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Abstract

This paper describes a stochastic analysis framework for general priority-driven periodic real-time

systems. The proposed framework accurately computes the response time distribution of each task in

the system, thus making it possible to determine the deadline miss probability of individual tasks, even

for systems with a maximum utilization factor greater than 1. The framework is uniformly applied to

general priority-driven systems, including fixed-priority systems (such as Rate Monotonic) and dynamic-

priority systems (such as Earliest Deadline First), and can handle tasks with arbitrary relative deadlines

and execution time distributions. In the framework, both an exact method and approximation methods to

compute the response time distributions are presented and compared in terms of analysis accuracy and
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complexity. We prove that the complexity of the exact method is polynomial in terms of the number of

jobs in a hyperperiod of the task set and the maximum length of the execution time distributions, and

show that the approximation methods can significantly reduce the complexity without loss of accuracy.

Keywords: C.3.d Real-time and embedded systems, D.4.1.e Scheduling, D.4.8.g Stochastic analysis,

G.3.e Markov processes

I. I NTRODUCTION

Most recent research on hard real-time systems has used the periodic task model [1] in ana-

lyzing the schedulability of a given task set where tasks are released periodically. Based on this

periodic task model, various schedulability analysis methods for priority-driven systems have been

developed to provide a deterministic guarantee that all the instances, calledjobs, of every task in

the system meet their deadlines, assuming that every job in a task requires its worst case execution

time [1], [2], [3].

Although this deterministic timing guarantee is needed in hard real-time systems, it is too

stringent for soft real-time applications that only require a probabilistic guarantee that the deadline

miss ratio of a task is below a given threshold. For soft real-time applications, we need to relax

the assumption that every instance of a task requires the worst case execution time in order to

improve the system utilization. This is also needed for probabilistic hard real-time systems [4]

where a probabilistic guarantee close to 0% suffices, i.e. the overall deadline miss ratio of the

system should be below a hardware failure ratio.

Progress has recently been made in the analysis of real-time systems under the stochastic

assumption that jobs from a task require variable execution times. Research in this area can be

categorized into two groups depending on the approach used to facilitate the analysis. The methods

in the first group introduce a worst-case assumption to simplify the analysis (e.g., the critical instant

assumption in Probabilistic Time Demand Analysis [5] and Stochastic Time Demand Analysis [6],

[7]) or a restrictive assumption (e.g., the heavy traffic condition in the Real-Time Queueing

Theory [8], [9]). Those in the second group, on the other hand, assume a special scheduling

model that provides isolation between tasks so that each task can be analyzed independently of

the other tasks in the system (e.g., the reservation-based system addressed in [10] and Statistical
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Rate Monotonic Scheduling [11]).

In this paper, we describe a stochastic analysis framework that does not introduce any worst-case

or restrictive assumptions into the analysis, and is applicable to general priority-driven real-time

systems. The proposed framework builds upon Stochastic Time Demand Analysis (STDA) in

that the techniques used in the framework to compute the response time distributions of tasks

are largely borrowed from the STDA. However, unlike the STDA, which focuses on particular

execution scenarios starting at a critical instant, the proposed framework considers all possible

execution scenarios in order to obtain the exact response time distributions of the tasks. Moreover,

while the STDA addresses only fixed-priority systems such as Rate Monotonic [1] and Deadline

Monotonic [12], our framework extends to dynamic-priority systems such as Earliest Deadline

First [1]. The contributions of the paper can be summarized as follows:

� The framework gives theexact response time distributions of the tasks. It assumes neither

a particular execution scenario of the tasks such as critical instants, nor a particular system

condition such as heavy traffic, in order to obtain accurate analysis results considering all

possible execution scenarios for a wide range of system conditions.

� The framework provides aunified approach to addressing general priority-driven systems,

including both fixed-priority systems such as Rate Monotonic and Deadline Monotonic, and

dynamic-priority systems such as Earliest Deadline First. We neither modify the conventional

rules of priority-driven scheduling, nor introduce other additional scheduling rules such as

reservation scheduling, in order to analyze the priority-driven system as it is.

In our framework, in order to consider all possible execution scenarios in the system, we analyze

a whole hyperperiod of the given task set (which is defined as a period whose length is equal to

the least common multiple of the periods of all the tasks). In particular, to handle even cases where

one hyperperiod affects the next hyperperiod, which occurs when the maximum utilization of the

system is greater than 1, we take the approach of modelling the system as a Markov process over

an infinite sequence of hyperperiods. This modelling leads us to solve an infinite number of linear

equations, so we present three different methods to solve it: one method gives the exact solution,

and the others give approximated solutions. We compare all these methods in terms of analysis
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complexity and accuracy through experiments. It should be noted that our framework subsumes the

conventional deterministic analysis in the sense that, by modelling the worst case execution times

as single-valued distributions, it always produces the same result as the deterministic analysis on

whether a task set is schedulable or not.

The rest of the paper is organized as follows. In Section II, the related work is described in detail.

In Section III, the system model is explained. Sections IV and V describe the stochastic analysis

framework including the exact and the approximation methods. In Section VI, the complexity

of the methods is analyzed, and in Section VII, a comparison between the solutions obtained

by the methods is given, together with other analysis methods proposed in literature. Finally, in

Section VIII, we conclude the paper with directions for future research.

II. RELATED WORK

Several studies have addressed the variability of task execution times in analyzing the schedu-

lability of a given task set. Research in this area can be categorized into two groups depending

on the approach taken to make the analysis possible. The methods in the first group [5], [6], [7],

[8], [9], [13], [14] introduce a worst-case or restrictive assumption to simplify the analysis. Those

in the second group [10], [11] assume a special scheduling model that provides isolation between

tasks so that each task can be analyzed independently of other tasks in the system.

Examples of analysis methods in the first group include Probabilistic Time Demand Analysis

(PTDA) [5] and Stochastic Time Demand Analysis (STDA) [6], [7], both of which target fixed-

priority systems with tasks having arbitrary execution time distributions. PTDA is a stochastic

extension of the Time Demand Analysis [2] and can only deal with tasks with relative deadlines

smaller than or equal to the periods. STDA, on the other hand, which is a stochastic extension

of General Time Demand Analysis [3], can handle tasks with relative deadlines greater than the

periods. Like the original time demand analysis, both methods assume the critical instant where

the task being analyzed and all the higher priority tasks are released or arrive at the same time.

Although this worst-case assumption simplifies the analysis, it only results in an upper bound on

the deadline miss probability, the conservativeness of which depends on the number of tasks and
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the average utilization of the system. Moreover, both analyses are valid only when the maximum

utilization of the system does not exceed 1.

Other examples of analysis methods in the first group are the method proposed by Manolache

et al. [13], which addresses only uniprocessor systems, and the one proposed by Leulseged and

Nissanke [14], which extends to multiprocessor systems. These methods, like the one presented in

this paper, cover general priority-driven systems including both fixed-priority and dynamic-priority

systems. However, to limit the scope of the analysis to a single hyperperiod, both methods assume

that the relative deadlines of tasks are shorter than or equal to their periods and that all the jobs that

miss the deadlines are dropped. Moreover, in [13], all the tasks are assumed to be non-preemptable

to simplify the analysis.

The first group also includes the Real-Time Queueing Theory [8], [9], which extends the classical

queueing theory to real-time systems. This analysis method is flexible, in that it is not limited to a

particular scheduling algorithm and can be extended to real-time queueing networks. However, it is

only applicable to systems where the heavy traffic assumption (i.e., the average system utilization

is close to 1) holds. Moreover, it only considers one class of tasks such that the interarrival times

and execution times are identically distributed.

