
Minimum and Maximum Utilization Bounds for Multiprocessor RM Scheduling

J.M. López, J.L. Dı́az, D.F. Garcı́a
University of Oviedo

Department of Computer Science
Campus de Viesques, 33204 Gijón, Spain
{chechu,jdiaz,daniel}@atc.uniovi.es

Abstract

This paper deals with the problem of finding utiliza-
tion bounds for multiprocessor Rate Monotonic scheduling
with partitioning. The minimum and maximum utilization
bounds among all the reasonable allocation algorithms are
calculated. We prove that the utilization bound associated
with the reasonable allocation heuristic Worst Fit (WF) is
equal to that minimum. In addition, we prove that the uti-
lization bound associated with the heuristics First Fit De-
creasing (FFD) and Best Fit Decreasing (BFD) is equal to
the maximum, of value(n + 1)(21/2 − 1), wheren is the
number of processors.

1. Introduction

Multiprocessor scheduling is a challenging problem in
the real-time systems theory. There are basically two strate-
gies when dealing with this problem: partitioning strategies
and global strategies [11].

In a partitioning strategy, once a task is allocated to a
processor, it is executed exclusively on that processor. In
a global strategy, any instance of a task can be executed
on any processor, or even be pre-empted and moved to a
different processor, before it is completed.

From a theoretical point of view, global strategies pro-
vide in general higher schedulability than partitioning
strategies. However, partitioning strategies have several ad-
vantages over global strategies. Firstly, the scheduling over-
head associated with partitioning strategies is lower thanthe
overhead associated with global strategies. Secondly, parti-
tioning strategies allow us to apply well known uniproces-
sor scheduling algorithms to each processor. Furthermore,
Rate Monotonic (RM) and Earliest Deadline First (EDF)
scheduling, which are optimal uniprocessor scheduling al-
gorithms [7], perform poorly when extended to global mul-
tiprocessor scheduling. The utilization bound associated

with global RM or EDF multiprocessor scheduling is not
higher than one, for any number of processors [2].

In this paper, we follow the partitioning strategy. Tasks
are allocated to processors, and are pre-emptively scheduled
on each processor according to fixed priorities chosen fol-
lowing the RM criterion. Thus, the allocation algorithm is
the only degree of freedom of the system.

Finding the optimal allocation algorithm is not practical,
as the problem is NP-hard in the strong sense [5].

In the literature, one can find simple allocation heuris-
tics [1, 2, 5] and complex heuristics based on branch-and-
bound [12], or simulated annealing [14] techniques. In this
paper, we focus on simple allocation heuristics.

Two different approaches were followed in the literature
to establish the schedulability associated with a given al-
location heuristic: simulation approaches, and theoretical
approaches.

In the simulation approach, task sets are randomly gener-
ated. Next, the average number of processors required to al-
locate task sets of given total utilization is obtained. Unipro-
cessor exact tests [13], or uniprocessor sufficient tests [6]
are commonly used to decide whether a given task set fits
into the processors. Nevertheless, simulation results should
be considered carefully, since randomly generated task sets
may not be representative of those that appear in practice.

The traditional theoretical approach focuses on the cal-
culation of the metric(NAA/NOPT), for pairs ofunipro-
cessor scheduling algorithm-allocation algorithm[1, 2, 3,
4, 5, 11]. This metric gives the relationship between the
number of processors required to schedule a task set using
a given allocation heuristic AA, and the number of proces-
sors required using the optimal allocation algorithm. This
metric is useful in order to compare different allocation al-
gorithms, but not to perform schedulability tests. There are
several reasons for this. Firstly,NOPT can not be calculated
in polynomial time. Secondly, even ifNOPT were known,
the utilization bound derived from the metric would be too
pessimistic [10].

A new theoretical approach consists of calculating the

utilization bounds associated with pairs ofscheduling
algorithm-allocation algorithm, analogous to those known
for uniprocessors [7]. This approach has several interesting
features. Firstly, it allows us to carry out fast schedulabil-
ity tests. Secondly, it allows us to quantify the influence of
certain parameters, such as the number of processors, on
schedulability. The major disadvantage of this approach
is the sufficient character of the associated schedulability
tests. This approach was followed in [10] to obtain the up-
per and lower limits, given by (1), on the utilization bound
URM-FF

wc , for multiprocessor RM scheduling with FF alloca-
tion.

n(21/2 − 1) < URM-FF
wc (n) ≤ (n + 1)/(1 + 21/(n+1)) (1)

wheren is the number of processors. The tight utilization
bound for multiprocessor RM-FF scheduling, given by (2),
is presented in [9].

URM-FF
wc (m, n, α) = (n − 1)(21/(βRM+1) − 1)βRM

+ (m − βRM (n − 1))(21/(m−βRM(n−1)) − 1)
(2)

whereα is the maximum reachable utilization factor, and

βRM = ⌊1/ log2(α + 1)⌋

An analogous utilization bound for EDF-FF scheduling,
given by (3), was presented in [8]

UEDF-FF
wc (n, α) =

nβEDF + 1

βEDF + 1
(3)

whereβEDF = ⌊1/α⌋.

