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Abstract. In this paper we extend Liu & Layland’s utilization bound for fixed
priority scheduling on uniprocessors to homogeneous multiprocessor systems under
a partitioning strategy. Assuming that tasks are pre-emptively scheduled on each
processor according to fixed priorities assigned by the Rate-Monotonic policy, and
allocated to processors by the First Fit algorithm, we prove that the utilization
bound is (n − 1)(21/2 − 1) + (m − n + 1)(21/(m−n+1) − 1), where m and n are
the number of tasks and processors respectively. This bound is valid for arbitrary
utilization factors. Moreover, if all the tasks have utilization factors under a value
α, the previous bound is raised and the new utilization bound considering α is
calculated. Finally, simulation provides the average-case behaviour.

Keywords: hard real-time, multiprocessor scheduling, partitioning, rate monotonic
scheduling, utilization bound.

1. Introduction

Liu & Layland proved the optimality of the Rate Monotonic (RM)
priority assignment for pre-emptive uniprocessor scheduling with fixed
priorities, where task deadlines are equal to task periods (Liu and
Layland, 1973). Throughout this paper, this scheduling policy will be
referred to as RM scheduling. In addition, they derived the utilization
bound m(21/m − 1), for RM scheduling of m tasks on uniprocessors.
This bound represents the value to be exceeded by the total utilization
of any task set before any task can miss its deadline. The objective
of our paper is to extend the bound m(21/m − 1) to homogeneous
multiprocessor systems by adding a new parameter, n, indicating the
number of processors.

A new issue arises in multiprocessor scheduling with regard to the
uniprocessor case; that is which processor executes each task at a given
time. There are two major strategies to deal with this issue: parti-

tioning strategies, and non-partitioning strategies (Oh and Son, 1995).
In a partitioning strategy, once a task is allocated to a processor, it
executes exclusively on that processor. In a non-partitioning strategy
any instance of a task can execute on a different processor, or even be
pre-empted and moved to a different processor before it is completed.

Non-partitioning strategies have several disadvantages versus par-
titioning strategies. Firstly, the scheduling overhead associated with a
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non-partitioning strategy is greater than the overhead associated with a
partitioning strategy. Secondly, partitioning strategies allow us to apply
well-known uniprocessor scheduling algorithms to each processor.

In this paper, we follow the partitioning strategy, and we assume
that all the tasks allocated to a processor are pre-emptively scheduled
using fixed priorities defined by RM (as it is the optimal priority as-
signment for uniprocessors). Subsequently, the only degree of freedom
is the allocation algorithm.

The problem of allocating a set of tasks to a set of processors is
analogous to the bin-packing problem, where the set of processors is
regarded as a set of bins. A bin-packing algorithm is said to be optimal
if it finds a feasible allocation of items to bins whenever a feasible
allocation exists. The capacity of the processor (bin) depends on the
schedulability condition that is being used. Using Liu & Layland’s
schedulability condition for RM scheduling, the capacity of a proces-
sor is m(21/m − 1), where m is the number of tasks allocated to the
processor. The capacity of the processor is not constant, as it depends
on m, and so the optimal allocation problem is as least as hard as
the bin-packing problem, which is known to be NP-hard in the strong
sense (Garey and Johnson, 1979). Thus, searching for optimal alloca-
tion algorithms is not practical. Several heuristic allocation algorithms
have been proposed in the literature (Dall and Liu, 1978; Garey and
Johnson, 1979; Burchard et al., 1995; Oh and Son, 1995; S. Sáez and
Crespo, 1998).

Most works about RM scheduling on multiprocessors focus on search-
ing for heuristic allocation algorithms which are compared to each other
using the metric (NA/Nopt), where NA is the number of processors
required to schedule a task set using a given allocation algorithm, A,
and Nopt is the number of processors needed by the optimal allocation
algorithm (Dall and Liu, 1978; Burchard et al., 1995; Oh and Son,
1995). This metric is useful to compare the performance of different
allocation algorithms, but not to establish the schedulability of the
system. There are several reasons:

− In general, the number Nopt can not be obtained in polynomial
time.

− Even if Nopt were known, the utilization bound derived from the
metric is too pessimistic, as is shown by Oh and Baker (1998).

The objective of this paper is not to investigate new allocation
algorithms. The objective is to obtain the utilization bound for mul-
tiprocessor systems using RM scheduling and well-known allocation
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algorithms. With this purpose a new parameter, n, indicating the num-
ber of processors will be added to the utilization bound m(21/m − 1)
given by Liu & Layland for uniprocessor systems.

The only result known by the authors related to the utilization
bound using allocation and RM scheduling on each processor is that
given by Oh and Baker (1998). They provide the interval (1) for the
utilization bound URM-FF

wc , using First Fit (FF) allocation and RM
scheduling on a homogeneous multiprocessor system.

n(21/2 − 1) < URM-FF
wc (n) ≤ (n + 1)/(1 + 21/(n+1)) (1)

The practical implication of equation (1) is that any task set of total
utilization less than or equal to n(21/2 − 1) ≈ 0.414n is schedulable
using FF allocation and RM scheduling.

Our paper proves that the utilization bound for FF allocation and
RM scheduling takes the value

URM-FF
wc (m,n) = (n − 1)(21/2 − 1)

+ (m − n + 1)(21/(m−n+1) − 1)
(2)

The difference between the utilization bound given by equation (2)
and the expression n(21/2 − 1) given by equation (1) is particularly
significant in systems with a small number of processors.