Stochastic analysis methods in the second group include the one proposed by Abeni and

Buttazzo [10], and the method with Statistical Rate Monotonic Scheduling (SRMS) [11]. Both

assume reservation-based scheduling algorithms so that the analysis can be performed as if each

task had a dedicated (virtual) processor. That is, each task is provided with a guaranteed budget

of processor time in every period [10] or super-period (the period of the next low priority task,

which is assumed to be an integer multiple of the period of the task in SRMS) [11]. So, the

deadline miss probability of a task can be analyzed independently of the other tasks, assuming

the guaranteed budget. However, these stochastic analysis methods are not applicable to general

priority-driven systems due to the modification of the original priority-driven scheduling rules or

the use of reservation-based scheduling algorithms.
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III. SYSTEM MODEL

We assume a uniprocessor system that consists ofn independent periodic tasksS= fτ1; : : : ;τng,

each taskτi (1� i � n) being modeled by the tuple(Ti;Φi;Ci;Di), whereTi is the period of the

task, Φi its initial phase,Ci its execution time, andDi its relative deadline. The execution time

is a discrete random variable* with a given probability mass function (PMF), denoted byfCi(�),

where fCi(c) = PfCi =cg. The execution time PMF can be given by a measurement-based analysis

such as automatic tracing analysis [15], and stored as a finite vector, whose indices are possible

values of the execution time and the stored values are their probabilities. The indices range from

a minimum execution timeCmin
i to a maximum execution timeCmax

i . Without loss of generality,

the phaseΦi of each taskτi is assumed to be smaller thanTi . The relative deadlineDi can be

smaller than, equal to, or greater thanTi .

Associated with the task set, the system utilization is defined as the sum of the utilizations of

all the tasks. Due to the variability of task execution times, the minimumUmin, maximumUmax,

and the average system utilization̄U are defined as∑n
i=1Cmin

i =Ti , ∑n
i=1Cmax

i =Ti, and ∑n
i=1C̄i=Ti ,

respectively. In addition, a hyperperiod of the task set is defined as a period of lengthTH , which

is equal to the least common multiple of the task periods, i.e,TH = lcm1�i�nfTig.

Each task gives rise to an infinite sequence of jobs, whose release times are deterministic. If

we denote thej-th job of taskτi by Ji; j , its release timeλ i; j is equal toΦi +( j�1)Ti. Each job

Ji; j requires an execution time, which is described by a random variable following the given PMF

fCi(�) of the taskτi, and is assumed to be independent of other jobs of the same task and those of

other tasks. However, throughout the paper we use a single indexj for the job subscript, since the

task that the job belongs to is not important in describing our analysis framework. On the other

hand, we sometimes additionally use a superscript for the job notation, to express the hyperperiod

that the job belongs to. That is, we useJ(k)j to refer to thej-th job in thek-th hyperperiod.

The scheduling model we assume is a general priority-driven preemptive one that covers both

fixed-priority systems such as Rate Monotonic (RM) and Deadline Monotonic (DM), and dynamic-

*Throughout this paper, we use a calligraphic typeface to denote random variables, e.g.,C, W, andR, and a non-calligraphic

typeface to denote deterministic variables, e.g.,C, W, andR.
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priority systems such as Earliest Deadline First (EDF). The only limitation is that once a priority is

assigned to a job, it never changes, which is called a job-level fixed-priority model [16]. According

to the priority, all the jobs are scheduled in such a way that, at any time, the job with the highest

priority is always served first. If two or more jobs with the same priority are ready at the same

time, the one that arrived first is scheduled first. We denote the priority of jobJj by a priority

value p j . Note that a higher priority value means a lower priority.

The response time for each jobJj is represented byR j and its PMF by fR j(r) = PfR j =rg.

From the job response time PMFs, we can obtain the response time PMF for any task by averaging

those of all the jobs belonging to the task. The task response time PMFs provide the analyst with

significant information about the stochastic behavior of the system. In particular, the PMFs can

be used to compute the probability of deadline misses for the tasks. The deadline miss probability

DMPi of task τi can be computed as follows:

DMPi = PfRi >Dig= 1�PfRi �Dig (1)

IV. STOCHASTIC ANALYSIS FRAMEWORK

A. Overview

The goal of the proposed analysis framework is to accurately compute thestationaryresponse

time distributions of all the jobs, when the system is in the steady state. The stationary response

time distribution of jobJj can defined as follows:

lim
k!∞

f
R
(k)
j
= f

R
(∞)
j

where f
R
(k)
j

is the response time PMF ofJ(k)j . In this section, we will describe how to compute the

response time distributions of all the jobs in an arbitrary hyperperiodk, and then, in the following

section, explain how to compute the stationary distributions, which are obtained whenk!∞. We

start our discussion by explaining how the response timeR j of a job Jj is determined.

The response time of a jobJj is determined by two factors. One is the pending workload that

delays the execution ofJj , which is observed at its release timeλ j . We call this pending workload

backlog. The other is the workload of jobs that may preemptJj , which are released afterJj . We

call this workloadinterference. Since both the backlog and the interference forJj consist of jobs
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with a priority higher than that ofJj (i.e., with a priority value smaller than the priority valuep j

of Jj ), we can elaborate the two terms top j -backlogand p j -interference, respectively. Thus, the

response time ofJj can be expressed by the following equation

R j =Wpj(λ j)+C j + Ipj (2)

whereWpj(λ j) is the p j -backlog observed at timeλ j , C j is the execution time ofJj , andIpj is

the p j -interference occurring after timeλ j .

In our framework, we compute the distribution of the response timeR j in two steps:backlog

analysisand interference analysis. In the backlog analysis, the stationaryp j -backlog distributions

fWp j (λ j)(�) of all the jobs in a hyperperiod are computed. Then, in the interference analysis,

the stationary response time distributionsfR j(�) of the jobs are determined by introducing the

associated execution time distributionfC j(�) and thep j -interference effectIpj into each stationary

p j -backlog distributionfWp j (λ j)(�).

B. Backlog analysis algorithm

For the backlog analysis, we assume a job sequencefJ1; : : : ;Jjg in which all the jobs have

a priority value smaller than or equal top j . It is also assumed that the stationaryp j -backlog

distribution observed at the release time of the first jobJ1, i.e., fWp j (λ1)(�), is given. In Section V,

it will be explained how the assumed stationary backlog distribution can be computed. Then the

p j -backlog distributionfWp j (λ j)(�) at the release time ofJj can be computed fromfWp j (λ1)(�) by

the algorithm described in this subsection. For the sake of brevity, we will simplify the notation

Wpj(λ j) to W(λ j), i.e., without the subscript denoting the priority levelp j .

Let us first consider how to compute the backlog when the execution times of all the jobs are

given as deterministic values. In this deterministic scenario, the backlogW(λk) at the release time

of each jobJk (1� k< j) can be expressed as follows:

W(λk+1) = maxfW(λk)+Ck� (λk+1�λk);0g (3)

So, once the backlogW(λ1) for the first jobJ1 is given, the series of the backlogfWλ2;Wλ3; : : : ;Wλ j
g

can be calculated by repeatedly applying Equation (3) along the job sequence.
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Fig. 1. An example of backlog analysis using the convolve-shrink procedure

Then we can explain our backlog analysis algorithm as a stochastic extension of Equation (3).

Deterministic variablesW(λk) and Ck are translated into random variablesW(λk) and Ck, and

Equation (3) is translated into a numerical procedure on the associated PMFs. This procedure can

be summarized in the following three steps:

1) The expression “W(λk)+Ck” is translated into convolution between the two PMFs of the

random variablesW(λk) andCk, respectively.

fW(λk)+Ck
(�) =

�
fW(λk)
 fCk

�
(�)

In Figure 1, for example, the arrow annotated with “Convolve” shows such a convolution

operation.

2) The expression “W(λk)+Ck� (λk+1�λk)” is translated into shifting the PMFfW(λk)+Ck
(�)

obtained above by(λk+1� λk) units to the left. In the example shown in Figure 1, the

amount of the shift is 6 time units.

3) The expression “maxfW(λk)+Ck� (λk+1�λk);0g” is translated into summing up all the

probability values in the negative range of the PMF obtained above and adding the sum

to the probability of the backlog equal to zero. In the above example, the probability sum
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is 20=54.

These three steps exactly describe how to obtain the backlog PMFfW(λk+1)(�) from the preceding

backlog PMF fW(λk)(�). So, starting from the first job in the given sequence, for which the

stationary backlog PMFfW(λ1)(�) is assumed to be known, we can compute the stationary backlog

PMF of the last jobJj by repeatedly applying the above procedure along the sequence. We refer

to this procedure as “convolve-shrink”.