Our paper makes the following theoretical contributions
to the multiprocessor schedulability analysis:

• The calculation of the minimum and maximum utiliza-
tion bounds among all the reasonable allocation algo-
rithms for multiprocessor RM scheduling.

• The proof that no allocation algorithm exists, reason-
able or not, with an associated utilization bound higher
than the previous maximum.

• The expression of the common utilization bound as-
sociated with the simple heuristics FFD and BFD [5],
which coincides with the previous maximum. Thus,
not even the optimal allocation algorithm can guaran-
tee a higher utilization bound than that associated with
FFD or BFD allocation.

Reasonable allocation algorithms are those which fail to
allocate a task only when there is no processor in the system
with sufficient free capacity to hold the task [8]. The idea of
restricting the study to reasonable allocation algorithmsis

to exclude theoretically possible, but impractical allocation
algorithms.

The rest of the paper is organized as follows. Section 2
defines the computational system we deal with. The min-
imum and maximum utilization bounds for multiprocessor
RM scheduling with reasonable allocation are provided in
Section 3. Sections 4 and 5 provide the expressions of
the utilization bounds using WF and Reasonable Allocation
Decreasing (RAD) heuristics respectively. Both expres-
sions are analyzed in Section 6. Finally, Section 7 presents
our conclusions.

2. System definition

The task set consists ofm independent periodic tasks
{τ1, . . . , τm}, of computation times{C1, . . . , Cm}, periods
{T1, . . . , Tm}, and hard deadlines equal to the task periods.
The utilization factor,ui, of any task,τi, defined asui =
Ci/Ti, is assumed to be0 < ui ≤ α ≤ 1, whereα is the
maximum reachable utilization factor.

Tasks are allocated to an array ofn identical processors
{P1, . . . , Pn}. Once a task is allocated to a processor it
is executed only on that processor. Within each processor
tasks are pre-emptively scheduled using fixed priorities as-
signed according to the RM criterion. Allocation is carried
out using reasonable allocation algorithms [8], represented
by RA. A reasonable allocation algorithm is one which fails
to allocate a task only when there is no processor in the sys-
tem which can hold the task.

Whether a task fits into a processor depends on the
uniprocessor scheduling algorithm and the schedulability
condition. In this paper, we use the schedulability condi-
tion based on utilizations proposed in [7] for RM schedul-
ing. Thus, a task of utilization factorui fits into processor
Pj if

(mj + 1)(21/(mj+1) − 1) − Uj ≥ ui

whereUj is the total utilization of the tasks previously allo-
cated to processorPj , andmj is the number of these tasks.

Using the same schedulability condition, a reasonable al-
location algorithm is one which fails to allocate a task of
utilization factorui to a multiprocessor made up ofn pro-
cessors, only when

(mj + 1)(21/(mj+1) − 1) − Uj < ui (4)

for all j = 1, . . . , n.
A class within the reasonable allocation algorithms is

also considered in this paper. This class, termed Reason-
able Allocation Decreasing (RAD), is made up of all the
reasonable allocation algorithms which order the tasks by
decreasing utilization factors before performing a sequen-
tial allocation. After the ordering,

u1 ≥ u2 ≥ · · · ≥ um

2

This corresponds to the intuitive idea of allocating the
“biggest” tasks first. After the ordering, taskτ1 is allocated
first, next taskτ2, and so on until taskτm.

For example, the algorithms FFD and BFD, obtained
through the ordering of the tasks by decreasing utilization
factors before performing the FF and BF allocation respec-
tively, belong to the class RAD.

3. Minimum and maximum utilization bounds

The utilization boundURM-RA
wc , associated with any rea-

sonable allocation algorithm RA and multiprocessor RM
scheduling, is in the interval[LRM , HRM]. This interval
is defined as follows:

LRM = min
RA

URM-RA
wc

HRM = max
RA

URM-RA
wc

The calculation of the interval will allow us to know before-
hand what is the worst and the best utilization bound we can
expect from any reasonable allocation algorithm.

Before calculating the expressions ofLRM andHRM , it
is necessary to introduce the parameterβRM . This param-
eter is analogous to the parameterβEDF defined in [8] for
EDF multiprocessor scheduling.

βRM is the maximum number of tasks of utilization fac-
tor α which fit into one processor.βRM can be expressed
as a function ofα, as proved in [9].

βRM = ⌊1/ log2(α + 1)⌋

Any multiprocessor made up ofn processors can allo-
cate at leastnβRM tasks of arbitrary utilization factor (less
than or equal toα). Thus, any task set fulfillingm ≤ nβRM

is schedulable using RM scheduling together with any rea-
sonable allocation algorithm. Henceforth, we will assume
m > nβRM , as otherwise there would be no point in ob-
taining the utilization bounds.

Theorem 1 provides a lower limit on the utilization
bound associated with any reasonable allocation algorithm
and RM scheduling. Section 4 provides an upper limit on
the utilization bound for the reasonable allocation algorithm
WF, which is equal to the lower limit, and therefore is also
equal toLRM .

