variable fol-
lows a distribution which is more pessimistic than the real
distribution of execution time. In order to compare the pes-
simism in two distributions, the “worse than” relationship
must be introduced:

Definition 2 Given two random variables, X and Y, we
state that “X is worse than Y”, and denote it by X < Y

if FX(x) ≤ FY(x) for all x.

If X and Y are two distributions of execution time and
X < Y, this means, intuitively, that X assigns lower prob-
abilities to lower times than Y, so X is more pessimistic as



it assigns greater probabilities for longer times, meaning it
will take longer to complete the task. Graphically, X < Y

means that the curve of FX(·) is always below the curve of
FY(·).

In a real-time system, there will be a timing error as
defined in Definition 1 when the model distribution is not
more pessimistic than the real one. It must be noted that
when a system is measured for a limited amount of time,
the monitor obtains a series of values for the execution time
of each task. A distribution function can be built from these
values, but rather than the real distribution of the execution
time, it will be just a sample. What the analysis and visual-
ization tool must do is to infer from this sample distribution
whether the model distribution is more pessimistic than the
(unknown) real distribution.

In order to show this problem, an example will be intro-
duced. Let us consider the model presented in Table 1.

Task Ti = Di Φi Ji Mi c fCi(c)

τ0 200 0 0 0.1 20 0.8
100 0.2

Table 1. Example model. All times are in ms

Figure 2 shows the plot of three example CDFs (Cumu-
lative Distribution Functions) for task τ0: the model distri-
bution, the measured distribution obtained from a measure-
ment session, and the real distribution. As can be seen, the
model is more pessimistic than the real distribution, as the
model CDF is always below the real CDF. Therefore, there
is no error. On the other hand, the measurements CDF is not
equal to the real CDF, as it is a sample of finite size. The de-
cision as to whether there is error is made by comparing the
measurements CDF and the model CDF, because the real
CDF is unknown. In this example, the model is not more
pessimistic than the measurements CDF — there are parts
of the model curve that go above the measurement curve.

What this example shows is that the decision as to
whether there is an error can not be made by simply assess-
ing if the model CDF is always below the measurements
CDF: the sampling error can make the measurements CDF
go below the model CDF even when the real CDF is always
above the model CDF. In spite of this, with a high enough
number of measurements, the measurements CDF and the
real CDF should be very close; thus, in a system without
timing errors there should be few intervals where the mea-
surements CDF is below the model CDF.

The classic solution to this problem —which appears in
other fields such as economics— is to use the Kolmogorov-
Smirnov test. Unfortunately, this test requires the distribu-
tions to be continuous and the sample independent. In our
case the distributions are discrete and, due to caches and
other architectural components, the sample is not indepen-

0 20 40 60 80 100 120
Execution time (ms)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

FR(·) (Reality)
FS(·) (Measurements)
FC(·) (Model)

Figure 2. Probability distribution example

dent.
Instead of a statistical test, in this work we propose using

heuristic metrics. The goals pursued in defining this metrics
are as follows:

• The metrics should have threshold values that indicate
when an error is found.

• When there is an error, the metrics should help in deter-
mining in which task the error lies. In order to accom-
plish this goal, the metrics for different tasks should be
comparable.

• The metrics should have a graphical interpretation that
is easily understandable for the analyst.

• The metrics should have a simple formulation.

After testing several metrics with different case studies
(see Section 5), two complementary metrics, pessimism and
optimism, have been chosen. They are based on comparing
the mean value of the measurements CDF and the model
CDF, but this comparison must take into account the fact
that optimism for some execution times can not be compen-
sated for with pessimism for other execution times. In order
to avoid this compensation, two new random variables have
to be introduced.

Let C be the random variable which characterizes the ex-
ecution time in the model for a task and let S be the random
variable which characterizes the execution time according
to the measurements.