C. Interference analysis algorithm

Once thep j -backlog PMF is computed for each jobJj at its release time by the backlog analysis

algorithm described above, we can easily obtain the response time PMF of the jobJj by convolving

the p j -backlog PMF fWp j (λ j)(�) and the execution time PMFfC j(�). This response time PMF is

correct if the jobJj is non-preemptable. However, ifJj is preemptable, and there exist higher

priority jobs following Jj , we have to further analyze thep j -interference forJj , caused by all the

higher priority jobs, to obtain the complete response time PMF.

For the interference analysis, we have to identify all the higher priority jobs followingJj .

These higher priority jobs can easily be found by searching for all the jobs released later than

Jj and comparing their priorities with that ofJj . For the sake of brevity, we represent these jobs

with fJj+1;Jj+2; :::;Jj+k; :::g, while slightly changing the meaning of the notationλ j+k from the

absolute release time to the release time relative toλ j , i.e., λ j+k (λ j+k�λ j).

As in the case of the backlog analysis algorithm, let us first consider how to compute the

response timeRj of Jj when the execution times of all the jobs are given as deterministic values.

In this deterministic scenario, the response timeRj of Jj can be computed by the following

algorithm:

Rj =Wpj(λ j)+Cj ; k= 1

while Rj > λ j+k

Rj = Rj +Cj+k ; k= k+1

(4)

The total numberk of iterations of the “while” loop is determined by the final response time

that does not reach the release time of the next higher priority jobJj+k+1. For an arbitrary value
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Fig. 2. An example of interference analysis using the split-convolve-merge procedure

k, the final response timeRj is given asWpj(λ j)+Cj +∑k
l=1Cj+l .

We can explain our interference analysis algorithm as a stochastic extension of Algorithm (4). We

treat deterministic variablesRj andCj as random variablesR j andC j , and translate Algorithm (4)

into a numerical procedure on the associated PMFs as follows:

1) The expression “R j =Wpj(λ j) +C j ” is translated into fR j(�) =
�

fWp j (λ j)
 fC j

�
(�). This

response time PMF is valid in the interval(0;λ j+1]. For example, in Figure 2, the first

convolution
 shows the corresponding operation.

2) While PfR j >λ j+kg > 0, the expression “R j = R j + C j+k” is translated into convolution

between the partial PMF defined in the range(λ j+k;∞) of the response time PMFfR j(�)

calculated in the previous iteration and the execution time PMFfC j+k
(�). The resulting PMF

is valid in the range(λ j+k;λ j+k+1]. WhenPfR j >λ j+kg= 0, the loop is terminated. In the

example shown in Figure 2, this procedure is described by the two successive convolutions,

where only two higher priority jobsJj+1 andJj+2 are assumed (In this case, all three jobs
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are assumed to have the same execution time distribution).

Note that in the above procedure the number of higher priority jobs we have to consider in

a real system can be infinite. However, in practice, since we are often interested only in the

probability of jobJj missing the deadlineD j , the set of interfering jobs we have to consider can

be limited to the jobs released in the time interval
�
λ j ;λ j +D j

�
. This is because we can compute

the deadline miss probability, i.e.,PfR j >D jg, from the partial response time distribution defined

in the range
�
0;D j

�
, i.e.,PfR j >D jg= 1�PfR j �D jg. Thus, we can terminate the “while” loop of

Algorithm (4) whenλ j+k is greater thanD j . For the example in Figure 2, if the relative deadline

D j of Jj is 7, the deadline miss probability will bePfR j >D jg= 1�11=16= 5=16.

We will refer to the above procedure as “split-convolve-merge”, since at each step the response

time PMF being computed is split, the resulting tail is convolved with the associated execution

time distribution, and this newly made tail and the original head are merged.

D. Backlog dependency tree

In the backlog analysis algorithm, for a given jobJj , we assumed that a sequence of preceding

jobs with a priority higher than or equal to that ofJj and the stationary backlog distribution of the

first job in the sequence were given. In this subsection, we will explain how to derive such a job

sequence for each job in a hyperperiod. As a result, we give abacklog dependency treewhere the

p j -backlog distributions of all the jobs in the hyperperiod can be computed by traversing the tree

while applying the convolve-shrink procedure. This backlog dependency tree greatly simplifies

the steady-state backlog analysis for the jobs, since it reduces the problem to computing only the

stationary backlog distribution of the root job of the tree. In Section V, we will address how to

compute the stationary backlog distribution for the root job.

To show that there exist dependencies between thep j -backlog’s, we first classify all the jobs

in a hyperperiod intoground jobsandnon-ground jobs. A ground job is defined as a job that has

a lower priority than those of all the jobs previously released. That is,Jj is a ground job if and

only if pk � p j for all jobs Jk such thatλk < λ j . A non-ground job is a job that is not a ground

job. One important implication from the ground job definition is that thep j -backlog of a ground
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job is always equal to the total backlog in the system observed at its release time. We call the

total backlogsystem backlogand denote it byW(t), i.e., without the subscriptp j denoting the

priority level. So, for a ground jobJj , Wpj(λ j) =W(λ j).

Let us consider the task set example shown in Figure 3(a). This task set consists of two tasks

τ1 and τ2 with the relative deadlines equal to the periods 20 and 70, respectively. The phasesΦi

of both tasks are zero. We assume that these tasks are scheduled by EDF.

In this example, there are five ground jobsJ1, J2, J5, J6, and J9, and four non-ground jobs

J3, J4, J7, and J8, as shown in Figure 3(b). That is, regardless of the actual execution times

of the jobs,Wp1(λ1) =W(λ1), Wp2(λ2) =W(λ2) (which is under the assumption thatW(λ2)

includes the execution time ofJ1 while W(λ1) does not),Wp5(λ5) =W(λ5), Wp6(λ6) =W(λ6),

andWp9(λ9) =W(λ9). On the contrary, for any of the non-ground jobsJj , Wpj(λ j) 6=W(λ j).

For example,Wp4(λ4) 6=W(λ4) if J2 is still running untilJ4 is released, since the system backlog

W(λ4) includes the backlog left byJ2 while the p4-backlogWp4(λ4) does not.

We can capture backlog dependencies between the ground and non-ground jobs. For each non-

ground jobJj , we search for the last ground job that is released beforeJj and has a priority higher

than or equal to that ofJj . Such a ground job is called thebase jobfor the non-ground job. From

this relation, we can observe that thep j -backlog of the non-ground jobJj directly depends on
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that of the base job. For example, for the task set shown above, the base job ofJ3 andJ4 is J1,

and that ofJ7 and J8 is J5. We can see that, for the non-ground jobJ3, the p3-backlog can be

directly computed from that of the ground jobJ1 by considering only the execution time ofJ1. In

this computation, the existence ofJ2 is ignored becauseJ2 has a lower priority thanJ3. Likewise,

for the non-ground jobJ4, the p4-backlog can also be directly computed from that of the ground

job J1 in the same manner, except for the fact that, in this case, we have to take into account the

arrival of J3 in betweenλ1 andλ4 (sinceJ3 has a higher priority thanJ4).

Note that such backlog dependencies exist even between ground jobs, and can still be captured

under the concept of the base job. The base job ofJ2 is J1, that ofJ5 is J2, and so on. As a result,

all the backlog dependencies among the jobs can be depicted with a tree, as shown in Figure 3(c).

In this figure, each node represents thep j -backlogWpj(λ j) of Jj , each linkWpk(λk)!Wpj(λ j)

represents the dependency betweenWpk(λk) andWpj(λ j), and the label on each link represents

the set of jobs that should be taken into account to computeWpj(λ j) from Wpk(λk).

It is important to understand that this backlog dependency tree completely encapsulates all the

job sequences required in computing thep j -backlog’sWpj(λ j) of all the jobs in the hyperperiod.

For example, let us consider the path fromWp1(λ1) to Wp8(λ8). We can see that the set of labels

found in the path represents the exact sequence of jobs that should be considered in computing

Wp8(λ8) from Wp1(λ1). That is, the job sequencefJ1;J2;J3;J4;J5;J7g includes all the jobs with

a priority higher than or equal to that ofJ8, among all the jobs precedingJ8. This property is

applied for every node in the tree. Therefore, given the stationary root backlog distribution, i.e.,

fWp1 (λ1)(�), we can compute the stationaryp j -backlog distributions of all the other jobs in the

hyperperiod by traversing the tree while applying the convolve-shrink procedure.