Theorem 2 provides an upper limit on the utilization
bound associated with any allocation algorithm, reasonable
or not, and RM scheduling. Section 5 provides a lower limit
on the utilization bound associated with all the reasonable
allocation algorithms in the class RAD, which is equal to
the upper limit, and therefore is also equal toHRM .

Next, Lemma 1 is proved. Lemma 1 is necessary to
prove Theorem 1.

Lemma 1 Let {r1, . . . , rn} be a set of n pos-
itive integers such that

∑n
j=1 rj = M . Let

g(r1, . . . , rn) =
∑n

j=1 rj(2
1/rj − 1). It follows that

g(r1, . . . , rn) ≥ (M − ⌊M/n⌋n) ⌈M/n⌉
(

21/⌈M/n⌉ − 1
)

+ (n − M + ⌊M/n⌋n) ⌊M/n⌋
(

21/⌊M/n⌋ − 1
)

Proof:
We will prove that the minimum of functiong is obtained
when M is quasi-equitably divided among{r1, . . . , rn}.
When M is not a multiple ofn, the quasi-equitable dis-
tribution ofM produces(M − ⌊M/n⌋n) termsrj of value
⌈M/n⌉, and(n−M +⌊M/n⌋n) termsrj of value⌊M/n⌋,
i.e, one unit less. The quasi-equitable distribution is strictly
equitable whenm is a multiple ofn. Thus, a distribution is
quasi-equitable if, and only if,|r̂j − r̂k| ≤ 1 for all j, k in
1, . . . , n.

We will prove by contradiction that the vector
{r̂1, . . . , r̂n}, giving the minimum of functiong, fulfils
|r̂j − r̂k| ≤ 1 for all j, k in 1, . . . , n.

Let us suppose that two termsr̂j andr̂k exist, such that
|r̂j − r̂k| > 1 with r̂j > r̂k, i.e, (r̂j − r̂k) > 1. Termsjth

andkth within the expression ofg accumulate the value

r̂j(2
1/r̂j − 1) + r̂k(21/r̂k − 1)

Decrementinĝrj one unit and incrementinĝrk this unit, the
restriction

∑n
j=1 r̂j = M is fulfilled, and thejth andkth

terms in the expression ofg change to accumulate the value

(r̂j − 1)(21/(r̂j−1) − 1) + (r̂k + 1)(21/(r̂k+1) − 1)

Let f(x) = x(21/x − 1). For x > 0 f ′(x) < 0, and
f ′′(x) > 0. Thus, functionf(x) = x(21/x − 1) decreases
more and more slowly asx increases. Applying this result
to our problem gives

r̂k(21/r̂k − 1) − (r̂k + 1)(21/(r̂k+1) − 1) >

(r̂j − 1)(21/(r̂j−1) − 1) − r̂j(2
1/r̂j − 1)

and therefore,

(r̂j − 1)(21/(r̂j−1) − 1) + (r̂k + 1)(21/(r̂k+1) − 1) <

r̂j(2
1/r̂j − 1) + r̂k(21/r̂k − 1)

which is a contradiction, because changingr̂j and r̂k into
(r̂j − 1) and(r̂k + 1) gives a value ofg less than the mini-
mum. Therefore,

g(r1, . . . , rn) ≥ (M − ⌊M/n⌋n) ⌈M/n⌉
(

21/⌈M/n⌉ − 1
)

+ (n − M + ⌊M/n⌋n) ⌊M/n⌋
(

21/⌊M/n⌋ − 1
)�

3

Theorem 1 Let RA be a reasonable allocation algorithm.
If m > nβRM then

URM-RA
wc (m, n, α) ≥ naUa + nbUb − (n − 1)α

where

na = m + n − 1 −

⌊

m + n − 1

n

⌋

n

nb = n − na

Ua =

⌈

m + n − 1

n

⌉

(

21/⌈m+n−1

n ⌉ − 1
)

Ub =

⌊

m + n − 1

n

⌋

(

21/⌊m+n−1

n ⌋ − 1
)

Proof:
Let {τ1, . . . , τm} be a set ofn tasks which does not fit into
the multiprocessor. There are tasks of the set which are al-
located to processors, and tasks which are not allocated. Let
us change the indexes in the set, so that the tasks which were
not allocated have the last indexes in the set. Letτk be the
first task in the set (after the change of indexes) which was
not allocated to any processor. Since the allocation algo-
rithm is reasonable, from (4) we get

(mj + 1)(21/(mj+1) − 1) − Uj < uk (5)

for all j = 1, . . . , n, whereUj is the total utilization of the
tasks previously allocated to processorPj , mj is the number
of these tasks, anduk is the utilization factor of taskτk.

