Minimum and Maximum Utilization Bounds for

Multiprocessor Rate Monotonic Scheduling

Joe M. Lopez, Jos L. Diaz, and Daniel F. Gara

Departamento de Inforatica, Universidad de Oviedo, Gij 33204, Spain

December 4, 2003

Abstract

The utilization bound for real-time Rate Monotonic (RM) edaling on uniproces-
sors is extended to multiprocessors with partitioning dasgheduling. This allows fast
schedulability tests to be performed on multiprocessotscarantifies the influence of key
parameters, such as the number of processors and task sitles schedulability of the
system. The multiprocessor utilization bound is a functbthe allocation algorithm, so
among all the allocation algorithms there exists at leastallocation algorithm providing
the minimum multiprocessor utilization bound, and onectmn algorithm providing the
maximum multiprocessor utilization bound. We prove that thultiprocessor utilization
bound associated with the allocation heuri$tiorst Fit(WF) coincides with that minimum
if we use Liu & Layland’s bound (LLB) as the uniprocessor stiiability condition. In
addition, we present a class of allocation algorithms sigaitie same multiprocessor uti-
lization bound which coincides with the aforementioned imasxm using LLB. The heuris-
tics First Fit Decreasing(FFD) andBest Fit DecreasingBFD) belong to this class. Thus,
not even an optimal allocation algorithm can guarantee lagnighultiprocessor utilization
bound than that of FFD and BFD using LLB.

Finally, the pessimism of the multiprocessor utilizatiooubds is estimated through

extensive simulations.

Keywords: Real-Time systems, multiprocessors, Rate Monotonic sdimeg allocation, utiliza-

tion bounds.

1 Introduction

Multiprocessor scheduling is a challenging problem in thal-time systems theory. There
are two main strategies when dealing with this problem: if@@ning strategies and global
strategies [1]. In a partitioning strategy, once a taskecated to a processor, all of its instances
are executed exclusively on that processor. In a globakstyaany instance of a task can be
executed on any processor, or even be pre-empted and moaetifterent processor, before it
is completed.

Theoretically, global strategies provide higher scheility than partitioning strategies.
However, partitioning strategies have several advantages global strategies. Firstly, the
scheduling overhead associated with partitioning straseig lower than that of global strate-
gies. Secondly, partitioning strategies allow well knownpuocessor scheduling algorithms
to be applied on each processor. Furthermore, Rate Momo(BM) and Earliest Deadline
First (EDF) scheduling, which are optimal real-time ungessor scheduling algorithms [2],
perform poorly when extended to global multiprocessor dahieg. The utilization bounds
associated with global RM or EDF multiprocessor schedudiregnot higher than one for any
number of processors [3]. Nevertheless, these bounds cgrebly improved by placing re-
strictions on the tasks sizes, or by using some variationglaifal RM or EDF scheduling
algorithms [4, 5].

In this article, we use the partitioning strategy, i.e, amgktmust always be executed on
the same processor. Tasks are pre-emptively scheduledobnpeacessor according to the
RM algorithm. RM is a static priority scheduling algorithimat assigns each task a priority
inversely proportional to its period, i.e, the smaller tleeipd, the higher the priority. Thus, the
allocation algorithm is the only degree of freedom in theeys

Finding optimal allocation algorithms is not practical, tae problem is NP-hard in the
strong sense [6]. Several allocation algorithms have beeposed in the literature: simple
allocation heuristics [3, 6, 7] and complex allocation aitjons such as those based on branch-
and-bound [8] and simulated annealing techniques [9]. is dlticle, we focus on simple
allocation heuristics.

Two different approaches are followed in the literaturegtablish the schedulability asso-
ciated with a given allocation algorithm: simulation apgcbes and theoretical approaches.

2

In the simulation approach, task sets are randomly gemnerilext, the average number of
processors required to allocate task sets of a given tdtalation is obtained. Uniprocessor
exact tests [10], or uniprocessor sufficient tests [11] ararmoonly used to decide whether a
given group of tasks fits into one processor. Neverthelessjlation results should be con-
sidered carefully, since randomly generated task sets raapenrepresentative of those that
appear in practice.