Finally, note that there is one optimization issue in the dependency tree. In the cases of comput-

ing Wp3(λ3) and computingWp4(λ4), the associated job sequences arefJ1g andfJ1;J3g, and the

former is a subsequence of the latter. In this case, since we can obtainWp3(λ3) while computing

Wp4(λ4) with the sequencefJ1;J3g, i.e., Wp3(λ3) = Wp4(λ3), the redundant computation for

Wp3(λ3) with the sequencefJ1g can be avoided. This observation is also applied to the case of

non-ground jobsJ7 and J8. It suffices to note that such redundancies can easily be removed by
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certain steps of tree manipulation.

E. Extension to dynamic-priority and fixed-priority systems

In this subsection, we will prove the existence of ground jobs for the job-level fixed-priority

scheduling model [16]. We will also prove the existence of base jobs while distinguishing between

fixed-priority systems and dynamic-priority systems.

Theorem 1. Let S= fτ1; : : : ;τng be a periodic task set, in which each task generates a sequence of

jobs with a deterministic period Ti and phaseΦi . Also, let TH = lcm1�i�nfTig, i.e., the length of a

hyperperiod. Consider a sequence of hyperperiods the first of which starts at time t(0� t < TH).

Then, for any t, if the relative priorities of all jobs in a hyperperiod[t +kTH ; t +(k+1)TH)

coincide with those of all jobs in the next hyperperiod[t +(k+1)TH ; t +(k+2)TH) (k= 0;1; : : :),

it follows that

(a) at least one ground job exists in any hyperperiod.

(b) the same set of ground jobs are found for all the hyperperiods.

Proof. The proof of this theorem can be found in the Appendix.

The key point of the proof is that, in any hyperperiod, a job with the maximum priority value

always has a lower priority than any preceding jobs. From this, it is easy to devise an algorithm

to find all the ground jobs in a hyperperiod. First, we take an arbitrary hyperperiod and simply

find the jobJj with the maximum priority value. This job is a ground one. After that, we find

all the other ground jobs by searching the single hyperperiod starting at the release time of the

ground job, i.e.,[λ j ;λ j +TH). In this search, we simply have to check whether a jobJl in the

hyperperiod has a greater priority value than all the preceding jobs released in the hyperperiod,

i.e., fJj ; : : : ;Jl�1g.

In the following, we will address the existence of the base jobs for dynamic-priority systems

such as EDF.

Theorem 2. For a system defined in Theorem 1, if the priority value p(n)
j of every job J(n)j in

the hyperperiod n (� 2) can be expressed as p(n)
j = p(n�1)

j +∆, where∆ is an arbitrary positive
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constant, any job in a hyperperiod can always find its base job among the preceding ground jobs

in the same hyperperiod or a preceding hyperperiod.

Proof. The proof of this theorem can be found in the Appendix.

For EDF,∆ = TH , since the priority value assigned to each job is the absolute deadline.

Note that in our analysis framework it does not matter whether the base jobJi is found in the

same hyperperiod (sayn) the non-ground jobJj belongs to, or a preceding hyperperiod (sayk),

since the case where the base jobJi is found in a preceding hyperperiod simply means that the

corresponding job sequence fromJi to Jj spans over the multiple hyperperiods from the hyperperiod

k to n. Even in this case, since it is possible to compute the stationary backlog distribution for the

root of the backlog dependency tree that originates from the hyperperiodk, through the steady-

state analysis in Section V, the backlog distribution of such a non-ground jobJj can be computed

along the derived job sequence.

The next possible question will be whether there exists a bound on the search range for the

base jobs. Theorem 3 addresses this problem for EDF.

Theorem 3. For EDF, it is always possible to find the base job of any non-ground job Jj in the

time window[λ j � (Dmax+TH);λ j ], where Dmax= max1�i�nDi . That is, the search range for the

base job is bounded by Dmax+TH .

Proof. The proof of this theorem can be found in the Appendix.

Note that if we consider a case whereDmax< TH (since the opposite case is rare in practice),

Theorem 3 means that it is sufficient to search at most one preceding hyperperiod to find the base

jobs of all the non-ground jobs in a hyperperiod.

On the contrary, in fixed-priority systems such as RM and DM, the base jobs of the non-ground

jobs do not exist among the ground jobs (Recall that, for such systems, Theorem 2 does not hold,

since∆ = 0). In such systems, all jobs from the lowest priority taskτn are classified as ground jobs

while all jobs from the other tasks are non-ground jobs. In this case, since any ground job always

has a lower priority than any non-ground job, we cannot find the base job for any non-ground job

(even if all the preceding hyperperiods are searched).
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Note, however, that this special case does not compromise our analysis framework. It is still

possible to compute the backlog distributions of all the jobs by considering each possible priority

level. That is, we can consider a subset of tasksfτ1; : : : ;τig for each priority leveli = 1; : : : ;n,

and compute the backlog distributions of all the jobs from taskτi, since the jobs fromτi are all

ground jobs in the subset of the tasks, and there always exist backlog dependencies between the

ground jobs.

Therefore, the only difference between dynamic-priority systems and fixed-priority systems is

that for the former the backlog distributions of all the jobs are computed at once with the single

backlog dependency tree, while for the latter they are computed by iterative analysis over then

priority levels, which results inn backlog dependency lists.

V. STEADY-STATE BACKLOG ANALYSIS

In this section, we will explain how to analyze the steady-state backlog of a ground job, which

is used as the root of the backlog dependency tree or the head of the backlog dependency list.

In this analysis, for the ground jobJj , we have to consider an infinite sequence of all the jobs

released beforeJj , i.e.,f: : : ;Jj�3;Jj�2;Jj�1g, since all the preceding jobs contribute to the “system

backlog” observed byJj .

In Section V-A, we will prove the existence of the stationary system backlog distribution, and in

Sections V-B and V-C, explain the exact and the approximation methods to compute the stationary

distribution. Finally, in Section V-D, it will be discussed how to safely truncate the exact solution,

which is infinite, in order to use it as the root of the backlog dependency tree.

A. Existence of the stationary backlog distribution

The following theorem states that there exists astationary(or limiting) system backlog distri-

bution, as long as the average system utilizationŪ is less than 1.

Theorem 4. Let us assume an infinite sequence of hyperperiods, the first of which starts at the

release timeλ j of the considered ground job Jj . Let fBk
(�) be the distribution of the system backlog

Bk observed at the release time of the ground job J(k)
j , i.e., at the beginning of hyperperiod k.
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Then, if the average system utilization̄U is less than 1, there exists a stationary (or limiting)

distribution fB∞(�) of the system backlogBk such that

lim
k!∞

fBk
= fB∞ .

Proof. The proof can be found in [17].

For the special case whereUmax� 1, the system backlog distributionsfBk
(�) of all the hyper-

periods are identical. That is,fB1 = � � � = fBk
= � � � = fB∞ . In this case, the stationary backlog

distribution fB∞(�) can easily be computed by considering only the finite sequence of the jobs

released before the release time of the ground jobJj . That is, we simply have to apply the convolve-

shrink procedure along the finite sequence of jobs released in[0;λ j), assuming that the system

backlog at time 0 is 0 (i.e.,PfW(0)=0g= 1). Therefore, for the special case whereUmax� 1, the

following steady-state backlog analysis is not needed.

B. Exact solution

For a general case whereUmax> 1, in order to compute the exact solution for the stationary

backlog distribution fB∞(�), we show that the stochastic process defined with the sequence of

random variablesfB0;B1; : : : ;Bk; : : :g is a Markov chain. To do this, let us express the PMF of

Bk in terms of the PMF ofBk�1 using the concept of conditional probabilities.

PfBk=xg= ∑
y
PfBk�1=ygPfBk=x jBk�1=yg (5)

Then we can see that the conditional probabilitiesPfBk=x jBk�1=yg do not depend onk, since

all hyperperiods receive the same sequence of jobs with the same execution time distributions.