If all the tasks have a utilization factor under a value α, the utiliza-
tion bound is proved to be

URM-FF
wc (m,n, α) = (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)
(3)

where
β = ⌊1/ log2(α + 1)⌋

Equation (3) represents the general case from which equation (2) is
obtained making α = 1, and therefore β = 1. As α decreases, both β
and the bound given by equation (3) increase. In the limit, when α → 0,
then β → ∞, and the bound is n ln 2. Therefore in the case of tasks
with “low” utilization factors, the multiprocessor performance is close
to that of an uniprocessor n-times faster than each of its processors.

The rest of the paper is organized as follows. Section 2 defines the
system we deal with. The expression (3) of the utilization bound is
proved in Section 3. Section 4 analyzes the expression of the utilization
bound. Section 5 provides by means of simulation the average-case
behaviour of RM scheduling with FF allocation. Allocation heuristics
other than FF are considered in Section 6. Finally, Section 7 presents
our conclusions.
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2. System definition

The task set model consists of m independent periodic tasks {τ1, . . . , τm}
of computation times {C1, . . . , Cm}, periods {T1, . . . , Tm}, and hard
deadlines equal to the task periods. The utilization factor ui of any
task τi, defined as ui = Ci/Ti, is assumed to be 0 < ui ≤ α ≤ 1,
where α is the maximum value that can be taken by the utilization
factor of any task. Thus, the total utilization of the task set defined
as U =

∑m
i=1 ui is less than or equal to mα. No particular order is

assumed among the utilization factors.
Tasks are allocated to an array of n identical processors {P1, . . . , Pn},

which execute independent of each other. Once a task is allocated to
a processor, it executes only on that processor. Within each processor,
tasks are scheduled pre-emptively using fixed priorities defined by the
RM priority assignment. This paper focuses basically on the First Fit

(FF) allocation heuristic. Other allocation heuristics are also considered
in Section 6.

The FF algorithm assigns any periodic task, τi, to the first processor,
Pj, with enough capacity. The capacity is given by Liu & Layland’s
schedulability condition for RM scheduling. Thus, the task is allocated
to the first processor fulfilling (ui+Uj) ≤ (mj +1)(21/(mj+1)−1), where
mj is the number of tasks previously allocated to processor Pj , and Uj

is the total utilization of these tasks. Processors are visited in the order
P1, P2, . . . , Pn. If no processor has enough capacity to hold τi, then we
can not guarantee the schedulability of the periodic task set (at least
using Liu & Layland’s schedulability condition).

3. Calculation of the utilization bound

In this section we obtain the utilization bound URM-FF
wc for RM schedul-

ing and FF allocation on multiprocessors, which is defined as follows.

DEFINITION 1. The utilization bound for RM scheduling and FF al-

location is defined as the real number URM-FF
wc , fulfilling the following

properties.

− Any periodic task set of total utilization U ≤ URM-FF
wc fits into the

processors, using Liu & Layland’s schedulability condition for RM

scheduling, and the allocation policy FF. Therefore the periodic

task set is schedulable.

− For any total utilization U > URM-FF
wc , it is always possible to

find a periodic task set, which does not fit into the processors using
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Liu & Layland’s schedulability condition for RM scheduling and

the allocation policy FF. In this case, the periodic task set may be

or may not be schedulable.

In other words, the utilization bound is the maximum total uti-
lization guaranteeing the schedulability of the task set even in the
worst-case.

The rest of this section is structured as follows.

− The existence of the utilization bound URM-FF
wc is proved (Lemma 1).

− A new parameter β is defined as a function of α (Lemma 2). This
parameter is a key concept in the derivation of URM-FF

wc . In ad-
dition, it provides a simple schedulability condition, which states
that any task set made up of m ≤ βn tasks is schedulable. It is
not worth obtaining the utilization bound when m ≤ βn, as in this
case the task set is directly schedulable.

− The utilization bound for task sets with m > βn tasks is calcu-
lated. This last step is relatively complex, so further on it is divided
into five substeps.

Next, Lemma 1 is presented, which proves the existence of the
utilization bound for RM scheduling and the FF allocation algorithm.

LEMMA 1. There exists one utilization bound for RM scheduling and

FF allocation, which is a function of the number of tasks, m, the number

of processors, n, and the maximum reachable utilization factor, α.

Proof. Let Π(m,n, α) be the set of all the positive real numbers,
π, fulfilling the following condition: any task set made up of m tasks,
of utilization factors 0 < ui ≤ α, and total utilization U ≤ π fits
into n processors, using Liu & Layland’s schedulability condition for
RM scheduling, and FF allocation. The set Π(m,n, α) is not empty,
as any task set of total utilization ln 2 or less fits into one proces-
sor, and therefore also fits into n processors using FF allocation. In
addition, all the elements of Π(m,n, α) are less than or equal to the
finite value n, as any task set of total utilization greater than n does
not fit into n processors. Therefore, a maximum in Π(m,n, α) exists,
termed πmax(m,n, α), which is a function of m, n and α. Next, we will
prove that πmax(m,n, α) is the utilization bound, i.e, it fulfills the two
properties given in Definition 1.

Any task set of total utilization less than or equal to πmax(m,n, α)
fits into n processors, as πmax(m,n, α) is an element of Π(m,n, α).
Furthermore, being πmax(m,n, α) the maximum of Π implies that at
least one set of m tasks exists, of total utilization πmax(m,n, α) + ǫ,
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with ǫ → 0+, which does not fit into the processors.1. If this were
not so, πmax(m,n, α) + ǫ would be an element of Π greater than the
maximum, πmax(m,n, α), which is not possible. Subsequently, for any
total utilization of value πmax(m,n, α) + ǫ, at least one set of m tasks
which does not fit into n processors exists. For any total utilization
greater than πmax(m,n, α) + ǫ, it is even easier to find a set of m tasks
which does not fit into n processors. This proves the last property of
Definition 1.

