
Minimum and Maximum Utilization Bounds for

Multiprocessor Rate Monotonic Scheduling

Jośe M. López, Jośe L. D́ıaz, and Daniel F. Garcı́a

Departamento de Inforḿatica, Universidad de Oviedo, Gijón 33204, Spain

December 4, 2003

Abstract

The utilization bound for real-time Rate Monotonic (RM) scheduling on uniproces-

sors is extended to multiprocessors with partitioning based scheduling. This allows fast

schedulability tests to be performed on multiprocessors and quantifies the influence of key

parameters, such as the number of processors and task sizes on the schedulability of the

system. The multiprocessor utilization bound is a functionof the allocation algorithm, so

among all the allocation algorithms there exists at least one allocation algorithm providing

the minimum multiprocessor utilization bound, and one allocation algorithm providing the

maximum multiprocessor utilization bound. We prove that the multiprocessor utilization

bound associated with the allocation heuristicWorst Fit(WF) coincides with that minimum

if we use Liu & Layland’s bound (LLB) as the uniprocessor schedulability condition. In

addition, we present a class of allocation algorithms sharing the same multiprocessor uti-

lization bound which coincides with the aforementioned maximum using LLB. The heuris-

tics First Fit Decreasing(FFD) andBest Fit Decreasing(BFD) belong to this class. Thus,

not even an optimal allocation algorithm can guarantee a higher multiprocessor utilization

bound than that of FFD and BFD using LLB.

Finally, the pessimism of the multiprocessor utilization bounds is estimated through

extensive simulations.

Keywords: Real-Time systems, multiprocessors, Rate Monotonic scheduling, allocation, utiliza-

tion bounds.

1

1 Introduction

Multiprocessor scheduling is a challenging problem in the real-time systems theory. There

are two main strategies when dealing with this problem: partitioning strategies and global

strategies [1]. In a partitioning strategy, once a task is allocated to a processor, all of its instances

are executed exclusively on that processor. In a global strategy, any instance of a task can be

executed on any processor, or even be pre-empted and moved toa different processor, before it

is completed.

Theoretically, global strategies provide higher schedulability than partitioning strategies.

However, partitioning strategies have several advantagesover global strategies. Firstly, the

scheduling overhead associated with partitioning strategies is lower than that of global strate-

gies. Secondly, partitioning strategies allow well known uniprocessor scheduling algorithms

to be applied on each processor. Furthermore, Rate Monotonic (RM) and Earliest Deadline

First (EDF) scheduling, which are optimal real-time uniprocessor scheduling algorithms [2],

perform poorly when extended to global multiprocessor scheduling. The utilization bounds

associated with global RM or EDF multiprocessor schedulingare not higher than one for any

number of processors [3]. Nevertheless, these bounds can begreatly improved by placing re-

strictions on the tasks sizes, or by using some variations ofglobal RM or EDF scheduling

algorithms [4, 5].

In this article, we use the partitioning strategy, i.e, any task must always be executed on

the same processor. Tasks are pre-emptively scheduled on each processor according to the

RM algorithm. RM is a static priority scheduling algorithm that assigns each task a priority

inversely proportional to its period, i.e, the smaller the period, the higher the priority. Thus, the

allocation algorithm is the only degree of freedom in the system.

Finding optimal allocation algorithms is not practical, asthe problem is NP-hard in the

strong sense [6]. Several allocation algorithms have been proposed in the literature: simple

allocation heuristics [3, 6, 7] and complex allocation algorithms such as those based on branch-

and-bound [8] and simulated annealing techniques [9]. In this article, we focus on simple

allocation heuristics.

Two different approaches are followed in the literature to establish the schedulability asso-

ciated with a given allocation algorithm: simulation approaches and theoretical approaches.

2

In the simulation approach, task sets are randomly generated. Next, the average number of

processors required to allocate task sets of a given total utilization is obtained. Uniprocessor

exact tests [10], or uniprocessor sufficient tests [11] are commonly used to decide whether a

given group of tasks fits into one processor. Nevertheless, simulation results should be con-

sidered carefully, since randomly generated task sets may not be representative of those that

appear in practice.

The traditional theoretical approach focuses on the calculation of bounds for the metric

(NAA/NOPT), for (uniprocessor scheduling algorithm, allocation algorithm) pairs [1, 3, 6, 7,

12, 13]. This metric gives the relationship between the number of processors required to sched-

ule a task set using a given allocation algorithm AA, and the number of processors required

using an optimal allocation algorithm OPT. This metric is useful in order to compare different

allocation algorithms, but not to perform schedulability tests. There are several reasons for this.

Firstly, NOPT can not be calculated in polynomial time. Secondly, even ifNOPT were known,

the utilization bound derived from the metric would be too pessimistic [14]. For example, for

First Fit (FF) allocation(NFF/NOPT) = 2.33, as proved in [1]. A task set made up of 20 tasks,

each with a utilization factor(0.04+ ε), may require two processors to be schedulable even

using an optimal allocation algorithm, since LLB for 20 tasks is 0.7, less than the total utiliza-

tion, 20(0.04+ ε). Using the relation(NFF/NOPT) = 2.33, five processors would be necessary

to guarantee the schedulability of the task set using the FF allocation. This gives a utilization

bound not higher than 0.8/5 ≈ 0.16 per processor, too low to be useful. Oh and Son [1] re-

fined the relation(NFF/NOPT) by considering the task sizes. Even so, the schedulability results

obtained from these relations are too pessimistic when compared to the tight utilization bounds.

A new theoretical approach consists of calculating the utilization bounds associated with

(scheduling algorithm, allocation algorithm) pairs, analogous to those known for uniproces-

sors. This approach has several interesting features: it allows us to carry out fast schedulability

tests, and to quantify the influence of certain parameters, such as the number of processors,

on schedulability. The major disadvantage of this approachis the sufficient but not necessary

character of the associated schedulability tests. This approach was followed in [14] to obtain

a lower limit, given by (1), on the utilization boundURM-FF
wc for multiprocessor RM scheduling

3

with First Fit allocation (FF).

URM-FF
wc (n) ≥ n(21/2−1) (1)

wheren is the number of processors. From a practical point of view, Equation (1) states that

any task set of total utilization less than 0.414n is schedulable in a multiprocessor made up

of n processors using FF allocation and RM scheduling on each processor. The reader should

compare the 0.414 utilization bound per processor with the utilization bound 0.16 per processor,

obtained from relation(NFF/NOPT).

More recently, a tighter utilization bound for RM scheduling and FF allocation was pre-

sented in [15]. This bound considers not only the number of processors, but also the number of

tasks and their sizes. The performance of the allocation algorithms depends largely on the task

sizes. Thus, it is usual to place some kind of limit on the tasksizes, e.g a maximum utilization

factor, to improve the theoretical results [1].

The theoretical approach based on calculating utilizations bounds has also been developed

recently for global multiprocessor RM scheduling. Under global RM scheduling, Andersson

et al. [4] proved that the utilization bound isn2/(3n−2), when the utilization factor of any

task is not higher thann/(3n−2). They also present a variation of the global RM scheduling

algorithm with the same utilization bound,n2/(3n−2), but without the previous restriction on

task sizes. In addition, Baruah and Goossens [16] presenteda generalization of the utilization

bound for global RM scheduling by considering the case of uniform multiprocessors, i.e, they

consider the possibility of multiprocessors made up of non-identical processors.