That is, PfBk=x j Bk�1=yg = PfB1=x j B0=yg. This leads us to the fact that the PMF ofBk

depends only on that ofBk�1, and not on those offBk�2;Bk�3; : : :g. Thus, the stochastic process

is a Markov chain. We can rewrite Equation (5) in matrix form as follows

bk = Pbk�1 (6)

wherebk is a column vector
�
PfBk=0g;PfBk=1g; : : :

�|
, i.e., the PMF ofBk, andP is the Markov
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matrix, which consists of the transition probabilitiesP(x;y) defined as

P(x;y) = by(x) = PfBk=x jBk�1=yg= PfB1=x jB0=yg:

Thus, the problem of computing the exact solutionπππ for the stationary backlog distribution,

i.e.,
�
PfB∞=0g;PfB∞=1g; : : :

�|
, is equivalent to solving the equilibrium equationπππ= Pπππ.

However, the equilibrium equationπππ = Pπππ cannot be directly solved, since the number of

linear equations obtained from it is infinite. Theoretically, whenk! ∞, the system backlog can

be arbitrarily long, sinceUmax> 1. This means that the exact solutionπππ has an infinite length,

and the Markov matrix is therefore also of infinite size. We address this problem by deriving a

finite set of linear equations that is equivalent to the original infinite set of linear equations. This

is possible due to the regular structure of the Markov matrix proven below.

P =

0
BBBBBBBBBBBBBBBBBBBB@

b0(0) b1(0) b2(0) : : : br(0) 0 0 0

b0(1) b1(1) b2(1) : : : br(1) br(0) 0 0

b0(2) b1(2) b2(2) : : : br(2) br(1) br(0) 0

...
...

... : : :
... br(2) br(1)

. . .

...
...

... : : :
...

... br(2)
. . .

b0(mr) b1(mr) b2(mr) : : : br(mr)
...

...
. . .

0 0 0 : : : 0 br(mr)
...

. . .

0 0 0 : : : 0 0 br(mr)
. . .

0 0 0 : : : 0 0 0
. . .

...
...

... : : :
...

...
...

. . .

1
CCCCCCCCCCCCCCCCCCCCA

Each columny in the Markov matrixP is the backlog PMF observed at the end of a hyperperiod

when the amount of the backlog at the beginning of the hyperperiod isy. The backlog PMF of the

columny can be calculated by applying the convolve-shrink procedure (in Section IV-B) along the

whole sequence of jobs in the hyperperiod, assuming that the initial backlog is equal toy. So, the

regular structure found in the Markov matrix, i.e., the columnsr, r +1, r +2, ..., with the same

backlog PMF only shifted down by one position, means that there exists a valuer for the initial

backlog from which onwards the backlog PMF observed at the end of the hyperperiod is always

the same, only shifted one position to the right in the system. The valuer is the maximum sum
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of all the possible idle times occurring in a hyperperiod. It is equal to

r = TH(1�Umin)+Wmin (7)

whereWmin is the system backlog observed at the end of the hyperperiod when the initial system

backlog is zero and all the jobs have minimum execution times (Wmin is usually zero unless most

of the workload is concentrated at the end of the hyperperiod). If the initial backlog isr, the whole

hyperperiod is busy, and thus the backlog PMF observed at the end of the hyperperiod is simply

the result of convolving the execution time distributions of all the jobs, shifted(TH� r) units to

the left. The length of the backlog PMF is(mr +1), wheremr is the index of the last non-zero

element in columnr. This observation is analogously applied to all cases where the initial backlog

is larger thanr.

Using the above regularity, we can derive the equivalent finite set of linear equations as follows.

First, we take the first(mr +1) linear equations fromπππ = Pπππ, which correspond to rows 0 to

mr in the Markov matrix. The number of unknowns appearing in the(mr +1) linear equations

is (r +mr +1), i.e., fπ0;π1; : : : ;πr+mrg. Next, we deriver additional equations from the fact that

πx! 0 whenx!∞, in order to complete the finite set of linear equations, i.e.,(r +mr +1) linear

equations with the(r +mr +1) unknowns. For this derivation, from rows(mr +1), (mr +2), ... in

the Markov matrix, we extract the following equation:

Qx+1 = AQx x�mr +1 (8)

where

Qx = [πx�d;πx�d+1; : : : ;πx�1;πx;πx+1; : : : ;πx�d+mr�1]
|; (d = mr � r)

A =

0
BBBBBBBBB@

0 1 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 1

�br(mr)=br(0) �br(mr �1)=br(0) : : : �br(d+1)=br(0) 1�br(d)=br(0) �br(d�1)=br(0) : : : �br(1)=br (0)

1
CCCCCCCCCA

Then, by diagonalizing the companion-form matrixA, it can be shown that the general form

of πx is expressed as follows:
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πx =
mr

∑
k=1

akλ x�mr�1
k (9)

wherefλ1;λ2; : : : ;λmrg are the eigenvalues obtained by the matrix diagonalization, and the as-

sociated coefficientsak are a linear combination offπr+1;πr+2; : : : ;πr+mrg. Since it has already

been proved in [17] that in Equation (9) there exist(r +1) eigenvaluesλk such thatjλkj � 1, the

associated coefficientsak are equated to 0 because the condition thatπx! 0 whenx! ∞ is met

only in this case. As a result,(r +1) additional linear equations are obtained, but since one linear

equation is always degenerate,r linear equations remain.

Therefore, the complete set of linear equations is composed of the first(mr +1) linear equations

taken fromπππ= Pπππ, and ther linear equations obtained by equating to 0 all the coefficientsak

such thatjλkj � 1. Then the set of(r +mr +1) linear equations with the(r +mr +1) unknowns

can be solved with a numerical method, and as a result the solution forfπ0;π1; : : : ;πr+mrg is

obtained. Once the solution is given, we can complete the general form ofπx, since all the other

unknown coefficientsak, such thatjλkj < 1, are calculated from the solution. Therefore, we can

finally generate the infinite stationary backlog distribution with the completed general form. For

more information about the above process, the reader is referred to [17], [18].

C. Approximated solutions

Markov matrix truncation method: One possible approximation of the exact solution is to

truncate the Markov matrixP to a finite square matrixP0. That is, we approximate the problem of

πππ=Pπππ to πππ0=P0πππ0, whereπππ0= [π00;π
0
1;π

0
2; : : : ;π

0
p] andP0 is a square matrix of size(p+1), which

consists of the elementsP(x;y) (0� x;y� p) of the Markov matrixP. The resulting equation is an

eigenvector problem, from which we can calculate the approximated solutionπππ0 with a numerical

method. Among the calculated eigenvectors, we can choose as the solution an eigenvector whose

eigenvalue is equal to or sufficiently close to 1. In order to obtain a good approximation of the

exact solutionπππ, the truncation pointp should be increased as much as possible, which makes

the eigenvalue closer to 1.
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Iterative method: Another approximation method, which does not require the Markov matrix

derivation, is simple iteration of the backlog analysis algorithm for the system backlogBk over a

sufficient number of hyperperiods. Since Theorem 4 guarantees thatfBk
(�) converges towards

fB∞(�), we can computefB1 , fB2 , ..., fBk
, in turn, until convergence occurs. That is, while

monitoring the quadratic differencejj fBk
� fBk�1 jj (def. jjx�yjj= 2

p
∑i(xi�yi)2), we can continue

the computation offBk
(�)’s until the difference falls below a given thresholdε.

For both approximation methods, it is important to choose the associated control parameters

appropriately, i.e., the truncation point and the number of iterations, respectively. In general, asŪ

approaches 1, a larger value should be used for the control parameters, since the probability values

of the stationary backlog distribution spread more widely. Note that, by choosing an appropriate

value for the control parameters, we can achieve a trade-off between analysis accuracy and the

computational overheads required to obtain the approximated solution. We will address this issue

in Section VII-A.

D. Safe truncation of the exact solution

As mentioned earlier, the stationary backlog distribution has an infinite length whenUmax> 1.

So, in practice, to use the infinite solution obtained by the exact method as the root of the backlog

dependency tree, we have to truncate the solution at a certain point. In this subsection, we show

that the use of such a truncated solution is safe in that it is “more pessimistic” than the original

infinite solution, thus giving an upper bound on the deadline miss probability for each task.

