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Abstract with global RM or EDF multiprocessor scheduling is not
higher than one, for any number of processors [2].
This paper deals with the problem of finding utiliza- In this paper, we follow the partitioning strategy. Tasks

tion bounds for multiprocessor Rate Monotonic scheduling are allocated to processors, and are pre-emptively soéedul
with partitioning. The minimum and maximum utilization on each processor according to fixed priorities chosen fol-
bounds among all the reasonable allocation algorithms are lowing the RM criterion. Thus, the allocation algorithm is
calculated. We prove that the utilization bound associated the only degree of freedom of the system.

with the reasonable allocation heuristic Worst Fit (WF) is Finding the optimal allocation algorithm is not practical,
equal to that minimum. In addition, we prove that the uti- as the problem is NP-hard in the strong sense [5].

lization bound associated with the heuristics First Fit De- In the literature, one can find simple allocation heuris-
creasing (FFD) and Best Fit Decreasing (BFD) is equal to tics [1, 2, 5] and complex heuristics based on branch-and-
the maximum, of valug: + 1)(2'/2 — 1), wheren is the bound [12], or simulated annealing [14] techniques. In this
number of processors. paper, we focus on simple allocation heuristics.

Two different approaches were followed in the literature
to establish the schedulability associated with a given al-
location heuristic: simulation approaches, and theaaktic
approaches.

In the simulation approach, task sets are randomly gener-

Multiprocessor scheduling is a challenging problem in ated. Next, the average number of processors required to al-
the real-time systems theory. There are basically twoestrat |ocate task sets of given total utilization is obtained. jpjoi
gies when dealing with this problem: partitioning straésgi  cessor exact tests [13], or uniprocessor sufficient tedts [6
and global strategies [11]. are commonly used to decide whether a given task set fits

In a partitioning strategy, once a task is allocated to a into the processors. Nevertheless, simulation resultsldho
processor, it is executed exclusively on that processor. Inbe considered carefully, since randomly generated task set
a global strategy, any instance of a task can be executednay not be representative of those that appear in practice.
on any processor, or even be pre-empted and moved to a The traditional theoretical approach focuses on the cal-
different processor, before it is completed. culation of the metridNaa/Nopr), for pairs ofunipro-

From a theoretical point of view, global strategies pro- cessor scheduling algorithm-allocation algoritHt, 2, 3,
vide in general higher schedulability than partitioning 4, 5, 11]. This metric gives the relationship between the
strategies. However, partitioning strategies have seadra  number of processors required to schedule a task set using
vantages over global strategies. Firstly, the schedulego  a given allocation heuristic AA, and the number of proces-
head associated with partitioning strategies is lowerthan  sors required using the optimal allocation algorithm. This
overhead associated with global strategies. Secondly; par metric is useful in order to compare different allocation al
tioning strategies allow us to apply well known uniproces- gorithms, but not to perform schedulability tests. Theee ar
sor scheduling algorithms to each processor. Furthermoreseveral reasons for this. Firstlyo p1 can not be calculated
Rate Monotonic (RM) and Earliest Deadline First (EDF) in polynomial time. Secondly, even i¥o pr were known,
scheduling, which are optimal uniprocessor scheduling al-the utilization bound derived from the metric would be too
gorithms [7], perform poorly when extended to global mul- pessimistic [10].
tiprocessor scheduling. The utilization bound associated A new theoretical approach consists of calculating the

1. Introduction



utilization bounds associated with pairs setheduling  to exclude theoretically possible, but impractical alkima
algorithm-allocation algorithmanalogous to those known algorithms.

for uniprocessors [7]. This approach has several intergsti The rest of the paper is organized as follows. Section 2
features. Firstly, it allows us to carry out fast schedtabi defines the computational system we deal with. The min-
ity tests. Secondly, it allows us to quantify the influence of imum and maximum utilization bounds for multiprocessor
certain parameters, such as the number of processors, oRM scheduling with reasonable allocation are provided in
schedulability. The major disadvantage of this approach Section 3. Sections 4 and 5 provide the expressions of
is the sufficient character of the associated schedubabilit the utilization bounds using WF and Reasonable Allocation
tests. This approach was followed in [10] to obtain the up- Decreasing (RAD) heuristics respectively. Both expres-
per and lower limits, given by (1), on the utilization bound sions are analyzed in Section 6. Finally, Section 7 presents
URM-FF for multiprocessor RM scheduling with FF alloca- our conclusions.

tion.