Our work makes the following theoretical contributions to the real-time multiprocessor

schedulability analysis:

• The minimum utilization bound based on Liu & Layland’s bound(LLB) evaluated among

all the reasonable allocation algorithmsis found. Reasonable allocation algorithms are

those which fail to allocate a task only when there is no processor in the system with

sufficient free capacity to hold the task [17]. Using LLB, a reasonable allocation algo-

rithm is one that fails to allocate a task only when there is noprocessor in the system

able to hold the task without violating LLB. The idea of restricting the study to reason-

able allocation algorithms is to exclude theoretically possible, but impractical allocation

4

algorithms, which would only complicate the mathematical description of the problem.

In particular, the allocation heuristicWorst First(WF) provides this minimum utilization

bound using LLB.

• A class of reasonable allocation algorithms, termedReasonable Allocation Decreasing

(RAD), is defined. These algorithms are proved to provide themaximum utilization

bound using LLB among all the allocation algorithms (reasonable or not) for multipro-

cessor RM scheduling. The simple heuristicsFirst Fit Decreasing(FFD) andBest Fit

Decreasing (BFD), described in [6], belong to this class. Thus, not even an optimal allo-

cation algorithm can provide a higher multiprocessor utilization bound than that of FFD

and BFD using LLB.

The rest of the article is organized as follows. Section 2 defines the computational system

used. The minimum and maximum utilization bounds for multiprocessor RM scheduling using

LLB are provided in Section 3. Section 4 presents theWorst Fitallocation heuristic (WF) and

calculates its utilization bound, which coincides with theminimum using LLB. Section 5 proves

the expression of the utilization bound for RAD allocation,which coincides with the maximum

using LLB. The mathematical expressions of the minimum and maximum utilization bounds

are analyzed in Section 6. Section 7 analyzes the pessimism of the utilization bounds. Finally,

Section 8 presents our conclusions.

2 System definition

A task set consists ofm independent periodic tasks{τ1, . . . ,τm}, of computation times{C1, . . . ,

Cm}, periods{T1, . . . ,Tm}, and hard deadlines equal to the task periods. The utilization factorui

of any taskτi, defined asui = Ci/Ti , is assumed to be 0< ui ≤ α ≤ 1, whereα is the maximum

reachable utilization factor for any task. Thus,α is a parameter of the task set which takes the

“task sizes”into account. The total utilization of the taskset, denoted byU , is the sum of the

utilization factors of the tasks of which it is composed.

Tasks are allocated to an array ofn identical processors{P1, . . . ,Pn}. Once a task is allo-

cated to a processor it is executed exclusively on that processor. Within each processor, tasks

are pre-emptively scheduled using fixed priorities assigned according to the RM criterion [2].

5

Allocation is carried out using reasonable allocation (RA)algorithms [17]. A reasonable al-

location algorithm is one which fails to allocate a task onlywhen there is no processor in the

system which can hold the task.

Whether a task fits into a processor depends on the uniprocessor scheduling algorithm, the

uniprocessor schedulability condition and the tasks previously allocated to the processor. In this

article, we use Liu & Layland’s utilization bound (LLB) for uniprocessor RM scheduling [2]

as the uniprocessor schedulability condition, which is given by (2)

U =
m

∑
i=1

ui ≤ m(21/m−1) (2)

Equation (2) states that any set ofm tasks of total utilizationm(21/m−1) or less is schedulable

using RM scheduling on a uniprocessor. Thus, a task of utilization factorui fits into processor

Pj , which already hasmj tasks allocated to it with total utilizationU j , if the (mj + 1) are

schedulable, i.e, if(mj +1)(21/(mj+1) −1)−U j ≥ ui.

Using LLB, a reasonable allocation algorithm is one which fails to allocate a task of uti-

lization factorui to a multiprocessor made up ofn processors, only when the task does not fit

into any processor, i.e,

(mj +1)(21/(mj+1) −1)−U j < ui for all j = 1, . . . ,n (3)

LLB is calculated by considering the worst combination of task periods and utilization

factors [2], so it is only a sufficient schedulability condition for RM scheduling. In particular,

LLB is derived from a worst-case task set in which all the tasks in the processor have the

same utilization factors and the periods fulfill the relation Tk+1/Tk = 21/mj , i.e, T2 = 21/mj T1,

T3 = 21/mj T2, and so on. Despite this, in this article we assume that a taskset fits into one

processor if, and only if, LLB is fulfilled. Therefore, the multiprocessor utilization bounds

provided in the article are valid, but may not be tight, i.e, it may be possible to find higher

multiprocessor utilization bounds that still guarantee the schedulability under multiprocessor

RM scheduling. The multiprocessor utilization bounds could be made tight using necessary

and sufficient schedulability conditions for uniprocessorRM scheduling [18] in the theorems,

but they are too complex.

6

At this point, the notation should be clarified. The multiprocessor utilization bound for

an allocation algorithm AA using LLB is denoted byULLB-AA
wc , while the tight multiprocessor

utilization bound is denoted byURM-AA
wc . In general,URM-AA

wc ≥ULLB-AA
wc , soULLB-AA

wc may be

pessimistic.

3 Minimum and maximum utilization bounds

The multiprocessor utilization boundULLB-RA
wc , associated with any reasonable allocation algo-

rithm, RA, and LLB is in the interval[LLLB ,HLLB]. This interval is defined as follows:

LLLB = min
RA

ULLB-RA
wc ; HLLB = max

RA
ULLB-RA

wc

The calculation of this interval gives the worst and best utilization bounds that can be expected

from all the reasonable allocation algorithms beforehand.

Before calculating the expressions ofLLLB andHLLB , it is necessary to introduce the pa-

rameterβLLB . ParameterβLLB is the maximum number of tasks of utilization factorα which

fit into one processor using LLB for RM scheduling.βLLB can be expressed as a function ofα.

Lemma 1. [15]

βLLB =

⌊

1
log2(α +1)

⌋

(4)

Proof. From the definition ofβLLB , βLLB tasks of utilization factorα fit into one processor

using LLB. Applying LLB this means thatβLLBα ≤ βLLB(21/βLLB − 1). Finding βLLB we

obtainβLLB ≤ 1/ log2(α +1). SinceβLLB is a natural number we get

βLLB ≤

⌊

1
log2(α +1)

⌋

(5)

BecauseβLLB is the maximum number of tasks of utilization factorα that fit into one

processor using LLB,(βLLB + 1) tasks of utilization factorα do not fit into one processor

without violating LLB. Thus,(βLLB + 1)α > (βLLB + 1)(21/(βLLB+1) −1). FindingβLLB we

7

obtainβLLB > 1/ log2(α +1)−1. SinceβLLB is a natural number we get

βLLB ≥

⌊

1
log2(α +1)

⌋

(6)

The lemma is proved from (5) and (6).

Any multiprocessor made up ofn processors can allocate at leastnβLLB tasks of arbitrary

utilization factors (less than or equal toα). Thus, any task set fulfillingm≤ nβLLB is trivially

schedulable using RM scheduling together with any reasonable allocation algorithm. Hence-

forth, we will assumem> nβLLB , as otherwise there would be no point in obtaining the utiliza-

tion bounds.