Let f 0
B∞

(�) be the solution obtained by truncating the original infinite solution at pointM. That

is, the truncated solutionf 0
B∞

(�) is expressed as follows:

f 0B∞
(w) =

8>><
>>:

fB∞(w) w�M

0 w> M

The truncated solution is not a complete distribution, since the total sum of the nonzero

probabilities is less than 1. In other words, the truncated solution has a “deficit” of∑w>M fB∞(w).
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However, it is possible to say thatf 0
B∞

(�) is more pessimistic thanfB∞(�) in the sense that

t

∑
w=0

f 0B∞
(w)�

t

∑
w=0

fB∞(w) for any t.

This means that the use of the truncated distributionf 0
B∞

(�) always produces results which are

more pessimistic than that of the original distributionfB∞(�). Thus, it leads to a higher deadline

miss probability for each task than the original one.

VI. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity of our analysis framework, dividing

it into two parts: (1) the complexity of the backlog and interference analysis, and (2) the complexity

of the steady-state backlog analysis. In this complexity analysis, to make the analysis simple and

safe, we introduce two assumptions. One assumption is that we regard the deterministic releases

of jobs in the hyperperiod as random releases which follow an interarrival time distribution. So,

if the total number of jobs in the hyperperiod isn, the interarrival time distribution is understood

as a random distribution with a mean valuēT = TH=n. The other assumption is that all the jobs

in the hyperperiod have execution time distributions of the same lengthm. This simplification is

safe, since we can make execution time distributions of different lengths have the same length by

zero-padding all the distributions other than the longest one.

A. Complexity of the backlog and interference analysis

To safely analyze the complexity of the backlog analysis, we assume that, for any jobJj in

the hyperperiod, all the preceding jobsfJ1; : : : ;Jj�1g are involved in computing thep j -backlog

distribution. That is, it is assumed that thep j -backlog distribution can only be computed by

applying the convolve-shrink procedure to the stationary backlog distribution ofJ1 along the

whole sequence of preceding jobs. This scenario is the worst case that can happen in computing

the p j -backlog distribution, since the set of jobs required to compute thep j -backlog distribution

does not necessarily cover all the preceding jobs. So, by assuming the worst case scenario for

every jobJj in the hyperperiod, we can safely ignore the complex backlog dependencies among

the jobs.
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Without loss of generality, assuming that the truncated lengthM of the stationary backlog

distribution of J1 is expressed as a multiple of the execution time distribution lengthm, i.e.

s�m, let us consider the process of applying the convolve-shrink procedure to each job in the

sequencefJ1; : : : ;Jjg. Each convolution operation increases the length of the backlog distribution

by (m�1) points, and each shrink operation reduces the length byT̄ points on average. Note that,

if T̄ � (m�1), the backlog distribution length remains constant on average, and thus the convolve-

shrink procedure has the same cost for all the jobs in the sequence. However, ifT̄ ! 0, which

implies thatUmax becomes significantly high, the backlog distribution length always increases

approximately bym points for each iteration. Assuming this pessimistic case forT̄, the complexity

of the j-th iteration of the convolve-shrink procedure isO((s+ j�1)m2), since thej-th iteration

is accompanied by convolution between the backlog distribution of length(s+ j�1)m and the

associated execution time distribution of lengthm. So, the complexity of computing the singlep j -

backlog distribution from the stationary backlog distribution issm2+(s+1)m2+ � � �+(s+ j�1)m2,

i.e., O( j2m2). Therefore, the total complexity* of computing thep j -backlog distributions of all

the jobsfJ1; : : : ;Jng in the hyperperiod isO(n3m2).

Likewise, the complexity of the interference analysis can be analyzed as follows. First, let us

consider the complexity for a single jobJj . As explained above, the length of thep j -backlog

distribution ofJj for which the interference analysis is to be applied is(s+ j�1)m, so the initial

response time distribution (without any interference) will have a length of(s+ j)m. We can assume

that there exists a constant valuek (calledinterference degree) that represents the maximum number

of interfering jobs, within the deadlines, for any job in the hyperperiod. Then the split-convolve-

merge procedure is appliedk times to the initial response time distribution ofJj . We can see that

the convolution at thei-th iteration of the technique has a complexity ofO((l i� iT̄)m), wherel i

is the length of the response time distribution produced by the(i�1)-th iteration. That iteration

increases the response time distribution by(m�1) points. So, assuming that̄T! 0, we can say

that thei-th iteration has a complexity ofO((s+ j + i)m2), since l i = (s+ j + i�1)m. Thus, the

*In this analysis, we have assumed that the associated backlog dependency tree is completely built by considering only all the

jobs in a single hyperperiod. However, if more than one hyperperiod were to be considered for the complete construction of the

backlog dependency tree, the termn in O(n3m2) should be replaced with the total number of jobs in the multiple hyperperiods.
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complexity of applying the split-convolve-merge procedurek times to the initial response time

distribution is (s+ j)m2+(s+ j +1)m2+ � � �+(s+ j + k�1)m2, i.e. O(k2m2). Therefore, if we

consider all then jobs in the hyperperiod, the total complexity of the interference analysis is

O(nk2m2). In particular, by assuming thatk < n, this complexity can be expressed asO(n3m2).

This assumption is reasonable, since the fact thatk� n means that every job in the hyperperiod

has a relative deadline greater than or equal to the length of the hyperperiod, which is unrealistic

in practice.

B. Complexity of the steady-state backlog analysis

The complexity of the steady-state backlog analysis is different, depending on the solution

method used to compute the stationary backlog distribution. First, let us investigate the complexity

of the exact method. The exact method consists of three steps: Markov matrixP derivation,

companion-form matrixA diagonalization, and solving a system of linear equations. The com-

plexity of the Markov matrix derivation is equivalent to that of computingr times the system

backlog distribution observed at the end of a hyperperiod from that assumed at the beginning

of the hyperperiod, by applying the convolve-shrink procedure along the whole sequence of jobs

fJ1; : : : ;Jng. So, the complexity isO(rn2m2), sinceO(n2m2) is the complexity of computing once

the system backlog distribution observed at the end of the hyperperiod withn jobs. The complexity

of the companion-form matrixA diagonalization isO(m3
r ), since the diagonalization of a matrix

with sizel has a complexity ofO(l3) [19]. However, note thatmr is smaller thannm, since(mr +1)

denotes the length of the backlog distribution obtained by convolvingn execution time distributions

of lengthm. So, the complexity of diagonalizing the companion-form matrixA can be expressed

as O(n3m3). Finally, the complexity of solving the system of linear equations isO((mr + r)3),

since solving a system ofl linear equations also has a complexity ofO(l3) [20]. This complexity

can also be expressed asO((nm+ r)3), sincemr < nm. Therefore, the total complexity of the

exact method isO(rn2m2) + O(n3m3) + O((nm+ r)3). This complexity expression can be further

simplified toO(n3m3) by assuming thatr < nm. This assumption is reasonable, sincer < TH = nT̄

and we can assume that̄T < m when T̄! 0.
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Next, let us consider the complexity of the Markov matrix truncation method. In this case,

since the complexity also depends on the chosen truncation pointp, let us assume that the value

p is given. Then we can see that the complexity* of deriving the truncated Markov matrixP

is O(pn2m2), and the complexity of solving the system ofp linear equations through matrix

diagonalization isO(p3). Thus, the total complexity isO(pn2m2) + O(p3).

Finally, let us consider the complexity of the iterative method. In this case, the complexity

depends on the number of hyperperiods over which the backlog analysis is iterated for convergence.

If the number of the hyperperiods isI , the complexity isO(I2n2m2), since the convolve-shrink

procedure should be applied to a sequence ofIn jobs.

However, we cannot directly compare the complexities of all the methods, since we do not know

in advance the appropriate values for the control parametersp and I that can give solutions of the

same accuracy. In order to obtain insight as to how the control parameters should be chosen, we

have to investigate system parameters that can affect the accuracy of the approximation methods.

This issue will be addressed in the following section.