Definition 3 The optimistic execution time CO is defined
as the random variable which has the following CDF:



FCO(x) = max{FC(x), FS(x)} (2)

Definition 4 The pessimistic execution time CP is defined
as the random variable which has the following CDF:

FCP(x) = min{FC(x), FS(x)} (3)

Figures 3 and 4 show a graphical interpretation of the
CDF of these variables by means of an example. As seen
in Figure 3, the CDF of the optimistic execution time is the
curve that always follows the highest of the measurements
CDF and the model CDF. Similarly, as seen in Figure 4,
the CDF of the pessimistic execution time is the curve that
follows the lowest of the measurements CDF and the model
CDF.

0 20 40 60 80 100 120
Execution time (ms)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

FCO(·) (Optimistic)
FS(·) (Measurements)
FC(·) (Model)

Figure 3. Optimistic execution time example

To obtain a metric of the optimism in the model, the dif-
ferences between the mean of the optimistic execution time
and the measured execution time will be used. By using the
optimistic execution time, there will be no compensation of
optimism with pessimism. In a similar way, pessimism will
be defined as the difference between the mean of the pes-
simistic execution time and the measured execution time.

Next, the metrics are formally defined.

Definition 5 Optimism is defined as:

O =
S̄ − C̄O

S̄
(4)

Definition 6 Pessimism is defined as:

P =
C̄P − S̄

S̄
(5)

0 20 40 60 80 100 120
Execution time (ms)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

FCP(·) (Pessimistic)
FS(·) (Measurements)
FC(·) (Model)

Figure 4. Pessimistic execution time example

In the previous equations, S̄, C̄O y C̄P are the mean of
the random variables S, CO and CP respectively.

As seen in Equations 4 and 5, the difference between
means is divided by the mean of the measured execution
time. This is done in order to obtain a relative metric which
can be easily understood by the analyst and comparable be-
tween different tasks. Multiplying by 100 to convert the
values to percentages, it can be said, for instance, that in a
task there is a pessimism of 15% and an optimism of 3%.

When pessimism is positive and optimism is zero, the
model CDF is always below the measurements CDF. This is
good, as it indicates that the model is based on pessimistic
estimations of the execution times. Conversely, finding a
low pessimism and a high optimism is bad, as it indicates
the model is based on optimistic estimations of the execu-
tion time and, therefore, the analysis can not guarantee the
temporal specifications.

5 Case studies

In order to show the utility of the metrics and to test if
they fulfill the goals previously stated, this section provides
three case studies. All of the case studies have been im-
plemented in a platform with the characteristics shown in
Table 2. The platform uses QNX as its operating system,
which is one of the main real-time operating systems and
follows the POSIX standard.



Hardware

Processor Pentium III

Processor Frequency 800 MHz

Front Side Bus Frequency 133 MHz

Cache L1 16KB/16KB

Cache L2 256KB

Main memory 256MB

Software

Operating System QNX 6.2.1

Compiler gcc 2.95.3

Table 2. Test platform

5.1 Case study 1: Determining which task
contains the error

This case study shows how the metrics work within the
complete debugging strategy and how they help in finding
in which task the error lies. A system made up of four tasks
has been implemented in the test platform detailed in Ta-
ble 2. Table 3 shows the model of this system. In the model,
the execution times have been increased by 10% in order to
emulate the pessimism of the models. The 0.499504 ms of
jitter is due to the precision of the operating system clock.
As seen in Table 4, acccording to the analysis of the model
with the techniques presented in [2], all of the tasks will
fulfill their maximum allowable ratio of missed deadlines.

Task Ti = Di Φi Ji Mi c fCi(c)

τ0 100 0 0.499504 0.1 11 1

τ1 200 0 0.499504 0.1 22 0.8
110 0.2

τ2 300 0 0.499504 0.1 33 0.1
55 0.9

τ3 400 0 0.499504 0.1 11 0.1
33 0.5
121 0.39

121.1 0.01

Table 3. Model for the case study 1. All times
are in ms

An error in the implementation of the system was delib-
erately introduced. The two possible execution times of task

Task Mi Probability of
missing the deadline

τ0 0.1 0

τ1 0.1 0

τ2 0.1 0

τ3 0.1 0.05697

Table 4. Model analysis results for the case
study 1

τ1 come from a conditional sentence and its condition was
reversed. This case study assesses whether the debugging
tools are able to find the error.