The traditional theoretical approach focuses on the caficud of bounds for the metric
(Naa /Nopt), for (uniprocessor scheduling algorithm, allocation algorithpairs [1, 3, 6, 7,
12, 13]. This metric gives the relationship between the nemobprocessors required to sched-
ule a task set using a given allocation algorithm AA, and thmber of processors required
using an optimal allocation algorithm OPT. This metric igfusin order to compare different
allocation algorithms, but not to perform schedulabilégts. There are several reasons for this.
Firstly, Nopr can not be calculated in polynomial time. Secondly, eved4§; were known,
the utilization bound derived from the metric would be toggmistic [14]. For example, for
First Fit (FF) allocationNg/Nypr) = 2.33, as proved in [1]. A task set made up of 20 tasks,
each with a utilization factof0.04+ €), may require two processors to be schedulable even
using an optimal allocation algorithm, since LLB for 20 tas$& 0.7, less than the total utiliza-
tion, 20(0.04+ ¢). Using the relatiof{N-/Nyp7) = 2.33, five processors would be necessary
to guarantee the schedulability of the task set using thell6Eagéion. This gives a utilization
bound not higher than.8/5 ~ 0.16 per processor, too low to be useful. Oh and Son [1] re-
fined the relatior{N/Nyp1) by considering the task sizes. Even so, the schedulabeitylts
obtained from these relations are too pessimistic when eoeddo the tight utilization bounds.

A new theoretical approach consists of calculating thezatiion bounds associated with
(scheduling algorithm, allocation algorithnpairs, analogous to those known for uniproces-
sors. This approach has several interesting featuresowsuls to carry out fast schedulability
tests, and to quantify the influence of certain parametexsh as the number of processors,
on schedulability. The major disadvantage of this apprasithe sufficient but not necessary
character of the associated schedulability tests. Thisoagp was followed in [14] to obtain

a lower limit, given by (1), on the utilization boudffM-FF for multiprocessor RM scheduling

with First Fit allocation (FF).
U™ (n) > n(2"/2 -1 ()

wheren is the number of processors. From a practical point of viegydfion (1) states that
any task set of total utilization less thamd@4n is schedulable in a multiprocessor made up
of n processors using FF allocation and RM scheduling on eaatepsor. The reader should
compare the @14 utilization bound per processor with the utilizatiombd Q16 per processor,
obtained from relatiofNg/Ngp1).

More recently, a tighter utilization bound for RM schedgliand FF allocation was pre-
sented in [15]. This bound considers not only the numberafgssors, but also the number of
tasks and their sizes. The performance of the allocaticorigigns depends largely on the task
sizes. Thus, it is usual to place some kind of limit on the &2gks, e.g a maximum utilization
factor, to improve the theoretical results [1].

The theoretical approach based on calculating utilizatlmounds has also been developed
recently for global multiprocessor RM scheduling. Undesbgll RM scheduling, Andersson
et al. [4] proved that the utilization bound ig/(3n — 2), when the utilization factor of any
task is not higher than/(3n—2). They also present a variation of the global RM scheduling
algorithm with the same utilization bounf/(3n — 2), but without the previous restriction on
task sizes. In addition, Baruah and Goossens [16] presamgederalization of the utilization
bound for global RM scheduling by considering the case offoum multiprocessors, i.e, they
consider the possibility of multiprocessors made up of immtical processors.

Our work makes the following theoretical contributions ke treal-time multiprocessor
schedulability analysis:

e The minimum utilization bound based on Liu & Layland’s bohtlB) evaluated among
all thereasonable allocation algorithmis found. Reasonable allocation algorithms are
those which fail to allocate a task only when there is no pmscein the system with
sufficient free capacity to hold the task [17]. Using LLB, asenable allocation algo-
rithm is one that fails to allocate a task only when there igpraressor in the system
able to hold the task without violating LLB. The idea of résing the study to reason-
able allocation algorithms is to exclude theoreticallygbke, but impractical allocation

4

algorithms, which would only complicate the mathematiadatiption of the problem.
In particular, the allocation heuristiorst First(WF) provides this minimum utilization
bound using LLB.

e A class of reasonable allocation algorithms, terrReAsonable Allocation Decreasing
(RAD), is defined. These algorithms are proved to providerttaximum utilization
bound using LLB among all the allocation algorithms (reagie or not) for multipro-
cessor RM scheduling. The simple heuristigsst Fit Decreasing(FFD) andBest Fit
Decreasing (BFD)described in [6], belong to this class. Thus, not even am@bpallo-
cation algorithm can provide a higher multiprocessor zdiiion bound than that of FFD
and BFD using LLB.