We conclude that the utilization bound exists, and it is equal to
πmax(m,n, α) . �

At this point, we introduce a new parameter β, defined as the maxi-

mum number of tasks of utilization factor α, which fit into one proces-

sor. This parameter is a key concept in the derivation of URM-FF
wc , and

gives rise to a simple schedulability condition.
From the above definition it is clear that β is a function of the

maximum utilization factor, α. This function is given by Lemma 2.

LEMMA 2.

β =

⌊

1

log2(α + 1)

⌋

(4)

Proof. From the definition of β, β tasks of utilization factor α fit into
one processor. Applying Liu & Layland’s bound for RM scheduling this
means that βα ≤ β(21/β − 1). Finding β we obtain β ≤ 1/ log2(α + 1).
Since β is an integer value we get

β ≤

⌊

1

log2(α + 1)

⌋

(5)

Since β is the maximum number of tasks of utilization factor α that
fit into one processor, (β + 1) tasks of utilization factor α do not fit
into one processor. Thus, (β + 1)α > (β + 1)(21/(β+1) − 1). Finding β
we obtain β > 1/ log2(α + 1) − 1. Since β is an integer value we get

β ≥

⌊

1

log2(α + 1)

⌋

(6)

The lemma is proved from (5) and (6). �
The value of β can be used to establish the schedulability of some

task sets. From the definition of β, β tasks of utilization factor α fit
into each processor. Since all the tasks have utilization factors less
than or equal to α, at least β tasks of arbitrary utilization factors

1 The expression ǫ → 0+ is equivalent to ǫ → 0, and ǫ > 0.
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Figure 1. Representation of the function β(α), and the associated schedulability
condition.

(≤ α) fit into each processor. Therefore, a multiprocessor made up
of n processors can allocate at least βn tasks. Subsequently, if a task
set is made up of m tasks and m ≤ βn, the task set is schedulable
by RM and any reasonable allocation algorithm on n processors. By
a reasonable allocation algorithm, we mean one which fails to allocate
a task only when there is no processor in the system with enough
remaining capacity to receive the task.

Figure 1 depicts β as a function of α, and also shows the sufficient
schedulability condition m ≤ βn. For example, if α is in the interval
(21/3 − 1, 21/2 − 1] ≈ (0.26, 0414] then β = 2. In this case, the task set
is schedulable if it has 2n tasks or less.

Another consequence of the schedulability condition m ≤ βn is that
it is worthwhile to obtain the value of the utilization bound only for
the case m > βn. Otherwise, the task set is directly schedulable. From
now we assume m > βn, so the above schedulability condition can not
be applied.

The rest of this section is devoted to the calculation of the utilization
bound for RM scheduling and FF allocation, under the restriction m >
βn. The strategy in the calculation is the following:

manuscript.tex; 25/10/2000; 18:27; p.7



8

1. Some mathematical relationships used in the proofs are presented.

2. Theorem 1 gives an upper limit on the utilization bound.

3. Lemma 3 is proved. This lemma is necessary in order to prove
Theorem 2.

4. Theorem 2 proves an expression which relates the utilization bound
for m tasks and n processors, with the utilization bound for (m−β)
tasks and (n − 1) processors.

5. From the result given in step 4, and Liu & Layland’s bound for
uniprocessors, Theorem 3 obtains a lower limit on the utilization
bound. The upper and lower limits on the utilization bound given
in steps 2 and 5 are the same. Finally, Theorem 3 gives the exact
value of the utilization bound, which coincides with the upper and
lower limits.

Before calculating URM-FF
wc (m,n, α), some relationships of the positive

integer numbers, Z+, are presented without proof.

(i) x + 1 ≤ y ∀x, y ∈ Z+ | x < y

(ii) (21/x − 1)x > (21/y − 1)y > ln 2 ∀x, y ∈ Z+ | x < y

(iii) (21/(x+1) − 1)x < (21/(y+1) − 1)y < ln 2 ∀x, y ∈ Z+ | x < y

These will be referred to as Relationship (i), Relationship (ii), and
Relationship (iii).

The following theorem gives an upper limit on the utilization bound
using RM scheduling and FF allocation. The proof is based on finding
a task set which does not fit into the processors.

THEOREM 1. If m > βn then

URM-FF

wc (m,n, α) ≤ (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)
(7)

Proof. Let us define

g(m,n, α) = (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)

We will prove that there exists a set of m tasks, {τ1, . . . , τm}, with
utilization factors 0 < ui ≤ α for all i = 1, . . . ,m, and total utilization
U = g(m,n, α) + ǫ, given ǫ → 0+, which does not fit into n processors,
using FF allocation and Liu & Layland’s bound for RM scheduling.
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This set of m tasks is made up of two subsets: a first subset with
(m − βn) tasks, and a second subset with βn tasks.

All the tasks of the first subset have the same utilization factor of
value

ui =
(m − β(n − 1))(21/(m−β(n−1)) − 1) − (21/(β+1) − 1)β

(m − βn)
(8)

where i = 1, . . . , (m − βn).
All the tasks of the second subset have the same utilization factor

of value
ui = (21/(β+1) − 1) +

ǫ

βn

where i = (m − βn + 1), . . . ,m.
It can be easily checked that the total utilization of the whole task

set is g(m,n, α) + ǫ.
Firstly, it is necessary to prove that the utilization factors of both

subsets are valid, i.e, 0 < ui ≤ α for all i = 1, . . . ,m.
Check of the utilization factors of the first subset.