The total utilization of the whole set,U , fulfils

U =

m
∑

i=1

ui ≥

k
∑

i=1

ui =

n
∑

j=1

Uj + uk (6)

From (5) we get

n
∑

j=1

Uj >

n
∑

j=1

(

(mj + 1)(21/(mj+1) − 1) − uk

)

=

n
∑

j=1

(mj + 1)(21/(mj+1) − 1) − nuk

Substituting this inequality into (6)

U >

n
∑

j=1

(mj + 1)(21/(mj+1) − 1) − (n − 1)uk

From the system definition, all the utilization factors are less
than or equal toα, souk ≤ α and

U >

n
∑

j=1

(mj + 1)(21/(mj+1) − 1) − (n − 1)α

One constraint of themj values is that
∑n

j=1 mj = (k −

1). This constraint is totally equivalent to the constraint
∑n

j=1(mj + 1) = (k + n − 1). Bearing this last con-
straint in mind, definingrj = (mj + 1), M = (k + n− 1),
g(r1 . . . , rn) =

∑n
j=1 rj(2

1/rj −1) and applying Lemma 1

U >

nX
j=1

(mj + 1)(21/(mj+1) − 1) − (n − 1)α ≥�
k + n − 1 −

�
k + n − 1

n

�
n

��
k + n − 1

n

�
2

1

⌈ k+n−1
n ⌉ − 1

!
+

�
1 − k +

�
k + n − 1

n

�
n

��
k + n − 1

n

�
2

1

⌊ k+n−1
n ⌋ − 1

!
− (n − 1)α

(7)

The right-hand term in (7) decreases ask increases, because
any increment ofk raises the value ofM = (k + n − 1) to
distribute quasi-equitably among all the processors. Index
k is in the interval[1, m], sinceτk is a task of the set ofm
tasks. Therefore, fork = m we obtain the minimum of the
right-hand term in (7). Hence, from (7) and considering the
definitions ofna, nb, Ua andUb we get

U > naUa + nbUb − (n − 1)α

Any task set which does not fit into the proces-
sors fulfils the previous expression. Consequently,
any task set of total utilization less than or equal to
naUa + nbUb − (n − 1)α fits into the processors, and
URM−RA

wc (m, n, α) ≥ naUa + nbUb − (n − 1)α �
We will prove thatURM-WF

wc (m, n, α ≤ ln 2) ≤ naUa +
nbUb − (n − 1)α in section 4. Since WF is a reasonable
allocation algorithm we can state that

LRM (m, n, α ≤ ln 2) = naUa + nbUb − (n − 1)α

Next, we provide an intuitive idea about whatna, nb, Ua

andUb represent. This will be useful in the proof of The-
orem 3 in Section 4. After dividing(m − 1) tasks quasi-
equitably amongn processors, there arena processors with
⌈(m − 1)/n⌉ tasks, andnb = n − na processors with one
less task, i.e,⌊(m − 1)/n⌋ tasks.Ua is the uniprocessor uti-
lization bound for each of thena processors after receiving
one more task. Likewise,Ub is the uniprocessor utilization
bound for each of thenb processors after receiving one more
task.

Theorem 2 provides an upper limit on the utilization
bound associated with any allocation algorithm, reasonable
or not, and RM scheduling. The proof is analogous to that
shown in [8] for multiprocessor EDF scheduling.

4

Theorem 2 Let AA be an arbitrary allocation algorithm. If
m > nβRM then

URM-AA
wc ≤ (nβRM + 1)(21/(βRM+1) − 1)

We will prove that a set ofm tasks{τ1, . . . , τm} exists, with
utilization factors0 < ui ≤ α for all i = 1, . . . , m, and
total utilization (nβRM + 1)(21/(βRM+1) − 1) + ǫ, with
ǫ → 0+, which does not fit inton processors using any
allocation algorithm and RM scheduling on each processor.

We will construct this set ofm tasks composed of two
subsets: a first subset with(m − nβRM − 1) tasks, and a
second subset with(nβRM + 1) tasks.

All the tasks of the first subset have the same utilization
factor of value

ui =
ǫ

m

wherei = 1, . . . , (m − nβRM − 1).
All the tasks of the second subset have the same utiliza-

tion factor of value

ui = (21/(βRM+1) − 1) +
ǫ

m

wherei = (m − nβRM), . . . , m.
It can be seen that the total utilization of the whole task

set is(nβRM + 1)(21/(βRM+1) − 1) + ǫ.
Firstly, it is necessary to prove that the utilization

factors of both subsets are valid, i.e,0 < ui ≤ α for all
i = 1, . . . , m.

Check of the utilization factors of the first subset.
By choosing a small enough value forǫ, we obtain
0 < ui = ǫ

m ≤ α.

Check of the utilization factors of the second subset.By
definition of βRM , (βRM + 1) tasks of utilization factor
α do not fit into one processor, therefore(βRM + 1)α >
(βRM + 1)(21/(βRM+1) − 1), and

α > (21/(βRM+1) − 1) (8)

It is always possible to find one real number between two
real numbers. Hence, a positive valueǫ exists such that

α > (21/(βRM+1) − 1) +
ǫ

m
= ui

which proves that the utilization factors of the second subset
are less thanα whenǫ → 0+. In addition, the utilization
factors of the second subset are obviously greater than zero.

From the above results, we conclude that the proposed
task set is valid. Below, we prove that it does not fit inton
processors, using RM scheduling and any allocation algo-
rithm.