(212 Z 1) < URMFF(n) < (0 +1)/(1 4 2/0+D) (1) 2. System definition

wheren is the number of processors. The tight utilization 1€ task set consists ofi independent periodic tasks

bound for multiprocessor RM-FF scheduling, given by (2), 171+ Tm}, of computation time$C, . .., Cyn }, periods
is presented in [9]. {Ty,..., T}, and hard deadlines equal to the task periods.

The utilization factoru;, of any task,r;, defined as:; =
URMFE(m,n, a) = (n — 1)(2Y/Prat) 1) 80, Ci/Ti, is assumed to be <up < o<, wherea is the
1/(m—Brar(n—1)) (2)  maximum reachable utilization factor.
+ (m = Brar(n —1))(2 -1 Tasks are allocated to an arrayrofdentical processors

wherea is the maximum reachable utilization factor, and _{Pl’ - Pn}. Once a task is allocate_d t_o a processor it
is executed only on that processor. Within each processor
Bru = |1/ logy(a +1)] tasks are pre-emptively scheduled using fixed priorities as

signed according to the RM criterion. Allocation is carried
An analogous utilization bound for EDF-FF scheduling, out using reasonable allocation algorithms [8], represint

given by (3), was presented in [8] by RA. A reasonable allocation algorithm is one which fails
to allocate a task only when there is no processor in the sys-
UEDFFR(y, ) — nPepr +1 3)  temwhich can hold the task.
e ’ BeEpF + 1 Whether a task fits into a processor depends on the
uniprocessor scheduling algorithm and the schedulability
wherefppr = [1/a]. condition. In this paper, we use the schedulability condi-

tion based on utilizations proposed in [7] for RM schedul-

Our paper makes the following theoretical contributions ing. Thus, a task of utilization factar; fits into processor

to the multiprocessor schedulability analysis: P, if
J
e The calculation of the minimum and maximum utiliza- (mj + 1)@V —1) — U; > u,
tion bounds among all the reasonable allocation algo-whereU; is the total utilization of the tasks previously allo-
rithms for multiprocessor RM scheduling. cated to processd;, andm; is the number of these tasks.

Using the same schedulability condition, a reasonable al-
location algorithm is one which fails to allocate a task of
utilization factoru; to a multiprocessor made up ofpro-
cessors, only when

(mj +1)(2Y D) 1) —U; <y (4)

e The proof that no allocation algorithm exists, reason-
able or not, with an associated utilization bound higher
than the previous maximum.

e The expression of the common utilization bound as-
sociated with the simple heuristics FFD and BFD [5],
which coincides with the previous maximum. Thus, forallj =1,...,n.
not even the optimal allocation algorithm can guaran- A class within the reasonable allocation algorithms is
tee a higher utilization bound than that associated with also considered in this paper. This class, termed Reason-
FFD or BFD allocation. able Allocation Decreasing (RAD), is made up of all the

R ble all . laorith h hich fail reasonable allocation algorithms which order the tasks by
easonable allocation aigorithms are those which fail to decreasing utilization factors before performing a sequen
allocate a task only when there is no processor in the system, ., -0 cation. After the ordering

with sufficient free capacity to hold the task [8]. The idea of
restricting the study to reasonable allocation algoritligns UL > Uy > > Uy,



This corresponds to the intuitive idea of allocating the Lemma 1 Let {r,...,r,} be a set of n pos-
“biggest” tasks first. After the ordering, task is allocated itive integers such thatzg?:l r; = M. Let
first, next taskr, and so on until task,,, . g(ri,. .. ) = Z;}:l r;(21/7 —1). It follows that

For example, the algorithms FFD and BFD, obtained
through the ordering of the tasks by decreasing utilization ¢(y, ... r.) > (M — | M/n|n) [M/n] (21/(M/n1 _ 1)
factors before performing the FF and BF allocation respec-
tively, belong to the class RAD. +(n— M + | M/n|n) | M/n) (21/LM/"J - 1)

Proof:
We will prove that the minimum of functiop is obtained
when M is quasi-equitably divided amonfry,...,r,}.
The utilization bound/fMRA, associated with any rea-  When M is not a multiple ofn, the quasi-equitable dis-
sonable allocation algorithm RA and multiprocessor RM tribution of M producesM — | M /n| n) termsr; of value
scheduling, is in the intervdlL gy, Hgas]. This interval [M/n], and(n— M+ | M/n| n) termsr; of value| M /n],
is defined as follows: i.e, one unit less. The quasi-equitable distribution &ty
equitable whemn is a multiple ofn. Thus, a distribution is
quasi-equitable if, and only if#; — 7| < 1 forall 5,k in
HRM:maXUmA-RA 1,...,n. _ .