By hypothesis, m > βn, so m − β(n − 1) > β. Applying Relation-
ship (i) we get m − β(n − 1) ≥ β + 1. Now applying Relationship (ii)
makes (m − β(n − 1))(21/(m−β(n−1)) − 1) ≤ (β + 1)(21/(β+1) − 1).
Considering this expression and equation (8) we get

ui ≤
(21/(β+1) − 1)

(m − βn)
(9)

On one hand, Lemma 2 provides the value β = ⌊1/ log2(α + 1)⌋.
Thus, (β + 1) > 1/ log2(α + 1), and finding α

α > (21/(β+1) − 1) (10)

On the other hand m > βn by hypothesis, so (m − βn) > 0, and
applying Relationship (i) we get

m − βn ≥ 1 (11)

Substituting (10), and (11) into (9) proves that ui < α for all the
tasks of the first subset.

Next we will prove that all the utilization factors of the first subset
are greater than zero. From Relationships (ii), (iii), and equation (11)
we get

(m − β(n − 1))(21/(m−β(n−1)) − 1) > ln 2

(21/(β+1) − 1)β < ln 2

m − βn ≥ 1
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Substituting the above expressions into equation (8) gives ui > 0 for
all the tasks of the first subset.

Check of the utilization factors of the second subset.

It is always possible to find one real number between two real num-
bers. Hence, from equation (10), a positive value ǫ/(βn) must exist such
that

α > (21/(β+1) − 1) +
ǫ

βn
= ui (12)

which proves that the utilization factors of the second subset are less
than α when ǫ → 0+. In addition, the utilization factors of the second
subset are obviously greater than zero.

From the above results, we conclude that the proposed task set is
valid. Next we prove that it does not fit into n processors, using Liu &
Layland’s bound for RM scheduling and FF allocation.

The first subset of tasks, {τ1, . . . , τm−βn}, and the first β tasks of
the second subset, {τm−βn+1, . . . , τm−βn+β}, do not fit into processor
P1, since the total utilization of these tasks is over Liu & Layland’s
bound.

m−βn+β
∑

i=1

ui =
m−βn
∑

i=1

ui +
m−βn+β

∑

i=m−βn+1

ui

= (m − β(n − 1))(21/(m−β(n−1)) − 1) +
ǫ

n

> (m − β(n − 1))(21/(m−β(n−1)) − 1)

However, from the above expression it can be proved that if task
τm−βn+β is removed, then the first subset of tasks, and the first (β−1)
tasks of the second subset do fit into processor P1.

Hence, there are β(n−1)+1 tasks left of utilization factor, (21/(β+1)−
1) + ǫ

βn , which FF tries to allocate to the last (n − 1) processors,

{P2, . . . , Pn}.
No processor in the set {P2, . . . , Pn} can allocate (β + 1) or more

tasks of the second subset, since (β + 1) of these tasks together have a
utilization over Liu & Layland’s bound.

(β + 1)

(

(21/(β+1) − 1) +
ǫ

βn

)

> (β + 1)(21/(β+1) − 1)

However, each processor in {P2, . . . , Pn} can allocate β tasks, as by
the definition of β, at least β tasks can be allocated to each processor.

Subsequently, tasks {τm−βn+β , . . . , τm−1} are allocated to proces-
sors, but the last one, τm, can not be allocated to any processor.
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We conclude that the proposed task set of total utilization g(m,n, α)+
ǫ does not fit into n processors when ǫ → 0+, so the utilization bound,
URM-FF

wc (m,n, α), must be less than or equal to g(m,n, α). �
The proof of Theorem 2 requires Lemma 3, which is proved below.

It relates the utilization bound for the same number of processors, but
a different number of tasks.

LEMMA 3.

URM-FF

wc (q, n, α) ≥ URM-FF

wc (m,n, α) for all q < m

Proof. This lemma will be proved by contradiction.
Let us suppose that a pair of integers q and m exist, such that q < m,

and URM-FF
wc (q, n, α) < URM-FF

wc (m,n, α). Between two real numbers, it
is always possible to find another real number, so we can find an ǫ > 0
such that

URM-FF
wc (q, n, α) < URM-FF

wc (m,n, α) − ǫ < URM-FF
wc (m,n, α)

By the definition of utilization bound, there exists at least one set
of q tasks, {τ1, . . . , τq}, of total utilization

q
∑

i=1

ui = URM-FF
wc (m,n, α) − ǫ

which does not fit into n processors. Next, we prove that this gives rise
to a contradiction.

If we add to this task set (m − q) new tasks, {τq+1, . . . , τm}, each
of utilization factor ǫ/(m − q), we obtain a task set made up of m
tasks of total utilization

∑m
i=1 ui = URM-FF

wc (m,n, α), which fits into
n processors. Hence, the first q tasks fit into n processors, which is a
contradiction. �

Next, we prove an expression which relates the utilization bound
of multiprocessors with n and (n − 1) processors. This will allow us to
obtain a lower limit for the utilization bound, going from the case n = 1
(uniprocessor case) to a general multiprocessor case with an arbitrary
n.

THEOREM 2. If m > βn then

URM-FF

wc (m,n, α) ≥ (21/(β+1) − 1)β + URM-FF

wc (m − β, n − 1, α)
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τ1 · · · τk−1 τk τk+1 · · · τm−β · · · τm

URM-FF
wc (m − β, n − 1, α) ∆

uk,1

u1 uk−1 uk uk+1 um−β um

m
∑

i=k

ui

m−β
∑

i=1

ui

k−1
∑

i=1

ui

Figure 2. General situation in case 2 of Theorem 2.

Proof. We will prove that any set of m tasks {τ1, . . . , τm}, with
utilization factors 0 < ui ≤ α for all i = 1, . . . ,m, and total utilization
less than or equal to

(21/(β+1) − 1)β + URM-FF
wc (m − β, n − 1, α)

fits into n processors using Liu & Layland’s bound for RM scheduling
and FF allocation.