The rest of the article is organized as follows. Section 2nésfthe computational system
used. The minimum and maximum utilization bounds for mutigessor RM scheduling using
LLB are provided in Section 3. Section 4 presents\Wast Fitallocation heuristic (WF) and
calculates its utilization bound, which coincides with thimimum using LLB. Section 5 proves
the expression of the utilization bound for RAD allocatiatich coincides with the maximum
using LLB. The mathematical expressions of the minimum amagimum utilization bounds
are analyzed in Section 6. Section 7 analyzes the pessiniittma atilization bounds. Finally,

Section 8 presents our conclusions.

2 System definition

A task set consists ahindependent periodic tasks,, ..., Tm}, of computation time¢C,, .. .,
Cm}, periods{T,,..., Tm}, and hard deadlines equal to the task periods. The utizéictory;
of any taskr;, defined as, =C, /T, is assumed to beQ u; < a <1, wherea is the maximum
reachable utilization factor for any task. Thuasis a parameter of the task set which takes the
“task sizes”into account. The total utilization of the task, denoted byJ, is the sum of the
utilization factors of the tasks of which it is composed.

Tasks are allocated to an arrayroidentical processor§P,, ..., Py}. Once a task is allo-
cated to a processor it is executed exclusively on that geme Within each processor, tasks

are pre-emptively scheduled using fixed priorities assigaexording to the RM criterion [2].

Allocation is carried out using reasonable allocation (Régorithms [17]. A reasonable al-
location algorithm is one which fails to allocate a task onlyen there is no processor in the
system which can hold the task.

Whether a task fits into a processor depends on the uniparcadseduling algorithm, the
uniprocessor schedulability condition and the tasks presty allocated to the processor. In this
article, we use Liu & Layland’s utilization bound (LLB) fomiprocessor RM scheduling [2]

as the uniprocessor schedulability condition, which iggiby (2)
m 1
U=Su<m27/Mm-1) (2)
2"

Equation (2) states that any setrotasks of total utilizatiorm(21/ M_1) or less is schedulable
using RM scheduling on a uniprocessor. Thus, a task of atibn factory; fits into processor
P;, which already hasn; tasks allocated to it with total utilizatiod;, if the (m; + 1) are
schedulable, i.e, ifm; +1)(2" ™+ — 1) —U; > u.

Using LLB, a reasonable allocation algorithm is one whidlsfto allocate a task of uti-
lization factoru; to a multiprocessor made up ofprocessors, only when the task does not fit

into any processor, i.e,
(m+YM M —1)—U; <y forallj=1,...,n (3)

LLB is calculated by considering the worst combination fktgoeriods and utilization
factors [2], so it is only a sufficient schedulability condit for RM scheduling. In particular,
LLB is derived from a worst-case task set in which all the sagkthe processor have the
same utilization factors and the periods fulfill the relat®y, , /T, = 24/™, i.e, T, = 2Y/™T,,

T, = 2Y/™T,, and so on. Despite this, in this article we assume that ageskits into one
processor if, and only if, LLB is fulfilled. Therefore, the ftiprocessor utilization bounds
provided in the article are valid, but may not be tight, iteqnay be possible to find higher
multiprocessor utilization bounds that still guarantee sishedulability under multiprocessor
RM scheduling. The multiprocessor utilization bounds doo¢ made tight using necessary
and sufficient schedulability conditions for uniprocesBd scheduling [18] in the theorems,

but they are too complex.

At this point, the notation should be clarified. The multipessor utilization bound for
an allocation algorithm AA using LLB is denoted ;-84 | while the tight multiprocessor
utilization bound is denoted AYRMAA | In general URM-AA > ULLB-AA 'soULLB-AA may be

pessimistic.