RA We will prove by contradiction that the vector
{f1,...,7n}, giving the minimum of functiong, fulfils
|f; — ] <1forall j,kinl,... n.

Let us suppose that two termig ands;, exist, such that
|7 — Pr| > 1 with 7; > 7y, i.e, (7; — 7)) > 1. Terms;"
andk™ within the expression of accumulate the value

3. Minimum and maximum utilization bounds

LR]LI = min URM_RA
RA wc

The calculation of the interval will allow us to know before-
hand what is the worst and the best utilization bound we can
expect from any reasonable allocation algorithm.

Before calculating the expressionsiofy, andHgyy, it
is necessary to introduce the parameigf,. This param-
eter is analogous to the parameter, » defined in [8] for 7 (2Y 7 — 1) 4 (27 — 1)
EDF multiprocessor scheduling.

Bras is the maximum number of tasks of utilization fac- Decrementing’; one unit and incrementing, this unit, the

N ioti nt o i ; th th
tor o which fit into one processor3za; can be expressed 'estrictiony =, 7; = M is fulfilled, and the;™ andk
as a function ofy, as proved in [9]. terms in the expression gfchange to accumulate the value

o= 1)Y= 1) 4 (7 + 1)(2Y PR _q

Brar = [1/logy(a +1)] 7 = 1 )+ (4 1) )
Let f(z) = x(2/* —1). Forz > 0 f'(z) < 0, and

Any multiprocessor made up of processors can allo-  f”(z) > 0. Thus, functionf(z) = z(2'/* — 1) decreases

cate at least3rn tasks of arbitrary utilization factor (less  more and more slowly as increases. Applying this result

than or equal tax). Thus, any task set fulfilling: < nS8gras to our problem gives

is schedulable using RM scheduling together with any rea- X X

sonable allocation algorithm. Henceforth, we will assume (2 — 1) — (7 + 1)V FD 1) >
m > nBry, as otherwise there would be no point in ob- (7 — 1)(21/(f-j—1) 1) - 7:]_(21/@ —1)

taining the utilization bounds.

Theorem 1 provides a lower limit on the utilization and therefore,
bound associated with any reasonable allocation algorithm /(i1 . 1/ (741
and RM scheduling. Section 4 provides an upper limit on (7 = DEYET = 1) 4 (7 + 1)V — 1) <
the utilization bound for the reasonable allocation alidponi @(21/” -1+ fk(QW'k -1
WEF, which is equal to the lower limit, and therefore is also
equal toL .

Theorem 2 provides an upper limit on the utilization
bound associated with any allocation algorithm, reasanabl
or not, and RM scheduling. Section 5 provides a lower limit (1, ) > (M — [ M/n]n) [M/n] (21/[M/n] _ 1)
on the utilization bound associated with all the reasonable Y -

which is a contradiction, because changipgand;, into
(7; — 1) and(7, + 1) gives a value of less than the mini-
mum. Therefore,

allocation algorithms in the class RAD, which is equal to +(n— M+ |M/n]n)|M/n| (21/|_M/nJ — 1)
the upper limit, and therefore is also equalH@ ;.
Next, Lemma 1 is proved. Lemma 1 is necessary to [ |

prove Theorem 1.