Theorem 1 will provide a lower limit on the multiprocessor utilization bound associated

with any reasonable allocation algorithm and LLB. Section 4will present an upper limit on the

utilization bound for one reasonable allocation algorithm, the WF heuristic, which coincides

with the previous lower limit. Therefore,LLLB and the utilization bound for WF allocation

must coincide, and be equal to both limits.

Theorem 2 will provide an upper limit on the utilization bound associated with any allo-

cation algorithm that is based on LLB, reasonable or not. Section 5 will present a lower limit

on the utilization bound associated with some reasonable allocation algorithms, the heuristics

in the class RAD, which coincides with the previous upper limit. Therefore,HLLB and the

utilization bound for the class RAD must coincide, and be equal to both limits. Furthermore,

since the upper limit given by Theorem 2 applies to any allocation algorithm, reasonable or not,

HLLB is the maximum utilization bound among all the allocation algorithms using LLB.

Next, Theorem 1 provides a lower limit on the utilization bound for any reasonable allo-

cation algorithm. This utilization bound will be denoted byULLB-RA
wc (m,n,α). At most, it

depends on all the system parameters, i.e, the number of tasks,m, the number of processors,n,

and the maximum reachable utilization factor,α.

8

Theorem 1. Let RA be any reasonable allocation algorithm. If m> nβLLB, it follows that

ULLB-RA
wc (m,n,α) ≥ naUa+nbUb− (n−1)α, where

na = m+n−1−

⌊

m+n−1
n

⌋

n nb = n−na

Ua =

⌈

m+n−1
n

⌉

(

21/⌈m+n−1
n ⌉ −1

)

Ub =

⌊

m+n−1
n

⌋

(

21/⌊m+n−1
n ⌋−1

)

Proof. Let {τ1, . . . ,τm} be a set ofm tasks which does not fit into the multiprocessor using LLB

on each processor. There are tasks of the set which are allocated to processors, and tasks which

are not allocated. Let us change the indices in the set so thatthe tasks which were not allocated

have the last indices in the set. Letτk be the first task in the set which was not allocated to any

processor, after the change of indices. Since the allocation algorithm is reasonable, from (3)

we get

(mj +1)(21/(mj+1)−1)−U j < uk for all j = 1, . . . ,n (7)

whereU j is the total utilization of the tasks previously allocated to processorPj , mj is the

number of these tasks, anduk is the utilization factor of taskτk. The total utilization of the

whole set,U , fulfils

U =
m

∑
i=1

ui ≥
k

∑
i=1

ui =
n

∑
j=1

U j +uk (8)

From (7) we get

n

∑
j=1

U j >
n

∑
j=1

(

(mj +1)(21/(mj+1)−1)−uk

)

=
n

∑
j=1

(mj +1)(21/(mj+1) −1)−nuk

Substituting this inequality into (8)

U >
n

∑
j=1

(mj +1)(21/(mj+1) −1)− (n−1)uk

From the system definition, all the utilization factors are less than or equal toα, souk ≤ α and

U >
n

∑
j=1

(mj +1)(21/(mj+1)−1)− (n−1)α

In order to simplify the above expression, let us defineI j = (mj +1) andg(I1, . . . , In) =

9

∑n
j=1 I j(2

1/I j −1). We can now write

U > g(I1, . . . , In)− (n−1)α (9)

τk is the first task which does not fit into the multiprocessor. Thus, one constraint of themj

values is that∑n
j=1mj = (k−1). This constraint is equivalent to the constraint∑n

j=1 I j = (k+

n−1). Bearing this last constraint in mind and applying Proposition 1 of the Appendix for

M = (k+n−1)

g(I1, . . . , In) ≥

(

k+n−1−

⌊

k+n−1
n

⌋

n

)⌈

k+n−1
n

⌉(

2
1

⌈ k+n−1
n ⌉ −1

)

+

(

1−k+

⌊

k+n−1
n

⌋

n

)⌊

k+n−1
n

⌋(

2
1

⌊ k+n−1
n ⌋ −1

)
(10)

The right-hand term in (10) decreases ask increases, as is indicated just after Proposition 1 in

the Appendix. Indexk is in the interval[1,m], sinceτk is a task of the set ofm tasks. Therefore,

for k = m we obtain the minimum of the right-hand term in (10). Hence, from equations (9)

and (10), and considering the definitions ofna, nb, Ua andUb, we get

U > naUa+nbUb− (n−1)α

Any task set which does not fit into the processors using LLB fulfils the previous expression.

Consequently, any task set of total utilization less than orequal tonaUa+nbUb− (n−1)α fits

into the processors using LLB, andULLB-RA
wc (m,n,α)≥ naUa+nbUb− (n−1)α

We will prove thatULLB-WF
wc (m,n,α ≤ ln2) ≤ naUa+nbUb− (n−1)α in Section 4. Since

WF is a reasonable allocation algorithm we can state that

LLLB (m,n,α ≤ ln2) = naUa+nbUb− (n−1)α

Next, we provide an intuitive idea about whatna, nb, Ua andUb represent. This will be use-

ful in the proof of Theorem 3 in Section 4. After dividing(m−1) tasks quasi-equitably among

n processors, there arena processors with⌈(m−1)/n⌉ tasks, andnb = (n−na) processors with

⌊(m−1)/n⌋ tasks, i.e, one less task.Ua is the uniprocessor utilization bound for each of the

na processors after receiving one more task. Likewise,Ub is the uniprocessor utilization bound

10

for each of thenb processors after receiving one more task.

Theorem 2 provides an upper limit on the multiprocessor utilization bound with any allo-

cation algorithm that is based on LLB, reasonable or not.

Theorem 2.Let AA be an arbitrary allocation algorithm. If m> nβLLB, it follows thatULLB-AA
wc ≤

(nβLLB+1)(21/(βLLB+1)−1)

Proof. We will prove that a set ofm tasks{τ1, . . . ,τm} exists, with utilization factors 0< ui ≤α

for all i = 1, . . . ,m, and total utilization(nβLLB +1)(21/(βLLB+1) −1)+ ε, with ε → 0+, which

does not fit inton processors using any allocation algorithm and LLB on each processor. The

proof will be divided into four parts:

1. The task set is presented.

2. The task set is proved to be made up ofm tasks and to have a total utilization equal to

(nβLLB +1)(21/(βLLB+1)−1)+ ε.

3. The utilization factors of the task set are proved to be valid, that is, 0< ui ≤ α.

4. The claim that the task set does not fit into the multiprocessor is proved.

Part 1. The set ofm tasks is composed of two subsets: a first subset with(m−nβLLB −1)

tasks, and a second subset with(nβLLB + 1) tasks. All the tasks of the first subset have the

same utilization factor of valueui = ε/m, wherei = 1, . . . ,(m−nβLLB −1). All the tasks of

the second subset have the same utilization factor of valueui = (21/(βLLB+1) −1)+ ε
m, where

i = (m−nβLLB), . . . ,m.

Part 2. It is simple to check that the task set is composed ofm tasks of total utilization

(nβLLB +1)(21/(βLLB+1) −1)+ ε.

Part 3. It is also necessary to prove that the utilization factors of both subsets are valid, i.e,

0 < ui ≤ α for all i = 1, . . . ,m.