There are two possible cases:
Case 1: The first (m − β) tasks have a total utilization less than

or equal to URM-FF
wc (m − β, n − 1, α), that is,

∑m−β
i=1 ui ≤ URM-FF

wc (m −
β, n − 1, α). In this case the whole set of m tasks always fits into n
processors, because the first (m − β) tasks fit into the first (n − 1)
processors (since its utilization is below the bound), and the remaining
β tasks fit into the last processor, since the definition of β implies that
a least β tasks always fit into one processor.

Case 2: The first (m−β) tasks have a total utilization greater than

URM-FF
wc (m− β, n− 1, α), that is,

∑m−β
i=1 ui > URM-FF

wc (m− β, n− 1, α).
In this case we will prove that the whole set of m tasks still fits into n
processors if the total utilization is equal to URM-FF

wc (m−β, n−1, α)+∆,
provided ∆ ∈ R, and ∆ ≤ (21/(β+1) − 1)β.

A task τk must exist, whose uk added to the previous utilizations
ui, causes the bound URM-FF

wc (m − β, n − 1, α) to be exceeded. This
situation is depicted in Figure 2, which is a graphical representation of
the utilization factors of each task and the relationships between several
quantities and summations used through this proof, for a generic set
of m tasks in Case 2. It is important to observe that each rectangle
in Figure 2 represents one of the m tasks making up the set, and the
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horizontal dimension of each rectangle gives the utilization factor of
the task it represents.

The value of k is obtained as the integer which fulfills:

k−1
∑

i=1

ui ≤ URM-FF
wc (m − β, n − 1, α) <

k
∑

i=1

ui

Note that k ≤ m − β (if k > m − β we would be in case 1).
It can be seen that the first (k − 1) tasks fit into the first (n − 1)

processors. The total utilization of the first (k − 1) tasks fulfills

k−1
∑

i=1

ui ≤ URM-FF
wc (m − β, n − 1, α)

Bearing in mind that k− 1 < m−β in Case 2, and applying Lemma 3,
we get

URM-FF
wc (m − β, n − 1, α) ≤ URM-FF

wc (k − 1, n − 1, α)

and thus
k−1
∑

i=1

ui ≤ URM-FF
wc (k − 1, n − 1, α)

Therefore, the first (k − 1) tasks fit into the first (n− 1) processors.
We only have to prove that the remaining (m− k +1) tasks fit into the
last processor.

The worst situation in terms of schedulability appears when all the
tasks τi in {τk, . . . , τm} fulfill ui > uk,1, where

uk,1 = URM-FF
wc (m − β, n − 1, α) −

k−1
∑

i=1

ui

as shown in Figure 2. Note that if there were a task τi in {τk, . . . , τm}
with ui ≤ uk,1, we could always allocate this task to the first (n − 1)
processors (since the addition of this new task does not cause the total
utilization to exceed the bound), and the result would be a situation
analogous to the current one, with k one unit greater. This reasoning
can be repeated until no task τi with ui ≤ uk,1 exists among the last
(m − k + 1) tasks, or until we are in Case 1.

In order to prove that the last (m − k + 1) tasks fit into the last
processor we have to prove that the total utilization of these tasks does
not exceed Liu & Layland’s bound, that is,

m
∑

i=k

ui ≤ (m − k + 1)(21/(m−k+1) − 1)
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Figure 2 shows that

m
∑

i=k

ui = uk,1 + ∆ (13)

As already stated, all the utilization factors ui in this summation
are greater than uk,1, so

(m − k + 1)uk,1 < uk,1 + ∆

< uk,1 + (21/(β+1) − 1)β

by the definition of ∆. Finding uk,1 from the above equation

uk,1 <
(21/(β+1) − 1)β

m − k
(14)

Substituting the value of uk,1 from (14) into (13) we obtain

m
∑

i=k

ui <
(21/(β+1) − 1)β

m − k
+ ∆

<
(21/(β+1) − 1)β

m − k
+ (21/(β+1) − 1)β by def. of ∆

=
(m − k + 1)(21/(β+1) − 1)β

m − k

We know that m − k ≥ β in Case 2, so applying Relationship (iii)
we get

(21/(β+1) − 1)β ≤ (21/(m−k+1) − 1)(m − k) (15)

and,
m

∑

i=k

ui ≤ (m − k + 1)(21/(m−k+1) − 1)

This equation shows that the last (m − k + 1) tasks meet Liu &
Layland’s schedulability condition, so they are schedulable on the last
processor.

We have proved that any task set with m tasks and a total utilization

URM-FF
wc (m − β, n − 1, α) + ∆ ≤

URM-FF
wc (m − β, n − 1, α) + (21/(β+1) − 1)β

fits into n processors, so the utilization bound, URM-FF
wc (m,n, α), must

be greater than or equal to URM-FF
wc (m− β, n− 1, α) + (21/(β+1) − 1)β,

and the theorem is proved. �
The utilization bound for RM scheduling and FF allocation, given

by Theorem 3, is obtained from Theorem 1 and Theorem 2.
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THEOREM 3. If m > βn then

URM-FF

wc (m,n, α) = (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)
(16)

Proof. Firstly, we obtain a lower limit for the utilization bound for
a set of m tasks on a multiprocessor with n processors.

Theorem 2 relates the utilization bound of sets of m tasks on mul-
tiprocessors of n processors, to the utilization bound of sets of (m−β)
tasks on multiprocessors with (n − 1) processors.

URM-FF
wc (m,n, α) ≥ (21/(β+1) − 1)β

+ URM-FF
wc (m − β, n − 1, α)

(17)

Theorem 2 also relates the utilization bound of sets of (m−β) tasks
on multiprocessors of (n − 1) processors, to the utilization bound of
sets of (m − 2β) tasks on multiprocessors of (n − 2) processors.