Theorem 1 Let RA be a reasonable allocation algorithm.
If m > nBgry then

URMRAm, n, ) > noUy + Uy — (n — 1)a

where
-1
ng=m+n-—1-— {MJTL
n
ny=mn-—"ng
U, — [Lﬂlw (21/(%1 _ 1)
n
U, = {LHJ (21122 )
n
Proof:
Let{r,..., 7} be a set oh tasks which does not fit into

the multiprocessor. There are tasks of the set which are al

located to processors, and tasks which are not allocated. Le

us change the indexes in the set, so that the tasks which wer
not allocated have the last indexes in the set. 1.die the
first task in the set (after the change of indexes) which was
not allocated to any processor. Since the allocation algo-
rithm is reasonable, from (4) we get
(mj + 1)V —1) —U; <y (5)
forall j = 1,...,n, whereU; is the total utilization of the
tasks previously allocated to processgbrm; is the number
of these tasks, ang, is the utilization factor of task;..
The total utilization of the whole set], fulfils

m k n
U:Zui > Zui :ZUj+Uk
i=1 i=1 j=1

From (5) we get

i U; > i ((mj +1)(2Y/mat) 1) — uk)
j=1 j=1

mj +1)(2Y ) 1) — nuy,
J

j=1

(6)

Substituting this inequality into (6)

U > Z(TTLJ + 1)(21/("”"_1) —1)—=(n—1)ug

Jj=1

From the system definition, all the utilization factors aed
than or equal tev, sou, < o and

0> 3 (my 4 1)@V 1)~ (0~ 1)a

j=1

One constraint of then; values is thad =7 m; = (k —

1). This constraint is totally equivalent to the constraint
>i(mj +1) = (k+n —1). Bearing this last con-
straint in mind, defining; = (m; +1), M = (k+n—1),
g(ri...,m) = Y7 r;(2"/77 —1) and applying Lemma 1

U>Y (my+ 1)@V —1) — (n—1)a >
j=1

(k+n717 {LFZ’lJn) {7"“‘*2’1 (2“%1’11 1)
+< —k+ {7k+Z*1Jn) {Lﬂi*w (2“ =] 1)
— (n-1a

(7)

The right-hand termin (7) decreases:ascreases, because
any increment of: raises the value of/ = (k +n — 1) to
distribute quasi-equitably among all the processors. Xnde
% isin the intervall, m], sincery, is a task of the set of:
tasks. Therefore, fak = m we obtain the minimum of the
right-hand term in (7). Hence, from (7) and considering the
definitions ofn,, ny, U, andU, we get

U > nUs + Uy — (n — 1)

Any task set which does not fit into the proces-
sors fulfils the previous expression. Consequently,
any task set of total utilization less than or equal to
n,U, + npUp — (n — 1)« fits into the processors, and

Uféw’RA(m,n,a) > n,Uqs + Uy — (n — 1 |

We will prove thatURMWF(m, n, o < In2) < n,U, +
nyUp — (n — 1)a in section 4. Since WF is a reasonable
allocation algorithm we can state that

Lry(myn,a <Iln2) =nU, + npyUp — (n — 1)

Next, we provide an intuitive idea about what, n, U,
andU, represent. This will be useful in the proof of The-
orem 3 in Section 4. After dividingm — 1) tasks quasi-
equitably among processors, there ang processors with
[(m — 1)/n] tasks, andh, = n — n, processors with one
less task, i.e|(m — 1)/n] tasks.U, is the uniprocessor uti-
lization bound for each of the, processors after receiving
one more task. Likewisd/, is the uniprocessor utilization
bound for each of the;, processors after receiving one more
task.

Theorem 2 provides an upper limit on the utilization
bound associated with any allocation algorithm, reasa@nabl
or not, and RM scheduling. The proof is analogous to that
shown in [8] for multiprocessor EDF scheduling.



Theorem 2 Let AA be an arbitrary allocation algorithm. If
m > nfry then

URMAA < (133 ap + 1)(2/ Brm D) _ 1)

We will prove that a set af: tasks{ 7, . .., 7., } €xists, with
utilization factors0 < u; < aforall: = 1,...,m, and
total utilization (nfgy + 1)(2Y/PFrv+D) _ 1) 4+ ¢, with
e — 07, which does not fit intox processors using any

allocation algorithm and RM scheduling on each processor.

We will construct this set ofn tasks composed of two
subsets: a first subset wifw — nSra — 1) tasks, and a
second subset witthhSras + 1) tasks.

All the tasks of the first subset have the same utilization
factor of value

U; = —
m

wherei =1,...,(m —nBrym — 1).

(Brm + 1) or more of these tasks. However, no processor
can allocatd 5ras + 1) or more tasks of the second subset,
since(Bra + 1) of these tasks together have a utilization
over Liu & Layland’s bound for RM [7].