Check of the utilization factors of the first subset.By choosing an small value forε, we

obtain 0< ui = ε
m ≤ α.

Check of the utilization factors of the second subset.By definition of βLLB , (βLLB + 1)

tasks of utilization factorα do not fit into one processor, therefore(βLLB + 1)α > (βLLB +

1)(21/(βLLB+1)−1), and

α > (21/(βLLB+1) −1) > 0 (11)

11

It is always possible to find one real number between two real numbers. Hence, a positive value

of ε exists such thatα > (21/(βLLB+1)−1)+ ε
m = ui > 0. This proves that the utilization factors

of the second subset are less thanα whenε → 0+, and is higher than zero.

Part 4. There are(nβLLB +1) tasks in the second subset. Hence, at least one processor of

then available should allocate(βLLB +1) or more of these tasks. However, no processor can

allocate(βLLB +1) or more tasks of the second subset, since(βLLB +1) of these tasks together

have a utilization over LLB.

(βLLB +1)
(

(21/(βLLB+1) −1)+
ε
m

)

> (βLLB +1)(21/(βLLB+1)−1)

We conclude that the proposed task set of total utilizationU = (nβLLB + 1)(21/(βLLB+1) −

1)+ ε does not fit inton processors whenε → 0+ using LLB on each processor, so the utiliza-

tion boundULLB-AA
wc must be less than or equal to(nβLLB +1)(21/(βLLB+1)−1).

Remark: the tasks of the first subset are necessary in the proof only to fulfill the restriction

of havingm tasks.

4 Utilization bound for Worst Fit allocation

This section shows that the allocation algorithm termed Worst Fit (WF) is the worst reason-

able allocation algorithm in terms of the multiprocessor utilization bound using LLB on each

processor.

The WF algorithm allocates each task to the processor with the highest remaining capacity

of all the processors with sufficient capacity to hold the task. Tasks are allocated one by one fol-

lowing the sequence{τ1, . . . ,τm}. If two or more processors have the same remaining capacity,

we assume that the task is allocated to the processor with thelowest index among those with

the lowest remaining capacity. Using LLB, the remaining capacity of processorPj is given by

the expression(mj +1)(21/(mj+1) −1)−U j . For example, consider a task of utilization factor

0.2, which we try to allocate to a multiprocessor made up of two processors,τ1 andτ2, using

the WF algorithm. Let us suppose that processorτ1 already holds two tasks of total utilization

0.5, that is,m1 = 2 andU1 = 0.5. Let us also suppose that processorτ2 already holds three

tasks of total utilization 0.49, that is,m2 = 3 andU2 = 0.49. The remaining capacity ofτ1 is

12

(3(21/3−1)−0.5) ≈ 0.32, while the remaining capacity ofτ2 is (4(21/4−1)−0.49) ≈ 0.27.

Thus, both processors may allocate the task. Processorτ1 will be the one that receives the

task, as it is the processor with the highest remaining capacity of those with enough remaining

capacity to hold the task.

The WF allocation has no practical value. Other allocation algorithms, such us FF and FFD

perform better and have similar or less complexity than WF. However, the WF allocation is

interesting from a theoretical perspective. WF provides the lowest utilization bound we can

expect from any allocation algorithm based on LLB. In addition, we will prove that the multi-

processor utilization bound for any reasonable allocationalgorithm under dynamic allocation

coincides with the utilization bound for (static) WF allocation, given by Corollary 1. However,

as we will remark at the end of this section, this bound can be applied only to steady states.

Next, Theorem 3 gives an upper limit on the multiprocessor utilization bound for WF allo-

cation and LLB, which is a function ofα at least. This upper limit coincides with the lower

limit provided by Theorem 1 for any reasonable allocation algorithm, and therefore with the

utilization bound for WF allocation, given by Corollary 1. The result is restricted toα ≤ ln2

in order to simplify the proof. In addition, forα > ln2 the upper limit is too low to be useful

in practice, as indicated in Section 6.

The termsna, nb, Ua andUb in the statement of Theorem 3 are defined in Theorem 1.

The reader should refer to the intuitive description of these parameters given after the proof of

Theorem 1, in order to better understand the proof of Theorem3.

Theorem 3. If m > nβLLB, it follows that ULLB-WF
wc (m,n,α ≤ ln2) ≤ naUa+nbUb− (n−1)α

Proof. We will prove the existence of a set ofm tasks,{τ1, . . . ,τm}, of utilization factors less

than or equal toα, and total utilizationnaUa +nbUb− (n−1)α + ε with ε → 0+, which does

not fit into the processors using the allocation algorithm WFand LLB on each processor. The

proof will be divided into four parts:

1. The task set is presented.

2. The task set is proved to be made up ofm tasks and to have total utilization equal to

naUa+nbUb− (n−1)α + ε.

3. The utilization factors of the task set are proved to be valid, that is, 0< ui ≤ α.

4. The claim that the task set does not fit into the multiprocessor is proved.

13

Part 1. The set ofm tasks is built as follows, strictly in the order indicated. There are

⌊(m−1)/n⌋ subsets ofn = (na +nb) tasks each. All these subsets are made up ofna tasks of

utilization factor

ua =
Ua−α

⌈(m−1)/n⌉
+

ε
m−1

(12)

followed bynb tasks of utilization factor

ub =
Ub−α

⌊(m−1)/n⌋
+

ε
m−1

(13)

Following the previous⌊(m−1)/n⌋ subsets, there arena tasks of utilization factorua. Finally,

there is the last task,τm, of utilization factorα.

Part 2. As a whole, the task set is made up of
(⌊m−1

n

⌋

+1
)

na tasks of utilization factorua,
(⌊m−1

n

⌋)

nb tasks of utilization factorub and one task of utilization factorα. The number of

tasks in the set is
⌊

m−1
n

⌋

(na+nb)+na+1. Substituting the values ofna andnb

⌊

m−1
n

⌋

n+m+n−1−

⌊

m+n−1
n

⌋

n+1

Bearing in mind that
⌊

m+n−1
n

⌋

=
⌊

m−1
n

⌋

+1, it follows that the task set is made up ofm tasks.

In order to check the correctness of the total utilization, we will consider two cases:(m−1)

is a multiple ofn, and(m− 1) is not a multiple ofn. In the first case,na = 0, nb = n, and

ub =
Ub−α

m−1
n

+ ε
m−1. The total utilization is(m−1)ub+α, which coincides withnaUa+nbUb−

(n−1)α +ε. In the second case,
⌈m−1

n

⌉

=
⌊m−1

n

⌋

+1=
⌊m+n−1

n

⌋

. The total utilization becomes

(⌊

m−1
n

⌋

+1

)

na

(

Ua−α
⌊

m−1
n

⌋

+1
+

ε
m−1

)

+

⌊

m−1
n

⌋

nb

(

Ub−α
⌊

m−1
n

⌋ +
ε

m−1

)

+α =

na(Ua−α)+nb(Ub−α)+α +
ε

m−1

(⌊

m−1
n

⌋

(na+nb)+na

)

Taking the expressions ofna andnb into account we get the total utilizationnaUa+nbUb−(n−

1)α + ε

Part 3. It is necessary to prove that the utilization factorsof all the tasks are valid, i.e,

0 < ui ≤ α for i = 1, . . . ,n.