The implementation has been measured for two hours
using the monitor described in Section 3.4. After opening
the corresponding traces with the analysis and visualization
tool described in Section 3.5, the “Metrics Window” shown
in Figure 5 presents a summary of the system behaviour.

The Metrics Window is divided in two main panels. The
top panel contains a table with metrics of each task. The
bottom panel presents warning and error messages obtained
from an automatic analysis of the traces. One of the prob-
lems of performance debugging is finding, from a huge
amount of information, the relevant data. An automatic
analysis searching for bugs is carried out and, as a result,
the cell with data that pinpoint errors are highlighted in the
table, and messages guiding the analyst to further inspection
into the problem are generated.

In this case study, the analysis and visualization tool
highlights the cell with the missed deadline ratio for task
τ3 (called “T3” in the tool) and the optimism in the task τ1.
The missed deadline ratio for task τ3 is more than double of
its specified maximum allowable ratio of deadline misses
(0.1, as can be seen in Table 5.1).

The analysis predicted that, according to the model, all
the tasks would fulfill their specifications, so the cause of
the problem must be related to differences between the
model and the measured system. The challenge is to find
where. The metrics help in this regard by pointing not to
task τ3, which is where the problem appears, but to task τ1.
As can be seen, the pessimism in all the tasks except in τ1

is close to the ten percent which was to be expected. Fur-
thermore, the optimism in all the tasks is zero or very close
to zero except in task τ1, where it is 55.70%.

This very high value can be further inspected with an-
other window of the analysis and visualization tool that
presents the CDFs of the model and the measurements. Fig-
ure 6 shows this window for task τ1.

In this figure the error that was introduced is evident:
the two probabilities in task τ1 are interchanged. Thus, the



Figure 5. Metrics of Case Study 1

Figure 6. CDFs of task τ1 of Case Study 1

tool has helped in finding an error otherwise very difficult
to locate without its assistance.

5.2 Case study 2: Analysis of a system
without errors

In the previous case study the model was designed to
have 10% pessimism. However, as seen in Figure 5, the pes-
simism in the tasks that have no errors is not exactly 10%.
In fact there is a small degree of optimism in task τ3. In
order to understand why this happens, and also to show the
influence of sample size in the metrics, another case study
has been developed. In this case study, the model aims to
emulate the implementation, so that neither pessimism nor

optimism is introduced. The model is shown in Table 5

Task Ti = Di Φi Ji Mi c fCi(c)

τ0 100 0 0.499504 0.1 10 1

τ1 200 0 0.499504 0.1 20 0.8
100 0.2

τ2 300 0 0.499504 0.1 30 0.1
50 0.9

τ3 400 0 0.499504 0.1 10 0.1
30 0.5
100 0.39
300 0.01

Table 5. Model for the case study 2. All times
are in ms

A system with these parameters was measured for two
hours. Figure 7 shows a window from the analysis and visu-
alization tool with the evolution of pessimism and optimism
for task τ0 computed as the number of measured releases of
the task increases. Two issues arise from this figure:

• The values do not change as the sample size grows.
The reason for this is that, both in the model and in the
measurements, the task has only one execution time.

• Optimism is zero, as expected; however, pessimism is
not zero but close to 0.1%. This is caused by the mea-
surement error. The execution time in the model is
10 ms. However, the clock resolution of the test plat-



form is 0.499504 ms, so that the closest measurable
values to 10 ms are 9.99008 and 10.489584 ms (re-
sulting from measurements of 20 and 21 clock ticks,
respectively). In this case the value obtained is the for-
mer, so the measured execution time is slightly under
10 ms. Consequently, some pessimism appears.