URM-FF
wc (m − β, n − 1, α) ≥ (21/(β+1) − 1)β

+ URM-FF
wc (m − 2β, n − 2, α)

(18)

Substituting (18) into (17) we get

URM-FF
wc (m,n, α) ≥ 2(21/(β+1) − 1)β

+ URM-FF
wc (m − 2β, n − 2, α)

This procedure can be repeated until finally relating the utilization
bound of sets of m tasks on multiprocessors of n processors, with the
utilization bound of sets of (m − β(n − 1)) tasks on a uniprocessor.

URM-FF
wc (m,n, α) ≥ (n − 1)(21/(β+1) − 1)β

+ URM-FF
wc (m − β(n − 1), 1, α)

(19)

The utilization bound for (m − β(n − 1)) tasks and one processor
coincides with Liu & Layland’s bound, which does not depend on the
value of α.

URM-FF
wc (m − β(n − 1), 1, α) =

(m − β(n − 1))(21/(m−β(n−1)) − 1) (20)

Substituting (20) into (19) gives a lower limit on the utilization
bound of m tasks on n processors.

URM-FF
wc (m,n, α) ≥ (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)
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Theorem 1 proved that

URM-FF
wc (m,n, α) ≤ (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1)

Thus, we finally conclude that

URM-FF
wc (m,n, α) = (n − 1)(21/(β+1) − 1)β

+ (m − β(n − 1))(21/(m−β(n−1)) − 1) �
Therefore, any set of m tasks, with task utilization factors less than

or equal to α, and total utilization less than or equal to

(n − 1)(21/(β+1) − 1)β + (m − β(n − 1))(21/(m−β(n−1)) − 1)

is feasibly scheduled by RM on n processors using FF allocation, where
β = ⌊1/ log2(α + 1)⌋. This is a sufficient condition, analogous to that
given by Liu & Layland for uniprocessor systems. For any value of total
utilization greater than URM-FF

wc (m,n, α) it is possible to find a task set
with this utilization such that it does not fit into the processors using
FF allocation and Liu & Layland’s schedulability condition for RM
scheduling. In this case, the task set may be or may not be schedulable.

Having calculated the general expression of the utilization bound,
and making α = 1, we can remove the restriction ui ≤ α, since the
utilization factors of the tasks can be now in the interval (0, 1]. In this
case β = 1, and the utilization bound is given by

URM-FF
wc (m,n, 1) =

(n − 1)(21/2 − 1) + (m − n + 1)(21/(m−n+1) − 1) (21)

Notice that α need not to be equal to the maximum utilization factor
of the task set. All is needed to have a valid election of α is to fulfill
ui ≤ α ≤ 1 for all the tasks. Thus, α = 1 is always a valid election.
However in practice, α should be chosen as the maximum utilization
factor in order to maximize the utilization bound.

4. Analysis of the theoretical results

In this section, we analyze the expression of the utilization bound
URM-FF

wc (m,n, α), for RM scheduling and FF allocation, given by equa-
tion (16).
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Figure 3. Comparison between the utilization bound of uniprocessors and multipro-
cessors, for the case α = 1, i.e, β = 1.

In spite of m and n being integers, the function URM-FF
wc (m,n, α) is

represented as continuous function in Figures 3, 4, 5, and 6, with the
aim of improving its visualization.

Figure 3 depicts the utilization bound for RM scheduling and FF
allocation as a function of the number of tasks, for different numbers
of processors, and α = 1. The bold line provides the utilization bound
for the uniprocessor case, which coincides with Liu & Layland’s result
URM-FF

wc (m, 1, α) = m(21/m − 1). The addition of each new processor
increments the utilization bound at least in (21/2 − 1) ≈ 0.414.

Figure 4 is analogous to Figure 3, but shows the situation when all
the tasks have utilization factors less than or equal to (21/3−1) ≈ 0.26.
We observe a substantial improvement with regard to the case α = 1.
Now, adding a new processor increments at least in (21/4 − 1)3 ≈ 0.57
the utilization bound.

Figure 5 depicts the utilization bound for RM scheduling and FF
allocation as a function of the number of processors, for a different
number of tasks, and α = 1. In addition, it shows the expression (21/2−
1)n, proposed by Oh and Baker (1998) as a dashed line, in order to
compare this expression with the utilization bound. The improvement
is substantial, particularly if the number of processors is small.
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Figure 4. Comparison between the utilization bound of uniprocessors and multipro-
cessors, for the case α = (21/3 − 1) ≈ 0.26, i.e, β = 3.
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Figure 5. Utilization bound for the case α = 1, i.e, β = 1, in function of n for
different values of m.
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Figure 6. Utilization bound for the case α = (21/3−1) ≈ 0.26, i.e, β = 3, in function
of n for different values of m.

Figure 6 is analogous to Figure 5 for α = 0.26, and again shows the
improvement with regard to the case α = 1.

In general, any decrement of α produces an increment of β and an
increment of the utilization bound. In the limit, if α → 0 then β → ∞,
and it follows

lim
α→0

URM-FF
wc (m,n, α) = n ln2

Hence, if the utilization factor of all the tasks is low, the multi-
processor system using RM scheduling and FF allocation, approxi-
mates an ideal uniprocessor n-times faster than each processor of the
multiprocessor.

We can obtain a utilization bound independent of the number of
tasks making m = ∞ in equation (16).