For x > 0, functionx(21/x − 1) decreases asx increases. Therefore, it follows thatUb ≥

14

Ua > limx→∞ x(21/x−1) = ln2≥ α, and soua, ub and the utilization factor of all the tasks are

higher than zero. The utilization factor of the last task isα, and therefore it is less than or equal

to α. In addition, we must prove thatua ≤ α andub ≤ α in order to prove that the proposed

task set is valid. It is sufficient to prove thatub ≤ α, sinceUa ≤Ub and soua ≤ ub.

Substituting the value ofUb in the definition ofub

ub =

⌊

m+n−1
n

⌋

(

21/⌊m+n−1
n ⌋−1

)

−α

⌊(m−1)/n⌋
+

ε
m−1

From the hypothesis of the Theoremm> nβLLB . SinceβLLB is a natural number,(m−1) ≥

nβLLB , ⌊(m−1)/n⌋ ≥ βLLB ≥ 1, and⌊(m+n−1)/n⌋ ≥ (βLLB + 1). In addition, forx > 0,

functionx(21/x−1) decreases asx increases. Hence,

⌊

m+n−1
n

⌋

(

21/⌊m+n−1
n ⌋−1

)

≤ (βLLB +1)(21/(βLLB+1)−1)

From, inequality (11), presented in the previous section,α > (21/(βLLB+1) −1) and we obtain

ub < (21/(βLLB+1) −1)+ ε
m−1. Thus, by makingε close to zero we finally getub < α.

Part 4. Next, we will prove that the task set does not fit into the multiprocessor. The first

(m− 1) tasks are allocated by the WF heuristic as indicated in Figure 1. Numbers within

parenthesis in Figure 1 represent task indices. Each row represents the tasks allocated to one

processor and horizontal distances indicate utilization.

ua (1)

ua (2)

ub (3)

ub (4)

ub (5)

ua (6)

ua (7)

ub (8)

ub (9)

ub (10)

ua (11)

ua (12)

ub (13)

ub (14)

ub (15)

ua (16)

ua (17)

P1

P2

P3

P4

P5

na = 2

nb = 3

⌊

m − 1

n

⌋

= 3 subsets of 5 tasks

Figure 1: Example of allocation of the first(m−1) tasks in Theorem 3, form= 18 andn = 5.

As a result of the allocation of the first(m−1) tasks, the firstna processors hold⌈(m−1)/n⌉

tasks of utilization factorsua. These processors may hold one additional task of utilization fac-

15

tor Ua−⌈(m−1)/n⌉ua = α − ε ⌈(m−1)/n⌉/(m−1). Therefore, the last task of utilization

factorα does not fit into any of these processors using LLB. Nor can theremainingnb proces-

sors hold the last task because at most they can hold one additional task of utilization factor

Ub−⌊(m−1)/n⌋ub = α − ε ⌊(m−1)/n⌋/(m−1).

We conclude that the proposed task set of total utilizationnaUa+nbUb− (n−1)α does not

fit into n processors using LLB whenε → 0+, so the utilization boundULLB-WF
wc (m,n,α) must

be less than or equal tonaUa+nbUb− (n−1)α.

Corollary 1 provides the multiprocessor utilization boundfor WF allocation and LLB.

Corollary 1. If m > nβLLB, it follows that ULLB-WF
wc (m,n,α ≤ ln2) = naUa+nbUb− (n−1)α

Proof. : The proof is direct from Theorem 1 and Theorem 3.

It can be proved that the multiprocessor utilization bound for any reasonable allocation

algorithm under dynamic allocation coincides with the utilization bound for (static) WF allo-

cation, given by Corollary 1. Dynamic allocation appears when the task set changes to deal

with variable environments. In variable environments, some tasks are removed, increasing the

available capacity of the processors, while other tasks areadded to the system and allocated

using the available processor capacities. There are also tasks that can not be stopped, which

are common to different environments. These tasks can not migrate among processors, as this

would require stopping and starting them again.

With respect to the allocation algorithm, there are tasks previously allocated to processors,

which are common to different environments, and new tasks that must be allocated within

the remaining room as the environment changes. Independently of the reasonable allocation

algorithm, the worst-case situation appears when the previously allocated tasks are located

according to the pattern described in Figure 1, giving the lowest utilization bound among the

reasonable allocation algorithms.

The reader should note that the lowest utilization bound,LLLB = ULLB-WF
wc , can be applied

only to steady states (a long time after the last task set change) of the system. More com-

plex schedulability conditions are required to deal with transient states (just after the task set

changes) [19].

16

5 Utilization bound for RAD allocation

TheReasonable Allocation Decreasing(RAD) algorithms are a class of reasonable allocation

algorithms fulfilling the following conditions:

• Tasks are ordered by decreasing utilization factors beforemaking the allocation, i.e,u1 ≥

u2 ≥ ·· · ≥ um.

• Tasks are allocated sequentially, That is, taskτ1 is allocated first, next taskτ2, and so on

until taskτm.

The heuristics FFD and BFD, belong to this class. After ordering, the FFD heuristic al-

locates each task to the first processor with enough remaining capacity to hold the task. Pro-

cessors are visited in the orderP1,P2, . . . ,Pn. After ordering, the BFD heuristic allocates each

task to the processor with the lowest remaining capacity among those with enough remaining

capacity to hold the task. That is, the task is allocated to the processor in which it fits best [6].

Theorem 4 provides a lower limit on the multiprocessor utilization bound associated with

the class of RAD allocation algorithms and LLB. This lower limit coincides with the upper

limit on the multiprocessor utilization bound associated with any allocation algorithm and LLB.

Therefore, both bounds also coincide with the utilization bound associated with any RAD allo-

cation algorithm and LLB, as given by Corollary 2. Furthermore, RAD allocation algorithms

are optimal from the point of view of the utilization bound using LLB, since there is no alloca-

tion algorithm which guarantees a higher utilization bound.

Theorem 4. If m > nβLLB, the utilization bound for RAD allocation using LLB on each pro-

cessor fulfills

ULLB-RAD
wc (m,n > 1,α) ≥ (nβLLB+1)(21/(βLLB+1)−1)

Proof. Let {τ1, . . . ,τm} be a set ofn tasks which does not fit into the multiprocessor using LLB

on each processor. Letτk be the first task in the set which does not fit into the multiprocessor.

Since RAD allocation algorithms are reasonable, from (3) weget

(mj +1)(21/(mj+1)−1)−U j < uk for all j = 1, . . . ,n (14)

whereU j is the total utilization of themj tasks allocated to processorPj , anduk is the utilization

17

factor of taskτk. The total utilization of the firstk tasks fulfils

k

∑
i=1

ui =
n

∑
j=1

U j +uk (15)

From (14) and (15) we get

k

∑
i=1

ui >
n

∑
j=1

(mj +1)(21/(mj+1) −1)− (n−1)uk (16)

Tasks were ordered in decreasing utilization factors before carrying out the allocation, souk ≤

∑k
i=1 ui
k . Substituting this inequality into (16) and finding∑k

i=1ui

k

∑
i=1

ui >
k

k+n−1

n

∑
j=1

(mj +1)(21/(mj+1) −1)

The total utilization of the firstk tasks is less than or equal to the total utilization of the whole

task set. Thus,

U >
k

k+n−1

n

∑
j=1

(mj +1)(21/(mj+1)−1) (17)

Let us defineI j = (mj +1) andg(I1, . . . , In) = ∑n
j=1 I j(2

1/I j −1)

U >
k

k+n−1
g(I1, . . . , In)

τk is the first task which does not fit into the multiprocessor. Thus, one constraint of themj

values is that∑n
j=1mj = (k−1). This constraint is totally equivalent to the constraint∑n

j=1 I j =

(k+ n−1). Bearing this last constraint in mind and applying Corollary 3 of Appendix with

M = (k+n−1)

U >
k

k+n−1
(k+n−1)(2n/(k+n−1)−1) = k(2n/(k+n−1) −1) (18)

The right hand term of inequality (18) increases monotonically as k increases. In addition,

by definition of βLLB , each processor can allocate at leastβLLB tasks and somj ≥ βLLB .