Figure 7. Evolution of the metrics for τ0 of
Case Study 2

Figure 8 shows the evolution of the metrics for task τ1,
which is very different from that of task τ0. Firstly, there is a
variation of the metrics as the sample size grows. When few
releases have been measured, the values of the metrics ob-
tained are very different from the true value, zero. However,
after measuring more than a thousand releases, the metrics
have values very close to zero. After the 2000th release, pes-
simism is constantly zero and optimism varies slightly at a
value close to 0.1%. As shown in the analysis for task τ0,
this is due to the measurement error.

The evolution of the metrics for tasks τ2 and τ3 (which
is not include in this paper for the sake of brevity) is similar
to that of task τ1. Thus, this case study has shown that the
measurement error has an influence on the value of the met-
rics, and that it is necessary to study the window with the
evolution of the metrics in the analysis and the visualization
in order to assess whether the metrics have reached a stable
value.

5.3 Case study 3: Analysis of distribu-
tions with the same mean

As the metrics are based on the mean of the distribution,
it is important to observe what happens when the model
and the real distribution have the same mean, but different
shapes. It must be noted that in this case there is an error, as

Figure 8. Evolution of the metrics for τ1 of
Case Study 2

the model and the real distribution curves will cross. There-
fore, the model distribution can not always be below the real
distribution, i.e., the model can not be pessimistic.

In order to test the metrics in these circumstances, a case
study with only one task has been used. The execution time
of the task has been chosen so that it follows a beta distrib-
ution as this can be easily modified to have the same mean,
but different shape. Furthermore, with the right parameters,
it is well suited to model execution times. The beta distrib-
ution is originally a continuous distribution between 0 and
1. In order to make the experiments, a beta distribution with
parameters α = 2.5 and β = 5 has been discretized in 20
values and scaled so that its range is [200, 300] ms.

The system was measured for two hours. In order to test
the metrics, ten models have been generated, each one with
a different beta distribution. These beta distributions were
obtained by varying the β parameter between 1 and 10 in
steps of 1, and computing the corresponding α parameter
so that the mean of the distribution did not change. Figure 9
shows the probability function of the original beta function
(α = 2, beta = 5) and of two additional models. As can
be seen, the shape of the functions varies; however, their
means are the same.

In order to test the metrics, the ten different models have
been analyzed with the analysis and visualization tool us-
ing the same trace obtained with the original beta function.
Figure 10 shows the values of the metrics as the difference
between the variation coefficient of the model and the mea-
surements changes. The variation coefficient has been cho-
sen because it expresses the relationship between the stan-
dard deviation and the mean of the distribution. This figure
shows that, even with the same mean, a small variation with



200 220 240 260 280 300

Execution time (ms)

0

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

α = 2, β = 5

α = 0.5, β = 1

α = 5, β = 10

Figure 9. Beta functions used in case study 3

respect to the mean has a significant impact on the metrics.
As the metrics differ from zero whenever the variation coef-
ficient also differs from zero, the case study shows that the
metrics are able to capture differences in the shape of the
function in any direction.

6 Conclusions and future work

This paper has presented the problem of debugging the
timing behaviour of real-time systems when they are ana-
lyzed with stochastic techniques. As these techniques pro-
vide a more powerful analysis of real-time systems than tra-
ditional non-stochastic techniques, the problem addressed
will be of great importance in the future.

After defining what is considered a timing error, a set
of tools to measure, analyze and visualize the timing be-
haviour of real-time systems has been proposed. The main
contribution of the paper is the introduction of two metrics,
named “pessimism” and “optimism”, which deal with the
problem of finding timing errors in the characterization of
the computation time as a random variable. They are based
on two new random variables, the optimistic and the pes-
simistic computation time, generated from information con-
tained both in the model and in the measurements. As three
case studies have shown, the metrics are useful in finding
timing errors in stochastic systems.