URM-FF
wc (m,n, α) ≥ URM-FF

wc (∞, n, α) = ln 2 + (n − 1)(21/(β+1) − 1)β

Figures 5 and 6 are also useful in the design stage to obtain the
worst-case number of processors, nRM-FF

wc (m,U,α), required to feasibly
schedule a task set using RM scheduling and FF allocation. A multi-
processor made up of nRM-FF

wc (m,U,α) processors can allocate any set
of m periodic tasks, of utilization factors 0 < ui ≤ α ≤ 1, and total
utilization less than or equal to U . Furthermore, nRM-FF

wc (m,U,α) − 1
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processors may not be enough, and it is possible to find at least one
set of m periodic tasks, of utilization factors 0 < ui ≤ α ≤ 1, and total
utilization less than or equal to U , which can not be allocated.

For example, consider a task set made up of m = 7 tasks, of total
utilization U = 1.75, and arbitrary utilization factors. From Figure 5,
applying the expression proposed by Oh and Baker (1998) five proces-
sors are needed. However, applying the utilization bound presented in
this paper, we only need nRM-FF

wc (7, 1.75, 1) = 4 processors. If we use
three processors it is possible to find a set of seven tasks which is not
schedulable by RM and FF. For instance, the task set with utilization
factors {u1 = 0.01, u2 = 0.01, u3 = 0.01, u4 = 0.43, u5 = 0.43, u6 =
0.43, u7 = 0.43} does not fit into three processors.

Figures 5 and 6 are only valid for m > βn. Therefore, if there is not
a point in these figures for some pair of values (m,U), the worst-case
number of processors is obtained as the minimum integer value greater
than or equal to m/β.

nRM-FF
wc (m,U,α) =

⌈

m

β

⌉

(22)

For example, for m = 3, U = 2.5, and β = 1, there is not a point in
Figure 5, and so nRM-FF

wc (3, 2.5, 1) = ⌈3/1⌉ = 3 processors.

5. Average-case behaviour

Section 3 provided the utilization bound for RM scheduling and FF
allocation. Any task set of total utilization less than or equal to the
utilization bound is schedulable. In addition, for any given value of total
utilization greater than the utilization bound, task sets which do not fit
into the processors using Liu & Layland’s schedulability condition and
FF allocation exist. However, tasks sets of total utilization greater than
the utilization bound may be schedulable. In fact, the utilization bound
is obtained for pessimistic task sets which might be very infrequent in
practice.

In order to perceive the pessimism of the utilization bound, we
will define the average-case utilization bound, URM-FF

ac (m,n, p), for RM
scheduling and FF allocation as follows.

DEFINITION 2. A task set made up of m tasks, of total utilization

U = URM-FF
ac (m,n, p) is schedulable by RM and FF on n processors

with a probability equal to p%.

If sets of m tasks with total utilization U = URM-FF
ac (m,n, p) are

randomly generated, p% of the task sets are schedulable by RM and
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FF on n processors. The other (100−p)% corresponds to task sets which
do not fit into the processors. Obviously, the average-case utilization
bound must be greater than or equal to the (worst-case) utilization
bound.

URM-FF
ac (m,n, p) ≥ URM-FF

wc (m,n, α = 1)

The equality corresponds to the case p = 100%.

URM-FF
ac (m,n, p = 100%) = URM-FF

wc (m,n, α = 1)

There are several problems in the definition of the average-case
utilization bound. Firstly, the utilization of the tasks making up the
set must follow some statistical distribution which must be defined.
Secondly, the function URM-FF

ac (m,n, p) must be calculated for any value
of m, n and p from the statistical distribution.

The statistical distribution chosen to generate the task sets is the
beta distribution. It is a continuous distribution of probability given by:

f(x; a, b) =

{

Γ(a+b)
Γ(a)Γ(b)x

a−1(1 − x)b−1 0 < x < 1

0 for any other value

This distribution has two positive parameters a, and b, which allow
us to select the mean µ, and standard deviation σ of the distribution.

µ =
a

(a + b)
; σ2 =

ab

(a + b)2(a + b + 1)

The maximum σ for a given value of µ is σmax =
√

µ(1 − µ), which
is obtained by considering the restriction a > 0.

The results obtained using the Beta distribution must be considered
carefully, as this distribution need not to produce realistic task sets.
However, it is useful to generate the utilization factors of the tasks, as
it generates random values in the interval (0, 1).

Varying the value of the standard deviation from zero to the maxi-
mum, the utilization factors of the tasks vary from being equal to having
unlike values. In order to assess the pessimism of the (worst-case)
utilization bound URM-FF

wc , the average-case utilization bound was ob-
tained by simulation, for standard deviations going from σ = 0.001σmax

to σ = 0.9σmax, and for p = 99%. Standard deviations greater than
0.9σmax are not practical as all the utilization factors generated ran-
domly are approximately zero or one. In any case, the average-case
utilization bound for such high values of standard deviations is close
to that given for σ = 0.9σmax.

Figure 7 depicts the average-case utilization bound for arbitrary
standard deviation, which has been obtained as the minimum among
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Figure 7. Average-case utilization bound for arbitrary standard deviation.

the standard deviations going from σ = 0.001σmax to σ = 0.9σmax,
of the associated curves of average-case utilization bound. Each point
{m,n,URM-FF

ac (m,n, p = 99%)} in Figure 7 indicates that a set of
m tasks of total utilization URM-FF

ac (m,n, p = 99%) can be feasibly
scheduled by RM and FF on n processors with a probability greater
than or equal to 99%, for arbitrary standard deviation.

Figure 7 also represents the (worst-case) utilization bound to be
compared with the average-case utilization bound. The difference is
significant. Nevertheless, for the uniprocessor case, the average-case
utilization bound coincides with the (worst-case) utilization bound,
given by m(21/m − 1).

6. Other allocation heuristics

This paper basically focuses on RM scheduling with FF allocation.
However, other allocation heuristics exist, and it is interesting to cal-
culate the utilization bound for RM scheduling and these heuristics.