3 Minimum and maximum utilization bounds

The multiprocessor utilization boutdf,-B-RA, associated with any reasonable allocation algo-
rithm, RA, and LLB is in the intervalL g ,H, g]. This interval is defined as follows:
. [|LLB-RA . LLB-RA
Lig = rg[‘Uwc) Hyg = nggl\xuwc
The calculation of this interval gives the worst and bedizatiion bounds that can be expected
from all the reasonable allocation algorithms beforehand.
Before calculating the expressionslgf ; andH, g, it is necessary to introduce the pa-

rameter, | z. Parametef, | 5 is the maximum number of tasks of utilization factomhich

fit into one processor using LLB for RM scheduling), ; can be expressed as a functioroof

Lemma 1. [15]

Proof. From the definition off, | 5, B, g tasks of utilization factor fit into one processor
using LLB. Applying LLB this means thaB ga < B, g(2YAie —1). Finding B 5 we

obtainB, g <1/log,(a +1). Sincef, 5 is a natural number we get

1
e = | oga 1 ©

BecauseB | 5 is the maximum number of tasks of utilization facterthat fit into one
processor using LLB(B | 5 +1) tasks of utilization factor do not fit into one processor

without violating LLB. Thus,(B, 5 +1)a > (B g +1)(2%(Pus* —1). FindingB 5 we

obtainB, g > 1/log,(a +1) — 1. SinceB, | 5 is a natural number we get

1
e = | o0 1 ©

The lemma is proved from (5) and (6). 0

Any multiprocessor made up ofprocessors can allocate at leaf}, 5 tasks of arbitrary
utilization factors (less than or equal @. Thus, any task set fulfillingr < nf | 5 is trivially
schedulable using RM scheduling together with any readeralmcation algorithm. Hence-
forth, we will assumen > nf3 | 5, as otherwise there would be no point in obtaining the wtiliz
tion bounds.

Theorem 1 will provide a lower limit on the multiprocessoilination bound associated
with any reasonable allocation algorithm and LLB. Sectiamlipresent an upper limit on the
utilization bound for one reasonable allocation algorittihe WF heuristic, which coincides
with the previous lower limit. Thereford, , 5 and the utilization bound for WF allocation
must coincide, and be equal to both limits.

Theorem 2 will provide an upper limit on the utilization baliassociated with any allo-
cation algorithm that is based on LLB, reasonable or notti@e& will present a lower limit
on the utilization bound associated with some reasonalueaion algorithms, the heuristics
in the class RAD, which coincides with the previous uppertlinTherefore,H | 5 and the
utilization bound for the class RAD must coincide, and bea¢¢o both limits. Furthermore,
since the upper limit given by Theorem 2 applies to any atiooaalgorithm, reasonable or not,
H, | g Is the maximum utilization bound among all the allocatiogagithms using LLB.

Next, Theorem 1 provides a lower limit on the utilization bduor any reasonable allo-
cation algorithm. This utilization bound will be denoted By-B-RA(m n,a). At most, it
depends on all the system parameters, i.e, the number af tasthe number of processors,

and the maximum reachable utilization factor,

Theorem 1. Let RA be any reasonable allocation algorithm. If>mp g, it follows that

UgcBRAmn, a) > naUa+n U, — (n—1)a, where

m+n—1
na:m+n—1—{ + J n,=N—"ny

= _1> U, = {%M'J (21/L%MJ _1>

Proof. Let{t1,,..., Tm} be a set omtasks which does not fit into the multiprocessor using LLB
on each processor. There are tasks of the set which aretaliidiceprocessors, and tasks which
are not allocated. Let us change the indices in the set sthin&isks which were not allocated
have the last indices in the set. Lgtbe the first task in the set which was not allocated to any
processor, after the change of indices. Since the allatatigorithm is reasonable, from (3)
we get

(m, +1)(2Y (M)) —-U;<y forallj=1,...n (7)

wherer is the total utilization of the tasks previously aIIocatexjprocesson, m; is the
number of these tasks, amg is the utilization factor of task,. The total utilization of the

whole setJ, fulfils

3
=~

n
, 2 u = Z U. | Uy (8)
=]:1

From (7) we get

n n n
m+1)RYM+ D _1)—u) =S (m+1)YM* _1)—n
'Zl Z () k> ,-Zl(J)() %

Substituting this inequality into (8)