1/(Brm+1) _ €
(Brv+1) (2 D+ =) >
(Brar + 1)(21/Bra+1) _ 1)

We conclude that the proposed task set of total utilization
U = (nBry + 1)(2Y/Pra+1) _ 1) + ¢ does not fit inton
processors whea— 0%, so the utilization boun@RM-AA
must be less than or equal ez, +1)(21/ Pry+1) 1),

NOTE: the tasks of the first subset are necessary in the
proof only to fulfil the restriction of havingn tasks. |

All the tasks of the second subset have the same utiliza-4. Utilization bound for Worst Fit allocation

tion factor of value

Uy = (21/(»3RM+1) — 1)+ £
m

wherei = (m — nBrum), ..., m.

It can be seen that the total utilization of the whole task
set is(nﬁRM + 1)(21/([3RM+1) — 1) + €.

Firstly, it is necessary to prove that the utilization
factors of both subsets are valid, i®,< u; < « for all
1=1,...,m.

Check of the utilization factors of the first subset.
By choosing a small enough value fer we obtain
0 < uy % <a.

Check of the utilization factors of the second subBgt.
definition of Brar, (Brm + 1) tasks of utilization factor
a do not fit into one processor, therefo@zy + 1)a >
(Brar + 1)(21/Brar+1) 1) and

a > (21/Brutl) ) (8)

This section shows that the allocation algorithm termed
Worst Fit (WF) is the worst reasonable allocation algo-
rithm in terms of utilization bound for multiprocessor RM
scheduling.

The WF algorithm allocates each task to the processor
with the highest remaining capacity among all the proces-
sors with sufficient capacity to hold the task. Tasks are al-
located one by one following the sequengs, ..., 7% }.
Using Liu & Layland’s schedulability condition for RM
scheduling, the remaining capacity of procesBpis given
by the expressiotmn; + 1)(21/ (1) — 1) — U;.

Next, Theorem 3 gives an upper limit on the utilization
bound for WF allocation and RM scheduling. This upper
limit coincides with the lower limit provided by Theorem 1
for any reasonable allocation algorithm, and thereforé wit
the utilization bound for WF allocation, given by Corol-
lary 1.

The termsn,, ny, U, andU, in the statement of Theo-
rem 3 have been defined in Theorem 3. The reader should
refer to the intuitive description of these parametersmgive

Itis a|WayS possib|e to find one real number between two after the prOOf of Theorem 1, in order to better understand

real numbers. Hence, a positive valuexists such that
o> (21/([3RM+1) -1)+ £ u;
m

which proves that the utilization factors of the second stibs
are less tham whene — 0%. In addition, the utilization

the proof of Theorem 3. .
Theorem 3 If m > nfBgry
Ul We(m,n, o < n2) < noUq + nyUy — (n — Dot

Proof:

factors of the second subset are obviously greater than zeroMe Wil prove the existence of a set o tasks,

From the above results, we conclude that the propose
task set is valid. Below, we prove that it does not fit into

processors, using RM scheduling and any allocation algo-

rithm.
There ardnfr +1) tasks in the second subset. Hence,
at least one processor of theavailable should allocate

d{’]’l,..

., Tm }, Of utilization factors less than or equal 4o
and total utilization

noUys +npUp — (n— D+ €

with ¢ — 07, which does not fit into the processors us-
ing the allocation algorithm WF. The set of tasks is



built as follows, strictly in the order indicated. There are
[(m —1)/n] subsets ofr = (n, + n) tasks each. All
these subsets are made umgftasks of utilization factor

" — U, —« n €

e [(m—1)/n] m-1
followed byn, tasks of utilization factor
w — Uy — « n €

P lm—1)/n]  m-1

Following the previoug(m — 1)/n| subsets, there are,
tasks of utilization factor,,. Finally, there is the last task,
Tm, Of utilization factorao.

It can be seen that the whole task set is made up of
tasks, and the total utilization is

noUs +1npUp — (n — D+ €

Firstly, it is necessary to prove that the utilization fastof
all the tasks are valid, i.6,< u; < afori=1,...,n.