We know thatk = ∑n
j=1mj + 1. Therefore,k is constrained to bek ≥ (nβLLB + 1). Un-

der this constraint, the right hand term of expression (18) is minimized fork = (nβLLB + 1),

18

and so it follows thatU > (nβLLB + 1)(21/(βLLB+1) − 1). Therefore, a necessary condition

to be fulfilled by the total utilization of any task set which does not fit into then proces-

sors isU > (nβLLB +1)(21/(βLLB+1) −1). In other words, any task set of total utilization less

than or equal to(nβLLB + 1)(21/(βLLB+1) −1) fits into then processors. Finally, we conclude

ULLB-RAD
wc (m,n > 1,α) ≥ (nβLLB +1)(21/(βLLB+1)−1)

Corollary 2 provides the multiprocessor utilization boundfor RAD allocation and LLB.

Corollary 2. If m > nβLLB

ULLB-RAD
wc (m,n,α) =















m(21/m−1) if n = 1

(nβLLB+1)(21/(βLLB+1)−1) if n > 1

Proof. The proof is direct from Theorem 2, Theorem 4, and LLB.

6 Analysis of the theoretical results

In this section, we analyze the functions

LLLB (m,n,α ≤ ln2) = naUa+nbUb− (n−1)α

HLLB(m,n,α) =















m(21/m−1) if n = 1

(nβLLB +1)(21/(βLLB+1)−1) if n > 1

LLLB (m,n,α) is the minimum multiprocessor utilization bound evaluatedamong all the rea-

sonable allocation algorithms using LLB. This minimum coincides with the utilization bound

for WF allocation. It can be seen that for the uniprocessor caseLLLB(m,n = 1,α ≤ ln2) =

m(21/m−1), and so it coincides with LLB.

The expression ofLLLB provided in this article has one theoretical limitation:α can not

be higher than ln2≈ 0.69. However, this is not a practical limitation. For a given allocation

algorithm, the utilization bound can be obtained by subtracting ε → 0+ from the minimum

utilization evaluated among all the task sets which do not fitinto the multiprocessor. Thus, if

α > ln2, all the task sets fulfillingui ≤ ln2 also fulfill ui ≤ α, and thereforeLLLB (m,n,α >

19

ln2) ≤ LLLB (m,n, ln2). From Figure 2, we can extrapolate the value ofLLLB (m,n, ln2) to be

very low forα = ln2, which makes the utilization boundLLLB(m,n,α > ln2) of little practical

importance in this case.

One of the difficulties of dealing with the functionLLLB(m,n,α ≤ ln2) is its complexity.

Nevertheless, if we had applied Corollary 3 of the Appendix instead of Proposition 1 in the

proof of Theorem 1, we would have obtained

LLLB (m,n,α)≥ (m+n−1)(2n/(m+n−1)−1)− (n−1)α

The differencenaUa+nbUb−(m+n−1)(2n/(m+n−1)−1) has been evaluated, giving the result

0≤
naUa+nbUb− (m+n−1)(2n/(m+n−1) −1)

n
≤ 0.0054 for 1< n < m

Thus, we can stateLLLB (m,n,α ≤ ln2) ≈ (m+n−1)(2n/(m+n−1) −1)−(n−1)α. In addition,

it can be seen that for the uniprocessor case this expressiongives LLB.

Figure 2 depicts the functionLLLB (m,n,α ≤ ln2)/n as a function of the number of pro-

cessors, for different values ofα. Althoughn is an integer, it is represented as a continuous

function with the aim of improving its visualization. The representation is normalized, since

LLLB is divided by the number of processors, in order to show the average degree of utilization

of the processors. For each value ofα two different curves have been plotted. The top curve

is associated with the minimum number of tasks, i.e,m= (nβLLB + 1). The bottom curve is

associated with the maximum number of tasks, i.e,m→ ∞. The shaded area between the top

and bottom curves corresponds to values ofm in (nβLLB +1,∞).

For high values ofα the utilization boundLLLB is too small. However, asα nears 0, the uti-

lization bound becomes close tonln2. In this case, the multiprocessor behaves approximately

like a uniprocessorn times faster.

HLLB(m,n,α) is the maximum of the multiprocessor utilization bounds forLLB evaluated

among all the reasonable allocation algorithms. This maximum coincides with the multipro-

cessor utilization bound for RAD allocation. The class of RAD allocation algorithms includes

allocation algorithms such as FFD and BFD. All of them have the same utilization bound, and

there is no allocation algorithm which guarantees a utilization bound higher thanHLLB(m,n,α)

20

using LLB. In this respect, RAD allocation algorithms are optimal.

Figure 2 depicts the functionHLLB(m,n> 1,α)/n as a function of the number of processors

for different values ofα. Although n is an integer, it is again represented as a continuous

function to improve its visualization. This function has not been represented forn = 1, since

in this case the utilization bound coincides with the well-known utilization boundm(21/m−1).

Forn> 1 it does not depend on the number of tasks,m. The representation is normalized, since

HLLB is divided by the number of processors. Each curve in Figure 2corresponds to a different

value ofβLLB , and therefore to a different value ofα.

For α > (21/2−1) we obtainβLLB = 1, andHLLB(m,n > 1,α) = (n+ 1)(21/2−1). The

addition of one processor increases the value ofHLLB by (21/2−1)≈ 0.414. Whenα → 0 then

βLLB → ∞ andH(m,n > 1,α → 0) = nln2. That is, the multiprocessor behaves like an ideal

uniprocessorn times faster.

For example, the multiprocessor utilization bound associated with LLB and FFD allocation

in a multiprocessor made up of two processors is 3(21/2−1)≈ 1.242, about 0.62 per processor.

If the tasks have utilization factors less than or equal to(21/2−1)≈ 0.41 thenβLLB = 2. In this

case, the utilization bound for FFD allocation takes the value 5(21/3−1) ≈ 1.300, about 0.65

per processor, close to the ideal ln2≈ 0.69.

7 Analysis of pessimism

The multiprocessor utilization bounds presented in the previous sections are useful not only

to decide the schedulability of the system quickly, but alsoto determine the influence of key

parameters on schedulability, such as the number of processors,n, the number of tasks,m, and

the task sizes,α.