There are(nβRM +1) tasks in the second subset. Hence,
at least one processor of then available should allocate

(βRM + 1) or more of these tasks. However, no processor
can allocate(βRM + 1) or more tasks of the second subset,
since(βRM + 1) of these tasks together have a utilization
over Liu & Layland’s bound for RM [7].

(βRM+1)
(

(21/(βRM+1) − 1) +
ǫ

m

)

>

(βRM + 1)(21/(βRM+1) − 1)

We conclude that the proposed task set of total utilization
U = (nβRM + 1)(21/(βRM+1) − 1) + ǫ does not fit inton
processors whenǫ → 0+, so the utilization boundURM-AA

wc
must be less than or equal to(nβRM +1)(21/(βRM+1)−1).

NOTE: the tasks of the first subset are necessary in the
proof only to fulfil the restriction of havingm tasks. �
4. Utilization bound for Worst Fit allocation

This section shows that the allocation algorithm termed
Worst Fit (WF) is the worst reasonable allocation algo-
rithm in terms of utilization bound for multiprocessor RM
scheduling.

The WF algorithm allocates each task to the processor
with the highest remaining capacity among all the proces-
sors with sufficient capacity to hold the task. Tasks are al-
located one by one following the sequence{τ1, . . . , τk}.
Using Liu & Layland’s schedulability condition for RM
scheduling, the remaining capacity of processorPj is given
by the expression(mj + 1)(21/(mj+1) − 1) − Uj.

Next, Theorem 3 gives an upper limit on the utilization
bound for WF allocation and RM scheduling. This upper
limit coincides with the lower limit provided by Theorem 1
for any reasonable allocation algorithm, and therefore with
the utilization bound for WF allocation, given by Corol-
lary 1.

The termsna, nb, Ua andUb in the statement of Theo-
rem 3 have been defined in Theorem 3. The reader should
refer to the intuitive description of these parameters given
after the proof of Theorem 1, in order to better understand
the proof of Theorem 3. .

Theorem 3 If m > nβRM

URM-WF
wc (m, n, α ≤ ln 2) ≤ naUa + nbUb − (n − 1)α

Proof:
We will prove the existence of a set ofm tasks,
{τ1, . . . , τm}, of utilization factors less than or equal toα,
and total utilization

naUa + nbUb − (n − 1)α + ǫ

with ǫ → 0+, which does not fit into the processors us-
ing the allocation algorithm WF. The set ofm tasks is

5

built as follows, strictly in the order indicated. There are
⌊(m − 1)/n⌋ subsets ofn = (na + nb) tasks each. All
these subsets are made up ofna tasks of utilization factor

ua =
Ua − α

⌈(m − 1)/n⌉
+

ǫ

m − 1

followed bynb tasks of utilization factor

ub =
Ub − α

⌊(m − 1)/n⌋
+

ǫ

m − 1

Following the previous⌊(m − 1)/n⌋ subsets, there arena

tasks of utilization factorua. Finally, there is the last task,
τm, of utilization factorα.

It can be seen that the whole task set is made up ofm
tasks, and the total utilization is

naUa + nbUb − (n − 1)α + ǫ

Firstly, it is necessary to prove that the utilization factors of
all the tasks are valid, i.e,0 < ui ≤ α for i = 1, . . . , n.

Forx > 0, functionx(21/x−1) decreases asx increases.
Therefore,Ub ≥ Ua > ln 2 ≥ α, and the utilization factor
of all the tasks is higher than zero. The utilization factor of
the last task isα, and therefore it is less than or equal toα.
We have to prove thatua ≤ α andub ≤ α in order to prove
that the proposed task set is valid. It is sufficient to prove
thatub ≤ α, asua ≤ ub.

Substituting the value ofUb in the definition ofub

ub =

⌊

m+n−1
n

⌋

(

21/⌊m+n−1

n ⌋ − 1
)

− α

⌊(m − 1)/n⌋
+

ǫ

m − 1
(9)

From the hypothesis of the Theoremm > nβRM . Since
βRM is an integer,(m − 1) ≥ nβRM , ⌊(m − 1)/n⌋ ≥
βRM , and⌊(m + n − 1)/n⌋ ≥ (βRM + 1). In addition,
α > (21/(βRM+1) − 1) (see (8)). Forx > 0, function
x(21/x − 1) decreases asx increases. Hence,

⌊

m + n − 1

n

⌋

(

21/⌊m+n−1

n ⌋ − 1
)

≤

(βRM + 1)(21/(βRM+1) − 1)

and
ub < (21/(βRM+1) − 1) +

ǫ

m − 1

As was indicated previously,(21/(βRM+1) − 1) < α, so by
makingǫ close to zero we getub < α.