Fora > 0, functionz(2'/* —1) decreases asincreases.
Thereforell;, > U, > In2 > «, and the utilization factor
of all the tasks is higher than zero. The utilization factbr o
the last task isy, and therefore it is less than or equahto
We have to prove that, < « andu;, < « in order to prove

0 2{ (1) | ua(6) | we(11)] ua(16)| P
‘o a(2) | ua(7) | wa(12)| v, (17)| P2
up(3) up(8) u(13) | P

ny, =3 up(4) up(9) up(14) Py
U4,(5) u;,(lO) ub(15) R’S

| =L | = 3 subsets of tasks

Figure 1. Example of allocation of the first
(m — 1) tasks in Theorem 3, for m = 18 and
n =5.

first (m—1) tasks, the first,, processors holf(m — 1)/n]
tasks of utilization factors,. These processors may hold
one additional task of utilization factor

Us = [(m =1)/nlus = a —e[(m —1)/n] /(m —1)

Therefore, the last task of utilization factardoes not fit
into any of these processors. Nor can the remainingro-
cessors hold the last task because at most they can hold one
additional task of utilization factor

that the proposed task set is valid. It is sufficient to prove {7, — [(m—1)/n]uy =a—e|(m—1)/n] /(m —1)

thatu, < «, asu, < up.
Substituting the value df, in the definition ofu,,

et (V1 1) —a
[(m —1)/n]

From the hypothesis of the Theorem > n@gy. Since
Bry is an integer(m — 1) > nBra, [(m—1)/n] >
Brm, and|(m +n—1)/n| > (Bram + 1). In addition,
a > (2Y/@rutl) _ 1) (see (8)). Forz > 0, function
x(2'/* — 1) decreases asincreases. Hence,

J (21257 —1) <

(Bras + 1)(2Y/ Brar+1) _ 1)

€
Up =

+

m—1

(9)

m+n-—1
n

and

€
+—

up < (21/(BRZ\/1+1) _ 1)
m—1

As was indicated previously2'/(rv+1) _ 1) < q, so by
makinge close to zero we get, < a.

Next, we will prove that the task set does not fit into the
multiprocessor. The firsfm — 1) tasks are allocated by
the WF heuristic as indicated in Figure 1. Numbers within

We conclude that the proposed task set of total utiliza-
tion n,U, + npUp — (n — 1) does not fit intaw processors
whene — 0%, so the utilization boun@RMWF(m, n, )
must be less than or equaltQU, + nyUp — (n — 1)a. A

Corollary 1 provides the utilization bound for WF allo-
cation and RM multiprocessor scheduling.

Corollary 1 If m > nfBrm
URMWE(m, n, a0 < 1n2) = nUy + Uy — (n — 1o

Proof:
The proofis direct from Theorem 1 and Theorem 3. B

5. Utilization bound for RAD allocation

The Reasonable Allocation Decreasing (RAD) algo-
rithms are reasonable allocation algorithms fulfilling the
following conditions:

e Tasks are ordered by decreasing utilization factors be-
fore making the allocation, i.e,; > us > -+ - > wuy,.

parenthesis in Figure 1 represent task indexes. The proof

of the allocation pattern shown in Figure 1 is too large to
be included in this paper. As a result of the allocation of the

e Tasks are allocated sequentially, That is, tasks al-
located first, next task, and so on until task,,.



The heuristics FFD and BFD, belong to this class. Variableskt and{m,...,m,} can not take any value. In
Theorem 4 provides a lower limit on the utilization particularn; > Bra forall jin1,...,n. Otherwise, task
bound associated with the class of RAD allocation algo- 7, would fit into the processors, because each processor can
rithms under RM scheduling. This lower limit coincides allocate at leastzy, tasks, and this would contradict the
with the upper limit on the utilization bound associatedwit hypothesis which states that does not fit into the proces-
any allocation algorithm under RM scheduling. Therefore, sors. In addition,
both bounds also coincide with the utilization bound asso- n
ciated with any RAD allocation algorithm and RM schedul- E=1+ Z s
ing, as given by Corollary 2. Furthermore, RAD allocation = !
algorithms are optimal from the point of view of the utiliza-
tion bound, since no allocation algorithm exists guarantee and sok > (nS8ry + 1). Let g(k,n) be the minimum
ing a higher utilization bound. Thus, the utilization bound Of functiond=7_, (m; + 1)(2/(™*+1) — 1) under the con-
associated with the optimal allocation algorithm coinside Straintsk = 1+ -7, m; andm; > 0, which can be
with the utilization bound associated with the RAD algo- obtained from Lemma 1.