However, the multiprocessor utilization bounds may be too pessimistic. The pessimism

of a multiprocessor utilization bound for a given allocation algorithm could be obtained by

comparing this bound with an exact multiprocessor schedulability condition for the allocation

algorithm. This exact multiprocessor schedulability condition consists of taking each task and

trying to allocate it to any of the processors, following theallocation algorithm and using an

exact uniprocessor schedulability condition on each processor to decide whether the tasks fits.

21

0

0.25

0.5

0.75

0.69

1 5 10 15 20 25

α = 0.6

α = 2
1

2 − 1

α = 2
1

3 − 1

α = 2
1

10 − 1

α ≈ 0

Number of processors (n)

L
L

L
B

(m
,n

,α
≤

ln
2
)

n

0

0.25

0.5

0.75

0.69

2 5 10 15 20 25

α = 0.6

α = 2
1

2 − 1
α = 2

1

3 − 1

α = 2
1

10 − 1
α ≈ 0

Number of processors (n)

H
L

L
B

(m
,n

>
1,

α
)

n

Figure 2: Plots ofLLLB (m,n,α ≤ ln2)/n andHLLB(m,n > 1,α)/n.

2
2

The task set is schedulable if all the tasks can be allocated.However, we do not follow this ap-

proach since it would require considering the task periods.Instead, we will consider a practical

utilization bound of value 0.9 on each processor, as we will show later.

Extensive simulations have been carried out in order to quantify the pessimism of the mul-

tiprocessor utilization bounds. We have focused on four allocation algorithms: WF, FF, WFD

and FFD. WF has been chosen because it is the worst allocationalgorithm in terms of the mul-

tiprocessor utilization bound; FF because it is one of the simplest heuristics, and WFD and FFD

because both provide the highest multiprocessor utilization bound and are the decreasing size

counterparts of WF and FF.

Task utilization factors have been randomly generated using the Beta distribution of proba-

bility as a base. The standard deviation of the distribution, σ , is limited by a maximum value,

σmax, which is a function of the expected value of the distribution. Task sets withα > ln2 have

been discarded, in order to meet the size limitation of the WFmultiprocessor utilization bound.

Figures 3 and 4 show schedulability results for different numbers of processors and tasks,

as well as for different standard deviations of the utilization factors. Each subfigure depicts six

plots: three for a low value of standard deviation,σ/σmax = 0.2, and three for a high value of

standard deviation,σ/σmax = 0.8. For a given standard deviation, the leftmost plot represents

the percentage of schedulable task sets using the multiprocessor utilization bound derived from

LLB. Note that the bound for FF allocation was presented in [15]. The central plot represents

the percentage of schedulable task sets using the allocation algorithms jointly with LLB bound

on each processor. That is, instead of using the multiprocessor utilization bound, an attempt is

made to allocate each task of each task set following the allocation algorithm and using LLB on

each processor to decide whether the task fits. The task set isschedulable if all the tasks can be

allocated. This plot, when compared to the leftmost plot, allows us to estimate the pessimism of

the worst-case task set used in the proof of the multiprocessor utilization bound. The rightmost

plot is analogous to the central plot, but uses a uniprocessor utilization bound of value 0.9 on

each processor holding two or more tasks. The value 0.9 is a practical uniprocessor utilization

bound for most task sets under RM scheduling. Thus, we can approximately quantify the

pessimism of using RM instead of exact uniprocessor schedulability conditions, without the

need for modeling task periods, which depend largely on particular real-time systems.

23

We can extract several consequences from Figures 3 and 4 and additional simulations, not

shown in the article:

• Schedulability depends strongly on the standard deviationof the utilization factors. If

the utilization factors are very different among the tasks,schedulability becomes more

difficult.

• Increasing the number of processors decreases the relativeschedulability of the system.

This effect was previously reported in Figure 2 for the multiprocessor utilization bounds.

• Increasing the number of tasks raises the probability of having lower values ofα, im-

proving the multiprocessor utilization bounds.

• Ordering the tasks by decreasing utilization factors makesthe performance of all the

allocation heuristics almost identical. WFD, FFD and BFD decreasing have almost iden-

tical behavior. The results for BFD decreasing have not beenshown in the figures for

the sake of brevity. This behavior coincides with that predicted from the multiprocessor

utilization bounds. All the RAD allocation algorithms share a common utilization bound.

There are several factors than can contribute to the pessimism of the multiprocessor utiliza-

tion bounds:

• The multiprocessor utilization bounds are obtained for worst-case task sets, which may

be infrequent in practice. These worst-case task sets were defined in the proofs of Theo-

rems 2 and 3. The pessimism coming from this source can be derived from the horizontal

gap between the leftmost and central plots in the figures, fora given standard deviation.

This pessimism increases with the variability of the utilization factors. Nevertheless it

may be reduced by dividing the task set into several task sets, each covering a different

range of utilization factors. For example, if one of the tasks has a utilization factor of 0.99

and the rest have low utilization factors, we get an improvedutilization bound by adding

0.99 to the multiprocessor utilization bound for(m−1) tasks and(n−1) processors. A

similar approach was followed in [1] to improve the relations (NAA/NOPT).

• Using LLB in each processor during the allocation instead ofexact schedulability condi-

tions reduces processor capacities. The capacity of one processor under RM scheduling

is usually much higher than LLB [18]. Nevertheless the increment depends on task set

characteristics, such as task periods and utilization factors. This pessimism for the multi-

24

processor schedulability is given by the horizontal gap between the central and rightmost

curves, for a given standard deviation. In relative terms, this pessimism is lower for

multiprocessor scheduling than for uniprocessor scheduling. The reason is that it is not

always possible to take advantage of all the extra capacity.

• The multiprocessor utilization bounds derived using LLB oneach processor may not be

strictly tight.

8 Conclusions and future work

We have obtained the interval in which the utilization boundassociated with any reasonable al-

location algorithm that uses LLB is found. Since practical allocation algorithms are reasonable,

the interval obtained is of wide applicability.

The WF algorithm was proved to be the worst reasonable allocation algorithm in terms of

the utilization bound for multiprocessor RM scheduling using LLB. Its utilization bound is a

function of the number of processors,n, the number of tasks,m, and a parameter,α, that takes

the “task sizes” into account. For high values ofα, the multiprocessor utilization bound is close

to one for any number of processors, while for low values ofα it is close to the idealnln2.

In addition, algorithms such as FFD and BFD were proved to be optimal in terms of the

utilization bound using LLB. The utilization bound associated with these heuristics is close to

the idealnln2 when the multiprocessor is made up of two processors, or when the utilization

factors of the tasks are small. The utilization bound associated to these algorithms does not

depend on the number of tasks.

Simulation results have confirmed the schedulability results derived from the theoretical

multiprocessor utilization bounds. In addition, simulation results have shown that the pes-

simism of these bounds depends on the number of processors and the variability of the utiliza-

tion factors. In general, pessimism increases when we increase these two factors.

The task set model of the article considers periodic and independent tasks. Nevertheless,

it is also possible to analyze the schedulability of task sets including sporadic and aperiodic

tasks, when the aperiodic tasks are served by aperiodic servers whose worst-case behavior can

25

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FF

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 2 processors, m = 20 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FFD

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 2 processors, m = 20 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WF

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 2 processors, m = 20 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WFD

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 2 processors, m = 20 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

Figure 3: Simulation results for FF, FFD, WF and WFD schedulability, usingn = 2 processors
andm= 20 tasks.