Next, we will prove that the task set does not fit into the
multiprocessor. The first(m − 1) tasks are allocated by
the WF heuristic as indicated in Figure 1. Numbers within
parenthesis in Figure 1 represent task indexes. The proof
of the allocation pattern shown in Figure 1 is too large to
be included in this paper. As a result of the allocation of the

P1

P2

P3

P4

P5

ua(1)

ua(2)

ub(3)

ua(17)

ub(4)

ub(5)

ua(6)

ua(7)

ub(8)

ub(9)

ub(10)

ua(11)

ua(12)

ub(13)

ub(14)

ub(15)

na = 2

nb = 3

⌊

m−1
n

⌋

= 3 subsets of5 tasks

ua(16)

Figure 1. Example of allocation of the first
(m − 1) tasks in Theorem 3, for m = 18 and
n = 5.

first (m−1) tasks, the firstna processors hold⌈(m − 1)/n⌉
tasks of utilization factorsua. These processors may hold
one additional task of utilization factor

Ua − ⌈(m − 1)/n⌉ua = α − ǫ ⌈(m − 1)/n⌉ /(m − 1)

Therefore, the last task of utilization factorα does not fit
into any of these processors. Nor can the remainingnb pro-
cessors hold the last task because at most they can hold one
additional task of utilization factor

Ub − ⌊(m − 1)/n⌋ub = α − ǫ ⌊(m − 1)/n⌋/(m − 1)

We conclude that the proposed task set of total utiliza-
tion naUa + nbUb − (n− 1)α does not fit inton processors
whenǫ → 0+, so the utilization boundURM-WF

wc (m, n, α)
must be less than or equal tonaUa + nbUb − (n − 1)α. �

Corollary 1 provides the utilization bound for WF allo-
cation and RM multiprocessor scheduling.

Corollary 1 If m > nβRM

URM-WF
wc (m, n, α ≤ ln 2) = naUa + nbUb − (n − 1)α

Proof:
The proof is direct from Theorem 1 and Theorem 3. �
5. Utilization bound for RAD allocation

The Reasonable Allocation Decreasing (RAD) algo-
rithms are reasonable allocation algorithms fulfilling the
following conditions:

• Tasks are ordered by decreasing utilization factors be-
fore making the allocation, i.e,u1 ≥ u2 ≥ · · · ≥ um.

• Tasks are allocated sequentially, That is, taskτ1 is al-
located first, next taskτ2, and so on until taskτm.

6

The heuristics FFD and BFD, belong to this class.
Theorem 4 provides a lower limit on the utilization

bound associated with the class of RAD allocation algo-
rithms under RM scheduling. This lower limit coincides
with the upper limit on the utilization bound associated with
any allocation algorithm under RM scheduling. Therefore,
both bounds also coincide with the utilization bound asso-
ciated with any RAD allocation algorithm and RM schedul-
ing, as given by Corollary 2. Furthermore, RAD allocation
algorithms are optimal from the point of view of the utiliza-
tion bound, since no allocation algorithm exists guarantee-
ing a higher utilization bound. Thus, the utilization bound
associated with the optimal allocation algorithm coincides
with the utilization bound associated with the RAD algo-
rithms.

Theorem 4 If m > nβRM then

URM-RAD
wc (m, n > 1, α) ≥ (nβRM + 1)(21/(βRM+1) − 1)

Proof:
Let {τ1, . . . , τm} be a set ofn tasks which does not fit into
the multiprocessor. Letτk be the first task in the set which
does not fit into the multiprocessor. Since RAD allocation
algorithms are reasonable, from (4) we get

(mj + 1)(21/(mj+1) − 1) − Uj < uk (10)

for all j = 1, . . . , n, whereUj is the total utilization of the
tasks allocated to processorPj , mj is the number of these
tasks, anduk is the utilization factor of taskτk. The total
utilization of the firstk tasks fulfils

k
∑

i=1

ui =
n

∑

j=1

Uj + uk (11)

From (10) and (11) we get

k
∑

i=1

ui >
n

∑

j=1

(mj + 1)(21/(mj+1) − 1) − (n − 1)uk (12)

Tasks were ordered in decreasing utilization factors before
carrying out the allocation, so

uk ≤

∑k
i=1 ui

k

Substituting this inequality into (12) and finding
∑k

i=1 ui

k
∑

i=1

ui >
k

k + n − 1

n
∑

j=1

(mj + 1)(21/(mj+1) − 1)

The total utilization of the firstk tasks is less than or equal
to the total utilization of the whole task set. Thus,

U >
k

k + n − 1

n
∑

j=1

(mj + 1)(21/(mj+1) − 1) (13)

Variablesk and{m1, . . . , mn} can not take any value. In
particular,mj ≥ βRM for all j in 1, . . . , n. Otherwise, task
τk would fit into the processors, because each processor can
allocate at leastβRM tasks, and this would contradict the
hypothesis which states thatτk does not fit into the proces-
sors. In addition,

k = 1 +

n
∑

j=1

mj

and sok ≥ (nβRM + 1). Let g(k, n) be the minimum
of function

∑n
j=1(mj + 1)(21/(mj+1) − 1) under the con-

straintsk = 1 +
∑n

j=1 mj and mj > 0, which can be
obtained from Lemma 1.