The greatest limitation of the metrics is that they are
heuristic and, hence, do not provide a statistic confidence

-0.016 -0.013 -0.010 -0.006 -0.003 0 0.003

Difference between the variation coefficient
in the model and in the measurements

0

1

2

3

Pe
rc

en
ta

ge

Pessimism
Optimism

Figure 10. Metrics evolution vs variation in
shape

value depending on the sample size. This problem is very
difficult to address because the samples are not indepen-
dent. However, the analysis and visualization tool provides
a window showing the evolution of the metrics that can be
used to asses whether they have reached a steady state.

The metrics can help also in contexts different from de-
bugging; for instance, instead of comparing a model dis-
tribution and a measurement distribution, they can be used
to compare two different models or two different analysis
techniques.

Future work will focus on extending the debugging ap-
proach to other parameters of stochastic systems such as the
blocking time.

References

[1] L. Abeni and G. Buttazzo. Stochastic Analysis of a Reserva-
tion Based System. In Proc. of the 9th International Work-
shop on Parallel and Distributed Real-Time Systems, Apr.
2001.

[2] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello,
J. M. López, S. L. Min, and O. Mirabella. Stochastic Analy-
sis of Periodic Real-Time Systems in a Real-Time System.
In Proc. of the 23rd IEEE Real-Time Systems Symposium,
pages 289–300, Austin, Texas, Dec. 2002.

[3] J. L. Dı́az, J. M. López, M. Garcı́a, A. M. Campos, K. Kim,
and L. L. Bello. Pessimism in the Stochastic Analysis of
Real-Time Systems: Concept and Applications. In Proc. of
the 25rd IEEE Real-Time Systems Symposium, pages 197–
207, Lisbon, Portugal, Dec. 2004.

[4] J. Entrialgo, J. Garcı́a, and D. F. Garcı́a. Measurement-based
analysis of real-time posix applications. In Proc. of the 7th
IASTED International Conference on Software Engineering
and Applications, Marina del Rey, CA, USA, Nov. 2003.



[5] IEEE. 1003.1, 2004 Edition, Standard for Information Tech-
nology - Portable Operating System Interface (POSIX), Sys-
tem Interfaces. The Institute of Electrical and Electronics
Engineers, 2004.

[6] K. Kim, J. L. Dı́az, L. L. Bello, J. M. López, C. G. Lee, and
S. L. Min. An exact stochastic analysis of priority-driven
periodic real-time systems and its approximations. IEEE
Transactions on Computers, 54(11), Nov. 2005.

[7] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines. In Proc. of the 11th IEEE
Real-Time Systems Symposium, pages 201–209, Dec. 1990.

[8] L. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment. Journal of
ACM, 20(1):46–61, 1973.

[9] S. Manolache, P. Eles, and Z. Peng. Memory and Time-
Efficient Schedulability Analysis of Task Sets with Stochas-
tic Execution Times. In Proc. of the 13th Euromicro Confer-
ence on Real-Time Systems, pages 19–26, Jun. 2001.

[10] S. M. Petters. Worst Case Execution Time Estimation for
Advanced Processor Architectures. PhD thesis, Institute
for Real–Time Computer Systems, Technische Universität
München, Munich, Germany, Sept. 2002.

[11] D. B. Stewart and G. Arora. A tool for analyzing and
fine tuning the real-time properties of an embedded system.
IEEE Trans. Softw. Eng., 29(4):311–326, 2003.

[12] A. Terrasa and G. Bernat. Extracting temporal properties
from real-time systems by automatic tracing analysis. In 9th
Intl Conf. on Real-Time and Embedded Computing Systems
and Applications, 2003.

[13] K. Tindell, A. Burns, and A. J. Wellings. An Extendible Ap-
proach for Analyzing Fixed Priority Hard Real-Time Tasks.
Real-Time Systems, 6:133–151, 1994.

[14] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith. Distrib-
uted real-time systems: monitoring, visualization, debug-
ging, and analysis. John Wiley & Sons, Inc., New York,
NY, USA, 1996.

[15] J. J. P. Tsai and S. J. H. Yang, editors. Monitoring and de-
bugging of distributed real-time systems. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1995.