rithms. k
U>———g(k,n)
Theorem 4 If m > nBrys then ktn—1
RM-RAD, , 1/(Brm+1) _ If n > 1 the right term of the inequality is minimizédor
Uwe™msm > 1,0) 2 (nBra +1)(2 2 k= (Brarn+ 1) andm; = By forall j = 1,...,n. The
Proof: proof is not provided here for the sake of brevity. Moving
Let{7,..., 7} be a set of tasks which does not fitinto  these values to (13)

the multiprocessor. Let; be the first task in the set which
does not fit into the multiprocessor. Since RAD allocation ;7 - nfrm +1

n

(Brar + 1)(21/ PFrvth) 1)

algorithms are reasonable, from (4) we get nBry +1+n—-1 =
(mj +1)(2Y 7 +) 1) —U; < uy, (10) = (nfBras + 1)(2Y/ (Pru+D) _ 1)
forall j = 1,...,n, whereU; is the total utilization of the A necessary condition to be fulfilled by the total utilizatio

tasks allocated to processBy, m; is the number of these  of any task set which does not fit into theprocessors is
tasks, and; is the utilization factor of task,. The total

o . I 1/(nBrym+1) _
utilization of the firstk tasks fulfils U > (nfry +1)(2 /(nBmartl) 1)

k n In other words, any task set of total utilization less than or
Z u; = Z Uj + ug (11) equal to
i=1 j=1 (nBry + 1)(21/(n6RM+1) —1)
From (10) and (11) we get fits into then processors. Thus, we finally conclude

k . + — PURAD 1/(nBrm+1)
m,n > 17 a) > (n r+1)(2 1
Z“i > Z(mi DY+ Z 1) — (0 — Duy (12) Une ( ) > (nBram + 1)( —1)
i=1 j=1

Tasks were ordered in decreasing utilization factors teefor

. . Corollary 2 provides the utilization bound for RAD allo-
carrying out the allocation, so

cation and RM multiprocessor scheduling.

k
up < 21 Ui Corollary 2 If m > nfru
- k
N - — Und " FAm, n, o) =
Substituting this inequality into (12) and finding,_, u;
i m(2/™ — 1) ifn=1
k - 1/(m;+1) nBry + 1)(21/ (WPrartl) 1) ifn>1
S gty S 0 e
=t Proof:
The total utilization of the firsk: tasks is less than or equal The proof is direct from Theorem 2, Theorem 4, and Liu &
to the total utilization of the whole task set. Thus, Layland’s bound for uniprocessor RM scheduling. N
k n
U>—Y (m +1)(2Y0m+) — 1) (13) Uf n, = 1 itis minimized fork = m, and we will finally obtain the
k+n—1 Z ! utilization boundm(21/™ — 1).

j=1



6. Analysis of the theoretical results

In this section, we analyze the functions

Lry(myn,a <Iln2) =nU, + npyUp — (n — 1)

and
Hgy(m,n, o) =
m(2/™ —1) ifn=1
(nBry + 1)(21/ (nBrar+1) _ 1) ifn>1

Lry(m,n, a) is the minimum utilization bound for multi-

processor RM scheduling evaluated among all the reason-

able allocation algorithms. This minimum coincides with
the utilization bound for RM-WF.

It can be seen that for the uniprocessor case
Lry(m,n =1,a <In2) =m(2Y/™ — 1), and so it coin-
cides with Liu & Layland’s bound.

The expression of.z,, provided in the paper has one
theoretical limitation can not be higher tham 2. How-
ever, this is not a practical limitation. The utilizationlbal
can be obtained by subtractiag— 0™ from the minimum
utilization evaluated among all the task sets which do not
fit into the multiprocessor. Thus, & > In 2, all the task
sets fulfilingu; < In2 also fulfill u; < «, and therefore
Lry(m,n,a >1n2) < Lry(m,n,In2). From Figure 2,
we can extrapolate the value bf s (m, n,In 2) to be low,
which makes in this case the utilization bound of little im-
portance.

One of the difficulties of dealing with the function
Lry(m,n,a < In2) is its complexity. Nevertheless, for
n > 1 andm > n we have found the relation

naUq +myUp — (m +n — 1)(27/(mn=1) _ 1)
n

0<
< 0’0054
Therefore, from a practical point of view

LRM(m,n,a S 1112) ~

(m+n—1)2Vm*"=D _1) _(n—1)a

In addition, it can be seen that for the uniprocessor case thi
expression gives Liu & Layland’s bound.