U >
k

k + n − 1
g(k, n)

If n > 1 the right term of the inequality is minimized1 for
k = (βRMn + 1) andmj = βRM for all j = 1, . . . , n. The
proof is not provided here for the sake of brevity. Moving
these values to (13)

U >
nβRM + 1

nβRM + 1 + n − 1

n
∑

j=1

(βRM + 1)(21/(βRM+1) − 1)

= (nβRM + 1)(21/(nβRM+1) − 1)

A necessary condition to be fulfilled by the total utilization
of any task set which does not fit into then processors is

U > (nβRM + 1)(21/(nβRM+1) − 1)

In other words, any task set of total utilization less than or
equal to

(nβRM + 1)(21/(nβRM+1) − 1)

fits into then processors. Thus, we finally conclude

URM-RAD
wc (m, n > 1, α) ≥ (nβRM + 1)(21/(nβRM+1) − 1)�
Corollary 2 provides the utilization bound for RAD allo-

cation and RM multiprocessor scheduling.

Corollary 2 If m > nβRM

URM-RAD
wc (m, n, α) =

{

m(21/m − 1) if n = 1

(nβRM + 1)(21/(nβRM+1) − 1) if n > 1

Proof:
The proof is direct from Theorem 2, Theorem 4, and Liu &
Layland’s bound for uniprocessor RM scheduling. �

1If n = 1 it is minimized fork = m, and we will finally obtain the
utilization boundm(21/m

− 1).

7

6. Analysis of the theoretical results

In this section, we analyze the functions

LRM(m, n, α ≤ ln 2) = naUa + nbUb − (n − 1)α

and

HRM (m, n, α) =
{

m(21/m − 1) if n = 1

(nβRM + 1)(21/(nβRM+1) − 1) if n > 1

LRM(m, n, α) is the minimum utilization bound for multi-
processor RM scheduling evaluated among all the reason-
able allocation algorithms. This minimum coincides with
the utilization bound for RM-WF.

It can be seen that for the uniprocessor case
LRM(m, n = 1, α ≤ ln 2) = m(21/m − 1), and so it coin-
cides with Liu & Layland’s bound.

The expression ofLRM provided in the paper has one
theoretical limitation,α can not be higher thanln 2. How-
ever, this is not a practical limitation. The utilization bound
can be obtained by subtractingǫ → 0+ from the minimum
utilization evaluated among all the task sets which do not
fit into the multiprocessor. Thus, ifα > ln 2, all the task
sets fulfillingui ≤ ln 2 also fulfill ui ≤ α, and therefore
LRM(m, n, α > ln 2) ≤ LRM (m, n, ln 2). From Figure 2,
we can extrapolate the value ofLRM(m, n, ln 2) to be low,
which makes in this case the utilization bound of little im-
portance.

One of the difficulties of dealing with the function
LRM(m, n, α ≤ ln 2) is its complexity. Nevertheless, for
n > 1 andm > n we have found the relation

0 ≤
naUa + nbUb − (m + n − 1)(2n/(m+n−1) − 1)

n
≤ 0′0054

Therefore, from a practical point of view

LRM(m,n, α ≤ ln 2) ≈

(m + n − 1)(2n/(m+n−1) − 1) − (n − 1)α

In addition, it can be seen that for the uniprocessor case this
expression gives Liu & Layland’s bound.

Figure 2 depicts the functionLRM (m, n, α ≤ ln 2) as
a function of the numbers of processors, for different val-
ues ofα. In spite ofn being an integer, it is represented
as a continuous function with the aim of improving its vi-
sualization. The representation has been normalized by di-
viding LRM by the number of processors, in order to show
the average degree of utilization of the processors. For each
value ofα two different curves have been plotted. The top
curve is associated with the minimum number of tasks, i.e,

0

0.25

0.5

0.75

1 5 10 15 20 25

α = 0.6

α = 2
1
2 − 1

α = 2
1
3 − 1

α = 2
1
10 − 1

α ≈ 0

Number of processors (n)

L
R

M
(m

,n
,α

≤
ln

2
)

n

Figure 2. Plot of LRM (m, n, α ≤ ln 2).

m = (nβRM + 1). The bottom curve is associated with the
maximum number of tasks, i.e,m → ∞. The shaded area
between the top and bottom curves corresponds to values of
m in (nβRM + 1,∞).

For high values ofα the utilization boundLRM is too
small. However, asα nears0, the utilization bound becomes
close ton ln 2. In this case, the multiprocessor behaves ap-
proximately like a uniprocessorn times faster.

HRM (m, n, α) is the maximum of the utilization bounds
for multiprocessor RM scheduling evaluated among all the
reasonable allocation algorithms. This maximum coincides
with the utilization bound for RM-RAD. The class of RAD
allocation algorithms include allocation algorithms suchas
FFD and BFD. All of them have the same utilization bound.
In addition, no allocation algorithm exists which guaran-
tees a utilization bound higher thanHRM (m, n, α). From
this point of view, RAD allocation algorithms are optimal.
Figure 3 depicts the functionHRM (m, n > 1, α) as a func-
tion of the numbers of processors for different values ofα.
In spite ofn being an integer, here as well it is represented
as a continuous function to improve its visualization. This
function has not been represented forn = 1, since in this
case the utilization bound coincides with the well-known
utilization boundm(21/m − 1). For n > 1 it does not de-
pend on the number of tasks. The representation has been
normalized by dividingHRM by the number of processors.
Each curve in Figure corresponds to a different value of
βRM , and therefore to a different value ofα.