One of the first allocation heuristics found in the literature is the
Next Fit (NF) algorithm (Dall and Liu, 1978). It performs in much the
same way as the FF algorithm, except when a task does not fit into a
processor. In this case, the processor is discarded in the allocation of
the following tasks. Therefore, a task can be said to be non-schedulable

manuscript.tex; 25/10/2000; 18:27; p.22



23

even when it fits in one of the discarded processors. As a result, the
NF algorithm presents poor performance with regard to the FF al-
gorithm, which is expressed in terms of the metric (NNF/Nopt). Dall
and Liu (1978) obtained (NNF/Nopt) = 2.67, compared with the value
(NFF/Nopt) = 2.33, obtained by Oh and Son (1995) for FF allocation.

Another common algorithm found in the literature is the Best Fit
(BF) (Garey and Johnson, 1979). This algorithm assigns each task to
the processor having the lowest remaining capacity among those pro-
cessors with enough capacity. Intuitively, BF seems to be an improve-
ment over the FF algorithm, so it should provide better performance.
However, simulation experiments carried out by the authors with BF
allocation gave almost identical results to those using FF allocation, so
they have not been depicted. In addition, the utilization bound associ-
ated to RM scheduling with BF allocation is the same as that for FF
allocation. The proof is analogous to that presented for FF allocation,
so for the sake of brevity, we provide only the guidelines . The task set
used in theorem 1 (to prove the upper limit on the utilization bound
for RM-FF) does not fit into the processors using BF allocation, so
the upper limit is also valid for BF allocation. Theorem 2 is also valid
for RM-BF, but proving the statement “the worst situation in terms
of schedulability appears when all the tasks τi in {τk, . . . , τm} fulfill
ui > uk,1”, requires some elaboration for BF allocation. Therefore, the
utilization bound for BF allocation coincides with the upper and lower
limits, an it is equal to the utilization bound for FF allocation.

Better approximation algorithms can be obtained by observing that
the worst performance for both FF and BF occurs when tasks with low
utilization factors appear before tasks greater utilization factors. This
is the case of the task set used in theorem 1 to obtain the upper limit on
the utilization bound. To improve the performance of the FF and BF
algorithms, the tasks with the lowest utilization factors are allocated
first. The resulting algorithms are called First Fit Decreasing (FFD)
and Best Fit Decreasing (BFD) respectively.

The utilization bound for FFD or BFD can not be lower than that for
FF or BF respectively. This can be proved with the following argument.
Let S be the superset made up of all the task sets which do not fit into
the processors using FF allocation. There must be a task set in S,
whose total utilization is the minimum among all the task sets in S.
The value obtained by subtracting an ǫ → 0 from this minimum is the
utilization bound for RM-FF. Let S ′ be the superset made up of all the
task sets ordered in decreasing utilization factors, which do not fit into
the processors using FF allocation. There must exist a task set in S ′,
whose total utilization is the minimum among all the task sets in S ′.
The value obtained by subtracting an ǫ → 0 from this minimum is the
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utilization bound for RM-FFD. Since S ′ is a subset of S, its minimum
can not be lower than the minimum of S, and so the utilization bound
for RM-FFD can not be lower than the utilization bound for RM-FFD.
The same argument can be applied to BF and BFD allocations.

In addition, the task set proposed in theorem 1 does fit into the
processors using FFD or BFD allocation. Thus, the utilization bound
for FFD and BFD allocation may be greater than that for FF and
BF allocation. Nevertheless, further investigation into this last part is
required.

7. Conclusions and future work

Liu & Layland’s schedulability bound for RM scheduling on multi-
processors has been extended to multiprocessors under a partitioning
strategy and FF allocation. This bound is a function of the number of
tasks, number of processors, and maximum reachable utilization factor
of the task set. For the case of tasks with low utilization factors the
utilization bound is significantly raised, reaching asymptotically the
value n ln 2 when all the utilization factors are close to zero. Allowing a
low percentage of non-schedulable task sets, simulation has shown the
pessimism of the utilization bound.

In general, the calculation of utilization bounds is a problem of im-
portance in the real-time theory. Utilization bounds allow us not only
to perform fast schedulability tests, but also to perform a schedulability
analysis. That is, utilization bounds allow us to establish the influence
of different parameters such as the number of tasks, task size, etc,
on the schedulability of the system by considering the worst-case. In
addition, utilization bounds indicate how far the system is from the
ideal situation, in which, the total utilization equals the number of
processors in the system.

Other allocation heuristics apart from FF have been dealt with
briefly. The NF algorithm was shown to have worse performance than
the FF algorithm. Since NF presents no practical advantage over FF,
NF will not be considered in future works.

Simulation results have shown a behaviour of BF allocation almost
identical to that of FF. This behaviour was previously observed by
other authors (Garey and Johnson, 1979; Oh and Son, 1995). The
same behaviour was also documented in terms of the metric (NA/Nopt)
by Oh and Son (1995). In addition, the utilization bound for RM-FF
and RM-BF are the same. This point was not proved in this paper,
although the guidelines of the proof were provided. The computational
cost associated to the BF allocation is in general greater that that
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associated to FF allocation. Thus, we can state that FF allocation is
superior to BF allocation for multiprocessor RM scheduling.

In order to improve the utilization bound for RM-FF scheduling, we
have investigated the utilization bound for FFD and BFD allocation.
We suspect that it is greater, but we do not have proof of this point.
The calculation of the utilization bound for the heuristics FFD and
BFD will be performed in future work.

Finally, the utilization bound presented in this paper has a major
restriction. It assumes the simple model of tasks defined by Liu &
Layland. In future work, we will try to develop new utilization bounds
considering extensions to the task model, such as access to shared
resources, aperiodic tasks, release jitter, or mode changes.
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