VII. E XPERIMENTAL RESULTS

In this section, we will give experimental results obtained using our analysis framework. First, we

compare all the proposed solution methods to compute the stationary system backlog distribution,

in terms of analysis complexity and accuracy. In this comparison, we vary the system utilization

to see its effect on each solution method, and also compare the results with those obtained by

Stochastic Time Demand Analysis (STDA) [6], [7]. Secondly, we evaluate the complexity of

the backlog and interference analysis by experiments, in order to corroborate the complexity

asymptotically analyzed in the previous section. In these experiments, while varyingn (the number

of jobs), m (the maximum length of the execution time distributions),T̄ (the average interarrival

time), andk (the interference degree), we investigate their effects on the backlog and interference

analysis.

*Note that, when the truncation pointp is larger thanr, the complexity is reduced toO(rn2m2), since the last(p� r) columns

in the Markov matrix can be replicated from ther-th column.
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task set Ti Di

execution times utilizations

Cmin
i C̄i Cmax

i Umin Ū Umax

A
τ1 20 20 4 6 10

.58 .82 1.27τ2 60 60 12 16 22

τ3 90 90 16 23 36

B
τ1 20 20 4 6 10

.58 .87 1.27τ2 60 60 12 17 22

τ3 90 90 16 26 36

C
τ1 20 20 4 7 10

.58 .92 1.27τ2 60 60 12 17 22

τ3 90 90 16 26 36

C1
τ1 20 20 3 7 11

.46 .92 1.38τ2 60 60 10 17 24

τ3 90 90 13 26 39

C2
τ1 20 20 2 7 12

.34 .92 1.50τ2 60 60 8 17 26

τ3 90 90 10 26 42

TABLE I

TASK SETS USED IN THE EXPERIMENTS

A. Comparison between the solution methods

To investigate the effect of system utilization on each solution method to compute the stationary

system backlog distribution, we use the task sets shown in Table I. All the task sets consist of 3

tasks with the same periods, the same deadlines, and null phases, which result in the same backlog

dependency tree for a given scheduling algorithm.

The only difference in the task sets is the execution time distributions. For task sets A, B, and

C, the minimum and maximum execution times for each task do not change, while the average

execution time is varied. In this case, since the time needed for the backlog and interference

analysis is constant, if a system backlog distribution of the same length is used as the root of the

backlog dependency tree, we can evaluate the effect of the average system utilizationŪ on the

stationary system backlog distribution. On the other hand, for task sets C, C1, and C2, the average

execution time of each task is fixed, while the whole execution time distribution is gradually

stretched. In this case, we can evaluate the effect of the maximum system utilizationUmax on the

stationary system backlog distribution, while fixing the average system utilizationŪ .

Table II summarizes the results of our stochastic analysis and, for the case of RM, also the results

obtained by STDA. The table shows the deadline miss probability (DMP) for each task obtained

from the stationary system backlog distribution computed by each solution method (i.e., exact,
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task set
RM EDF

simulation STDA exact trunc iterative simulation exact trunc iterative

A
τ1 .0000 � .0000 .0000 .0000 .0001 � .0000 .0001 .0001 .0001

τ2 .0000 � .0000 .0000 .0000 .0000 � .0000 .0000 .0000 .0000

τ3 .0940 � .0025 .3931 .0940 .0940 .0940 .0000 � .0000 .0000 .0000 .0000

B
τ1 .0000 � .0000 .0000 .0000 .0013 � .0002 .0013 .0013 .0013

τ2 .0000 � .0000 .0000 .0000 .0005 � .0002 .0005 .0005 .0005

τ3 .2173 � .0033 .6913 .2170 .2170 .2170 .0000 � .0001 .0000 .0000 .0000

C
τ1 .0000 � .0000 .0000 .0000 .0223 � .0013 .0224 .0224 .0224

τ2 .0000 � .0000 .0000 .0000 .0168 � .0014 .0169 .0169 .0169

τ3 .3849 � .0052 .9075 .3852 .3852 .3852 .0081 � .0011 .0081 .0081 .0081

C1
τ1 .0000 � .0000 .0000 .0000 .0626 � .0031 .0630 .0627 .0627

τ2 .0000 � .0000 .0000 .0000 .0604 � .0038 .0610 .0607 .0607

τ3 .4332 � .0065 .9209 .4334 .4334 .4334 .0461 � .0032 .0466 .0463 .0463

C2
τ1 .0000 � .0000 .0000 .0000 .1248 � .0058

N.A.
.1250 .1250

τ2 .0002 � .0001 .0018 .0002 .0002 .0002 .1293 � .0064 .1296 .1296

τ3 .4859 � .0081 .9339 N.A. .4860 .4860 .1136 � .0063 .1138 .1138
TABLE II

ANALYSIS ACCURACY COMPARISON BETWEEN THE SOLUTION METHODS (DEADLINE MISS PROBABILITY)

Markov matrix truncation, iterative), and the average deadline miss ratio (DMR) and standard

deviation obtained from simulations. For the truncation and iterative methods, the values used for

the control parametersp and I are shown in Table III (This will be explained later). The average

DMR is obtained by averaging the deadline miss ratios measured from 100 simulation runs of each

task set, performed during 5000 hyperperiods. To implement the exact method and the Markov

matrix truncation method, we used the Intel linear algebra package called Math Kernel Library

5.2 [21].

From Table II, we can see that our analysis results are almost identical to the simulation results,

regardless of the solution method used. For the case of RM, the analysis results obtained by STDA

are also given, but we can observe significant differences between the DMPs given by STDA and

those obtained by our analysis. In the case of taskτ3 in task set A, the DMP given by STDA

(39.3%) is more than four times that given by our analysis (9.4%). Moreover, asŪ or Umax

increases, the DMP computed by STDA gets even worse. This results from the critical instant

assumption made in STDA.

On the other hand, our implementation of the exact method could not provide a numerically

valid result for task set C2 (in the case of RM, only for taskτ3). This is because the numerical

package we used, which uses the 64-bit floating point type, may result in an ill-conditioned set of
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task
SSBD computation time (seconds)

set exact
trunc iterative

δ=10�3 δ=10�6 δ=10�9 δ=10�3 δ=10�6 δ=10�9

A .13
.00 .00 .00 .00 .00 .00

p=2 p=15 p=25 I=2 I=2 I=3

B .13
.00 .00 .01 .00 .00 .01

p=8 p=23 p=37 I=2 I=3 I=6

C .15
.01 .03 .07 .00 .01 .03

p=29 p=63 p=96 I=4 I=12 I=20

C1 .31
.02 .10 .25 .01 .05 .21

p=54 p=115 p=173 I=7 I=20 I=35

C2 N.A.
.07 .31 .82 .02 .23 .88

p=86 p=181 p=272 I=10 I=30 I=52
TABLE III

ANALYSIS TIME COMPARISON BETWEEN THE SOLUTION METHODS

linear equations when a significantly small probability valuebr(0) is used as the divisor in making

the companion-form matrixA (Recall from Section V-B thatbr(0) is the probability that all the

jobs in the hyperperiod have the minimum execution times). In the case of C2, the probability

valuebr(0) was 5�10�17. This is also the reason why a small difference is observed between the

DMP computed by the exact method and those computed by the approximation methods for task

set C1, scheduled by EDF. However, note that this precision problem can be overcome simply by

using a numerical package with a higher precision.

Table III shows in the case of EDF the analysis time* required by each solution method to

compute the stationary system backlog distributions used to produce the results in Table II. The

analysis time does not include the time taken by the backlog dependency tree generation, which

is almost 0, and the time required by the backlog and interference analysis, which is less than 10

ms. The table also shows the values of the control parameters,p and I , used for the truncation

and iterative methods. For fair comparison between the two approximation methods, we define

an accuracy levelδ to be the quadratic difference between the exact solution of the stationary

system backlog distributionSSBDexact and the approximated solution computed by either of the

methodsSSBDapprox, i.e., δ = jjSSBDexact�SSBDapproxjj. In the evaluation ofδ, however, due to

the numerical errors that can be caused by our implementation of the exact method, we do not

*The analysis time was measured with a Unix system call calledtimes() on a personal computer equipped with a Pentium

Processor IV 2.0 GHz and 256 MB main memory.
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refer to the solution given by our implementation asSSBDexact, but to the solution obtained by

infinitely applying the iterative method to the corresponding task set until the resulting solution

converges.