For α > (21/2 − 1) we obtain βRM = 1, and
HRM (m, n > 1, α) = (n + 1)(21/2 − 1). The addi-
tion of one processor increments the value ofHRM by

8

0

0.25

0.5

0.75

2 5 10 15 20 25

α = 0.6

α = 2
1
2 − 1

α = 2
1
3 − 1

α = 2
1
10 − 1

α ≈ 0

Number of processors (n)

H
R

M
(m

,n
>

1,
α
)

n

Figure 3. Plot of HRM (m, n > 1, α).

(21/2 − 1) ≈ 0.41 . Whenα → 0 thenβRM → ∞ and
H(m, n > 1, α → 0) = n ln 2. That is, the multiprocessor
behaves like an ideal uniprocessorn times faster.

For example, the utilization bound associated with RM
scheduling and FFD allocation in a multiprocessor made
up of two processors is3(21/2 − 1) ≈ 1.24, about0.62
per processor. If tasks have utilization factors less than or
equal to(21/2 − 1) ≈ 0.41 thenβRM = 2. In this case,
the utilization bound for FFD allocation takes the value
5(21/3 − 1) ≈ 1.30, about0.65 per processor, close to the
idealln 2 ≈ 0.69.

7. Conclusions

We have obtained the tight interval in which the utiliza-
tion bound associated with any reasonable allocation algo-
rithm is found. Since practical allocation algorithms are rea-
sonable, the interval obtained is of wide applicability.

The WF algorithm was proved to be the worst reason-
able allocation algorithm in terms of the utilization bound
for multiprocessor RM scheduling. Its utilization bound is
a function of the number of processors,n, the number of
tasks,m, and a parameterα that takes the “task size” into
account. For high values ofα the bound is less than or equal
to 2(21/2−1), while for low values ofα it is close ton ln 2.

In addition, algorithms such as FFD and BFD were
proved to be optimal in terms of the utilization bound. The
utilization bound associated with these heuristics is close
to the idealn ln 2 when the multiprocessor is made up two
processors, or when the utilization factors of the tasks are

small. The utilization bound associated to these algorithms
does not depend on the number of tasks.

The task set model of the paper considered periodic and
independent tasks. Nevertheless, it is also possible to ana-
lyze the schedulability of task sets including also sporadic
and aperiodic tasks, whenever the aperiodic tasks are served
by aperiodic servers whose worst-case behaviour can be as-
similated to periodic tasks. This is the case of the Polling
Server and the Sporadic Server.

References

[1] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strate-
gies for assigning real-time tasks to multiprocessor systems.
IEEE Transactions on Computers, 44(12), 1995.

[2] S. Dall and C. Liu. On a real-time scheduling problem.Op-
erations Research, 6(1):127–140, 1978.

[3] S. Davari and S. Dhall. On a periodic real-time task alloca-
tion problem. InAnnual international Conference on Sys-
tems Sciences, pages 133–141, 1986.

[4] S. Davari and S. Dhall. An on line algorithm for real time
tasks allocation. InProceedings of the IEEE Real-Time Sys-
tems Symposium, pages 194–200, 1986.

[5] M. Garey and D. Johnson.Computers and Intractability.
W.H. Freman, New York, 1979.

[6] S. Lauzac, R. Melhem, and D. Mossé. An efficient rms
admission control and its application to multiprocessor
scheduling. InProceedings of the International Parallel
Processing Symposium, pages 511–518, 1998.

[7] C. L. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.Journal of
the ACM, 20(1):46–61, 1973.

[8] J. López, J. D́iaz, M. Garćia, and D. Garćia. Worst-case
utilization bound for edf scheduling on real-time multipro-
cessor systems. InProceedings of the Euromicro Workshop
on Real-Time Systems, pages 25–33, 2000.

[9] J. López, J. D́iaz, M. Garćia, and D. Garćia. Utilization
bounds for multiprocessor rm scheduling.To appear in the
Real-Time Systems Journal, 2001.

[10] D. Oh and T. Baker. Utilization bounds for n-processor
rate monotone scheduling with static processor assignment.
Real-Time Systems, 15(2):183–193, 1998.

[11] Y. Oh and S. Son. Allocating fixed-priority periodic tasks on
multiprocessor systems.Real-Time Systems, 9(3):207–239,
1995.

[12] D. Peng, K. Shin, and T. Abdelzaher. Assignment and
scheduling communicating periodic tasks in distributed real-
time systems. Transactions on Software Engineering,
23(12):745–758, 1997.

[13] S. Sáez, J. Vila, and A. Crespo. Using exact feasibility tests
for allocating real-time tasks in multiprocessor systems.In
Proceedings of the 10th Euromicro Workshop on Real-Time
Systems, pages 53–60, 1998.

[14] K. Tindell, A. Burns, and A. Wellings. Allocating hard real-
time tasks (an np-hard problem made easy).Real-Time Sys-
tems, 4(2):145–165, 1992.

9