26

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FF

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 10 processors, m = 100 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FFD

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 10 processors, m = 100 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WF

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 10 processors, m = 100 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WFD

σ/σmax = 0.2
σ/σmax = 0.8

U/n

n = 10 processors, m = 100 tasks

%
o
f
sc

h
ed

u
la

b
le

ta
sk

se
ts

Figure 4: Simulation results for FF, FFD, WF and WFD schedulability, usingn= 10 processors
andm= 100 tasks.

27

be modeled by periodic tasks [20].

Future work will address the problem of finding the tight multiprocessor utilization bounds

for multiprocessor RM scheduling. This will require the useof a necessary and sufficient

schedulability condition for uniprocessor RM scheduling instead of LLB. We believe that the

utilization bound provided for the class of allocation algorithms denoted by RAD is strictly

tight, and that the utilization bound provided for WF allocation is almost tight. Nevertheless,

this has yet to be formally proved.

Acknowledgments

Firstly, we would like to thank the reviewers. Their suggestions allow us to improve the

quality of this article. Finally, we would also like to acknowledge the work of Kirstie Gough,

which help us to express our ideas in English.

28

Appendix

Proposition 1. Let {I1, . . . , In} be a set of n positive natural numbers such that∑n
j=1 I j = M.

Let g(I1, . . . , In) = ∑n
j=1 I j(2

1/I j −1). It follows that

g(I1, . . . , In)≥ (M−⌊M/n⌋n)⌈M/n⌉
(

21/⌈M/n⌉−1
)

+(n−M + ⌊M/n⌋n)⌊M/n⌋
(

21/⌊M/n⌋−1
)

Proof. It can be proved that the minimum of functiong is obtained whenM is quasi-equitably

divided among{I1, . . . , In}, that is, when|I j − Ik| ≤ 1 for all j,k in 1, . . . ,n. If M is a multiple of

n then the quasi-equitable distribution is equitable, that is, I j = Ik = M/n for all j,k in 1, . . . ,n.

If M is not a multiple ofn, the quasi-equitable distribution ofM produces(M−⌊M/n⌋n) terms

I j of value⌈M/n⌉, and(n−M + ⌊M/n⌋n) termsI j of value⌊M/n⌋, i.e, one unit less.

It is interesting to note that the right hand term of Proposition 1

(M−⌊M/n⌋n)⌈M/n⌉
(

21/⌈M/n⌉−1
)

+(n−M + ⌊M/n⌋n)⌊M/n⌋
(

21/⌊M/n⌋−1
)

decreases as M increases, since greater values of M give riseto greater elements of the vector

{Î1, . . . , În} giving the minimum of function∑n
j=1 I j(2

1/I j −1).

Proposition 2 is analogous to Proposition 1, but instead of dividing M quasi-equitably

among the natural numbers{I1, . . . , In}, it is equitably distributed among the real numbers

{R1, . . . ,Rn}.

Proposition 2. Let{R1, . . . ,Rn} be a set of n positive real numbers such that∑n
j=1Rj = M. Let

g(R1, . . . ,Rn) = ∑n
j=1Rj(2

1/Rj −1). It follows that g(R1, . . . ,Rn) ≥ M(2n/M −1)

Proof. It can be proved that the minimum of functiong is obtained whenM is equitably divided

among{R1, . . . ,Rn}. The equitable distribution ofM producesn termsRj of value(M/n).

Corollary 3. Let{I1, . . . , In} be a set of n positive natural numbers such that∑n
j=1 I j = M. Let

g(I1, . . . , In) = ∑n
j=1 I j(2

1/I j −1). It follows that g(I1, . . . , In) ≥ M(2n/M −1)

Proof. The lower limit provided by Proposition 2 is applicable to the positive natural numbers

since these are a subset of the positive real numbers.

29

References
[1] Y. Oh and S.H. Son, “Allocating fixed-priority periodic tasks on multiprocessor systems,”Real-

Time Systems, vol. 9, no. 3, pp. 207–239, 1995.

[2] C. L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,”Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[3] S.K. Dall and C.L. Liu, “On a real-time scheduling problem,” Operations Research, vol. 6, no. 1,
pp. 127–140, 1978.

[4] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multiprocessors,” in
Proceedings of the IEEE Real-Time Systems Symposium, 2001, pp. 193–202.

[5] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic task systems on
multiprocessors,”Real-Time Systems, vol. 25, no. 2-3, pp. 187–205, 2003.

[6] M.R. Garey and D.S. Johnson,Computers and Intractability, W.H. Freman, New York, 1979.

[7] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New strategies for assigning real-time tasks to
multiprocessor systems,”IEEE Transactions on Computers, vol. 44, no. 12, pp. 1429–1441, 1995.

[8] D. Peng, K. Shin, and T. Abdelzaher, “Assignment and scheduling communicating periodic tasks
in distributed real-time systems,”Transactions on Software Engineering, vol. 23, no. 12, pp. 745–
758, 1997.

[9] K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time tasks (an np-hard problem made
easy),”Real-Time Systems, vol. 4, no. 2, pp. 145–165, 1992.

[10] S. Sáez, J. Vila, and A. Crespo, “Using exact feasibility tests for allocating real-time tasks in
multiprocessor systems,” inProceedings of the 10th Euromicro Workshop on Real-Time Systems,
1998, pp. 53–60.

[11] S. Lauzac, R. Melhem, and D. Mossé, “An efficient rms admission control and its application to
multiprocessor scheduling,” inProceedings of the International Parallel Processing Symposium,
1998, pp. 511–518.

[12] S. Davari and S. Dhall, “On a periodic real-time task allocation problem,” inAnnual international
Conference on Systems Sciences, 1986, pp. 133–141.

[13] S. Davari and S. Dhall, “An on line algorithm for real time tasks allocation,” inProceedings of the
IEEE Real-Time Systems Symposium, 1986, pp. 194–200.

[14] D. Oh and T.P. Baker, “Utilization bounds for n-processor rate monotone scheduling with static
processor assignment,”Real-Time Systems, vol. 15, no. 2, pp. 183–193, 1998.

[15] J.M. López, M. Garcı́a, J.L. Dı́az, and D.F. Garcı́a, “Utilization bounds for multiprocessor rate-
monotonic scheduling,”Real-Time Systems, vol. 24, no. 1, pp. 5–28, 2003.

[16] S. K. Baruah and J. Goossens, “Rate-monotonic scheduling on uniform multiprocessors,”IEEE
Transactions on Computers, vol. 52, no. 7, pp. 966–970, 2003.

[17] J.M. López, J.L. Dı́az, M. Garcı́a, and D.F. Garcı́a, “Worst-case utilization bound for edf schedul-
ing on real-time multiprocessor systems,” inProceedings of the Euromicro Conference on Real-
Time Systems, 2000, pp. 25–33.

[18] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior,” inProceedings of the IEEE Real-Time Systems Symposium, 1989,
pp. 166–171.

[19] P. Pedro and A. Burns, “Schedulability changes for modechanges in flexible real-time systems,”
in Proceedings of the Euromicro Workshop on Real Time Systems, 1998, pp. 172–179.

[20] G. Bernat and A. Burns, “New results on fixed priority aperiodic servers,” inProceedings of the
Real-Time Systems Symposium, 1999, pp. 68–78.

30