U> S (m+1)2YM Y —1)— (n—1)u,

M=

i

From the system definition, all the utilization factors a¥ed than or equal t@, sou, < a and
n
Z (m,+1)(2YM —1) — (n—1)a
=1

In order to simplify the above expression, let us define (m; +1) andg(l,,...,In) =

>4 15(2Y = 1). We can now write

U>g(ly,....In)—(n=1a 9)

T, is the first task which does not fit into the multiprocessorud;tone constraint of thm-

values is thag|_; m; = (k—1). This constraint is equivalent to the constrait , I; = (k+

n—1). Bearing this last constraint in mind and applying PropositlL of the Appendix for
=(k+n-1)

g(ly,--51n) > <k+n—1— {kJr:_lJ n> {”2_1} (2[”311 _1>+
oowe) [o

The right-hand term in (10) decreasesascreases, as is indicated just after Proposition 1 in

(10)

the Appendix. Indek s in the intervall, m], sincer, is a task of the set ahtasks. Therefore,
for k = m we obtain the minimum of the right-hand term in (10). Hencent equations (9)

and (10), and considering the definitionsngf n,, Us andU,,, we get
U >nUa+nU,—(n-1)a

Any task set which does not fit into the processors using LLBI$Lthe previous expression.
Consequently, any task set of total utilization less thaequal tonUa +ny U, — (n— 1) a fits

into the processors using LLB, ab}t®RA(mn,a) > nUa+n U, — (n—1)a O

We will prove thatUgc®WF(m,n,a <In2) < nUa+nU, — (n—1)a in Section 4. Since

WEF is a reasonable allocation algorithm we can state that
L g(mn,a <In2) =nUa+nU,— (n—1)a

Next, we provide an intuitive idea about whmt n,,, Us andU, represent. This will be use-
ful in the proof of Theorem 3 in Section 4. After dividiigh— 1) tasks quasi-equitably among
n processors, there ang processors withi(m— 1) /n| tasks, aneh, = (n—ny) processors with
|(m—1)/n| tasks, i.e, one less taskl, is the uniprocessor utilization bound for each of the

Na processors after receiving one more task. Likewikds the uniprocessor utilization bound
10

for each of then, processors after receiving one more task.
Theorem 2 provides an upper limit on the multiprocessoizatilon bound with any allo-

cation algorithm that is based on LLB, reasonable or not.

Theorem 2. Let AA be an arbitrary allocation algorithm. If m nf3, | , it follows that UjtB-AA <

(B g+1) (21/ (BLstl) — 1)

Proof. We will prove that a set aihtasks{t,, ..., Tm} exists, with utilization factors & u; < a
foralli =1,...,m, and total utilizationng, 5 +1)(2Y/(Fus*V) — 1) + ¢, with € — 0*, which
does not fit intan processors using any allocation algorithm and LLB on eackgssor. The
proof will be divided into four parts:

1. The task set is presented.

2. The task set is proved to be made uprofasks and to have a total utilization equal to

(NB g +1)(2YPuetD —1) +¢.
3. The utilization factors of the task set are proved to b&ly#iat is, 0O< u; < a.
4. The claim that the task set does not fit into the multipreces proved.

Part 1. The set ofn tasks is composed of two subsets: a first subset (mith nf | g — 1)
tasks, and a second subset w(ti | ; +1) tasks. All the tasks of the first subset have the
same utilization factor of valug, = £/m, wherei = 1,...,(m—np g —1). All the tasks of
the second subset have the same utilization factor of wglee(2Y/(Pus+? — 1) + £ where
i=(m-nB g),....m

Part 2. It is simple to check that the task set is composeu te#sks of total utilization
(B g +1)(2YFust —1) 4e.

Part 3. Itis also necessary to prove that the utilizatiotofscof both subsets are valid, i.e,
O<u<aforalli=1,....,m

Check of the utilization factors of the first subsBly choosing an small value far, we
obtain O<u, = £ < a.