In Table III, we can see both the SSBD computation time and the associated control parameters

used to obtain solutions with the required accuracy levelsδ = 10�3;10�6;10�9 (The DMPs shown

in Table II for the truncation and iterative methods were obtained at an accuracy level ofδ = 10�6).

From the results shown for task sets A to C, we can see that, asŪ increases, the analysis time also

rapidly increases for the truncation and iterative methods, while it stays almost constant for the

exact method. The reason for this is that asŪ increases, the probability values of the stationary

backlog distribution spread more widely, so both approximation methods should compute the

solution for a wider range of the backlog. That is, both methods should use a larger value for the

associated control parameters,p and I , in order to achieve the required accuracy level. For the

exact method, on the contrary, this spread of the stationary probability values does not affect the

analysis time, since the method originally derives a general form solution from which the SSBD

can be completely generated.

The above observation is analogously applied for the results from task sets C to C2. Due to

the increasingUmax, the SSBD spreads even more widely, so the truncation and iterative methods

should increase the associated control parameters even more in order to achieve the required

accuracy level. We can see that the analysis time taken by the exact method also increases,

but this is not because the stationary backlog distribution spreads, but because the size of the

resulting companion-form matrixA becomes large due to the increasing length of the execution

time distributions.

In summary, ifŪ and/orUmax is significantly high, the approximation methods require a long

computation time for high accuracy, possibly larger than that of the exact method. However, if

Ū is not close to 1, e.g., less than 0.8, the methods can provide highly accurate solutions at a

considerably lower complexity.
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Fig. 4. Backlog analysis time

B. Complexity evaluation of the backlog and interference analysis

To evaluate the complexity of the backlog and interference analysis, we generated synthetic

systems, varying the system parametersn, m, and T̄, while fixing Ū . That is, each system

generated is composed ofn jobs with the same execution time distribution of lengthm and

mean interarrival timeT̄. The shapes of the execution time distribution and the interarrival time

distribution of the jobs are determined in such a way that the fixed average system utilization

is maintained, even if they have no influence on the complexity of the backlog and interference

analysis (Recall that the backlog and interference analysis time is not affected by the actual values

of the probabilities composing the distributions; the probability values may only affect the analysis

time of the stationary system backlog distribution by changing the average system utilizationŪ).

We do not have to specify the interference degreek at the synthetic system generation stage, since

it can be arbitrarily set prior to interference analysis of the resulting system.

For each system generated, we perform backlog and inteference analysis, assuming a null

backlog at the beginning of the analysis. For each of then jobs, we measure the time taken by

backlog analysis and interference analysis separately. In this measurement, the backlog analysis

time for the j-th job is defined as the time taken by applying the convolve-shrink procedure from

the first jobJ1 (with the null backlog) to jobJj .

Figure 4 shows the backlog analysis time measured for each jobJj in seconds, while varying

m and T̄. Note that both the x-axis and the y-axis are in logarithmic scale. From this figure we

can see that the backlog analysis time for each job increases in polynomial orderO( j2m2), as
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Fig. 5. Interference analysis time

analyzed in the previous section. However, note that, due to the backlog dependencies, the backlog

analysis for thej-th job may be efficiently performed in a real system by reusing the result of

the backlog analysis for some close preceding jobJi (i < j). So, the backlog analysis time for

real jobs may be significantly lower than that expected from the figure. Moreover, also note that

in the case wherēT = m, the backlog analysis time slowly increases as the value ofj increases,

since the backlog distribution length rarely grows due to the large interarrival times of the jobs.

Figure 5(a) shows the interference analysis times measured for the 100th, 250th, 500th, and

1000th jobs in seconds, while only varying the interference degreek. Note that both the x-axis

and the y-axis are still in logarithmic scale. From this figure, we can see that the interference

analysis time for a single job also increases in polynomial orderO(k2m2) as the interference

degree increases. Note, however, that the interference degree considered before the deadline is

usually very small in practice. On the other hand, Figure 5(b) shows the interference analysis

times measured for each jobJj while fixing all the other system parameters. In this figure, we can

indirectly see the effect of the length of thep j -backlog distribution for thej-th job to which the

interference analysis is applied. As thep j -backlog distribution length increases, the interference

analysis time also increases, but slowly.

VIII. C ONCLUSIONS AND FUTURE WORK
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In this paper we have proposed a stochastic analysis framework to accurately compute the

response time distributions of tasks for general priority-driven periodic real-time systems. We

have shown that the proposed analysis framework can be uniformly applied to general priority-

driven system including both fixed-priority systems such as RM and DM, and dynamic-priority

systems such as EDF, by proving the backlog dependency relations between all the jobs in a

hyperperiod. In our framework, the system is modeled as a Markov chain, and the stationary

backlog distribution is computed by solving the Markov matrix, which is used as input to the formal

structure encapsulating the backlog dependencies. This approach greatly reduces the complexity

of the whole steady-state analysis. It has also been shown that the complexity of the exact

method to compute the stationary backlog distribution and thus the response time distributions

is O(n3m3), and that the approximation methods can significantly reduce the complexity, without

loss of accuracy, e.g., when the average system utilizationŪ is less than 0.8. For future work,

we aim to develop a strategy to choose an appropriate value for the control parameters of the

approximation methods, in particular investigating the relationship between the system utilization

and the convergence rate of the stationary backlog distribution.

APPENDIX

Proof of Theorem 1

(a) Assume that all the jobs have distinct priority values. If there exist jobs with the same

priority value, they can always be reassigned distinct priority values while respecting the FCFS

(First Come First Serve) principle or a user-defined principle. Then for any hyperperiodk, i.e.,

[t +kTH ; t +(k+1)TH), we can find a jobJj with the maximum priority valuepmax in the hy-

perperiod. This guarantees thatJj has a higher priority value (or a lower priority) than all the

preceding jobs released in[t +kTH ;λ j). Then, since the previous instance ofJj released at time

λ j �TH has a lower priority value thanJj , and any job released in[λ j �TH ; t +kTH) has a lower

priority value than the previous instance, it follows thatJj even has a higher priority value than

all the jobs released in[λ j �TH ;λ j). Likewise, it can be shown thatJj has a higher priority value

than all the jobs released in[λ j �2TH ;λ j), [λ j �3TH ;λ j), and so on. Therefore,Jj is a ground
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job, and for any hyperperiod, there exists at least one ground job.

(b) This is straightforward from the proof of (a).

Proof of Theorem 2

Since it is trivial to show that the base job of a ground job can always be found among the

preceding ground jobs (actually the base job is the immediately preceding ground job), we focus

only on the base job for a non-ground job.

Let us assume a case where the base job for a non-ground jobJ(n)j is not found in the same

hyperperiodn, and letJ(n)i be a ground job in the hyperperiod that has a higher priority value than

the jobJ(n)j . That is,J(n)i is not the base job ofJ(n)j . Then we can always find a previous instance

J(k)i of J(n)i in a preceding hyperperiodk(< n) such thatp(k)i � p(n)j , by choosing an appropriate

value k that satisfies the inequalityn� k� (p(n)i � p(n)j )=∆. Since p(n)i = p(k)i +(n� k)∆, such a

valuem always satisfiesp(k)i � p(n)j . Then, sinceJ(k)i is also a ground job (Recall Theorem 1(b)),

it can be taken as the base job ofJ(n)j if no other eligible ground job is found. Therefore, for any

non-ground jobJj , we can always find the base job among the preceding ground jobs.

Proof of Theorem 3

Let τi be the task withDi = Dmax, andJk an instance ofτi . ThenJk is a ground job, since the

priority value pk is λk+Dmax, and all the previously released jobs have lower priority values. Let

Jj be a non-ground job arriving at the beginning of the hyperperiod[λk+Dmax;λk+Dmax+TH ].

Then Jk can be taken as the base job ofJj in the worst case, sinceJk is a preceding ground job

that has a lower priority value thanJj . Even if we assume that the non-ground jobJj arrives at

the end of the hyperperiod, i.e., at timeλk+Dmax+TH , Jk can still be taken as the base job ofJj

in the worst case. Therefore, the maximum distance between any non-ground jobJk and its base

job cannot be greater thanDmax+TH .
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