Figure 2 depicts the functiohry(m,n,a < In2) as
a function of the numbers of processors, for different val-
ues ofa. In spite ofn being an integer, it is represented
as a continuous function with the aim of improving its vi-

0.75
a0
a=21 —1
~
=i
VI a=25 -1
3
Qh: 1
Eﬁ a=22 -1
= 025
~ a=06
0 T T T T T
1 5 10 15 20 25

Number of processors (n)

Figure 2. Plot of Lga(m,n,a <In2).

m = (nBrum + 1). The bottom curve is associated with the
maximum number of tasks, i.e; — oo. The shaded area
between the top and bottom curves corresponds to values of
min (nﬁRM +1, OO)

For high values oty the utilization boundLg,, is too
small. However, ag neard), the utilization bound becomes
close tonIn 2. In this case, the multiprocessor behaves ap-
proximately like a uniprocessartimes faster.

Hpgp (m,n, «) is the maximum of the utilization bounds
for multiprocessor RM scheduling evaluated among all the
reasonable allocation algorithms. This maximum coincides
with the utilization bound for RM-RAD. The class of RAD
allocation algorithms include allocation algorithms suash
FFD and BFD. All of them have the same utilization bound.
In addition, no allocation algorithm exists which guaran-
tees a utilization bound higher thdfiz, (m, n, o). From
this point of view, RAD allocation algorithms are optimal.
Figure 3 depicts the functioH g (m,n > 1, a) as a func-
tion of the numbers of processors for different values.of
In spite ofn being an integer, here as well it is represented
as a continuous function to improve its visualization. This
function has not been represented fioe= 1, since in this
case the utilization bound coincides with the well-known
utilization boundm (2'/™ — 1). Forn > 1 it does not de-
pend on the number of tasks. The representation has been
normalized by dividingH g, by the number of processors.

sualization. The representation has been normalized by di-Each curve in Figure corresponds to a different value of

viding L s by the number of processors, in order to show
the average degree of utilization of the processors. Fdr eac
value of« two different curves have been plotted. The top
curve is associated with the minimum number of tasks, i.e,

Bra, and therefore to a different value of

For a > (22 — 1) we obtainBgry = 1, and
HRM(m,n > 1,(1) = (n + 1)(21/2 — 1) The addi-
tion of one processor increments the value k), by
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Figure 3. Plot of Hpa(m,n > 1, ).

(21/2 — 1) ~ 0.41 . Whena — 0 thenfBgy — oo and
H(m,n >1,a — 0) = nln2. Thatis, the multiprocessor
behaves like an ideal uniprocessotimes faster.

For example, the utilization bound associated with RM
scheduling and FFD allocation in a multiprocessor made
up of two processors i8(2'/2 — 1) ~ 1.24, about0.62
per processor. If tasks have utilization factors less than o
equal to(2'/2 — 1) ~ 0.41 thenBry = 2. In this case,
the utilization bound for FFD allocation takes the value
5(2'/3 — 1) ~ 1.30, about0.65 per processor, close to the
idealln 2 ~ 0.69.

7. Conclusions

We have obtained the tight interval in which the utiliza-

tion bound associated with any reasonable allocation algo-

rithmis found. Since practical allocation algorithms a&a-+
sonable, the interval obtained is of wide applicability.

The WF algorithm was proved to be the worst reason-
able allocation algorithm in terms of the utilization bound
for multiprocessor RM scheduling. Its utilization bound is
a function of the number of processors,the number of
tasks,m, and a parameter that takes the “task size” into
account. For high values ofthe bound is less than or equal
to 2(2'/2 — 1), while for low values ofx it is close ton In 2.

In addition, algorithms such as FFD and BFD were
proved to be optimal in terms of the utilization bound. The
utilization bound associated with these heuristics iseclos
to the ideal In 2 when the multiprocessor is made up two

small. The utilization bound associated to these algosthm
does not depend on the number of tasks.

The task set model of the paper considered periodic and
independent tasks. Nevertheless, it is also possible to ana
lyze the schedulability of task sets including also sparadi
and aperiodic tasks, whenever the aperiodic tasks aretserve
by aperiodic servers whose worst-case behaviour can be as-
similated to periodic tasks. This is the case of the Polling
Server and the Sporadic Server.
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