Check of the utilization factors of the second subdy. definition of B, 5, (B g +1)
tasks of utilization factowr do not fit into one processor, therefai |z +1)a > (B g +
1)(2Y/(Bue+d) — 1), and

a > (2YPustl) _1) >0 (11)

11

It is always possible to find one real number between two neallvers. Hence, a positive value
of ¢ exists such thay > (2%/(Bus*+b) — 1) 4 £ =u, > 0. This proves that the utilization factors
of the second subset are less tllawhene — 0", and is higher than zero.

Part 4. There arenf3 | z + 1) tasks in the second subset. Hence, at least one processor of
the n available should allocatg3 |z + 1) or more of these tasks. However, no processor can
allocate(f, | g +1) or more tasks of the second subset, siff§;¢g + 1) of these tasks together

have a utilization over LLB.

(Bus+1) <(21/(BLLB+1) -1)+ %) > (B + 1)(2Y/Pustt) 1)

We conclude that the proposed task set of total utilizatios (nB,, g +1)(2Y (Pus*b —
1) + € does not fit intan processors whea— 0™ using LLB on each processor, so the utiliza-
tion boundU5B-AA must be less than or equal (0B, 5 + 1) (2 (Pus+b — 1),

Remark: the tasks of the first subset are necessary in th&qmboto fulfill the restriction

of havingm tasks. 0

4 Utilization bound for Worst Fit allocation

This section shows that the allocation algorithm termed3tvbit (WF) is the worst reason-
able allocation algorithm in terms of the multiprocessaliaation bound using LLB on each
processor.

The WF algorithm allocates each task to the processor withighest remaining capacity
of all the processors with sufficient capacity to hold th&tdssks are allocated one by one fol-
lowing the sequencgry, ..., Tm}. If two or more processors have the same remaining capacity,
we assume that the task is allocated to the processor witlowhest index among those with
the lowest remaining capacity. Using LLB, the remainingazty of processoP, is given by
the expressioim; + 1)(2Y(M+1 _ 1) — U;. For example, consider a task of utilization factor
0.2, which we try to allocate to a multiprocessor made up of twacgssorsy; andt,, using
the WF algorithm. Let us suppose that processailready holds two tasks of total utilization
0.5, that is,m; = 2 andU, = 0.5. Let us also suppose that processpalready holds three

tasks of total utilization @9, that is;m, = 3 andU, = 0.49. The remaining capacity af is
12

(3(2Y/2 — 1) — 0.5) =~ 0.32, while the remaining capacity @f is (4(2Y/% — 1) —0.49) ~ 0.27.
Thus, both processors may allocate the task. Procasswill be the one that receives the
task, as it is the processor with the highest remaining ¢gpaicthose with enough remaining
capacity to hold the task.

The WF allocation has no practical value. Other allocatign@hms, such us FF and FFD
perform better and have similar or less complexity than Wéwelver, the WF allocation is
interesting from a theoretical perspective. WF providesltdwest utilization bound we can
expect from any allocation algorithm based on LLB. In addfifiwe will prove that the multi-
processor utilization bound for any reasonable allocagigorithm under dynamic allocation
coincides with the utilization bound for (static) WF alldioa, given by Corollary 1. However,
as we will remark at the end of this section, this bound cangpdied only to steady states.

Next, Theorem 3 gives an upper limit on the multiprocessitization bound for WF allo-
cation and LLB, which is a function aff at least. This upper limit coincides with the lower
limit provided by Theorem 1 for any reasonable allocatiayoathm, and therefore with the
utilization bound for WF allocation, given by Corollary 1h& result is restricted ta < In2
in order to simplify the proof. In addition, far > In2 the upper limit is too low to be useful
in practice, as indicated in Section 6.

The termsn,, N, Uy andU, in the statement of Theorem 3 are defined in Theorem 1.
The reader should refer to the intuitive description of éhearameters given after the proof of

Theorem 1, in order to better understand the proof of The@em
Theorem 3. If m > np, g, it follows that UsBWF(m n,a < In2) <nUa+n U, — (n—1)a

Proof. We will prove the existence of a set oftasks,{1;,...,Tm}, Of utilization factors less
than or equal tar, and total utilizatiomaUs +n U, — (n— 1)a + € with € — 0™, which does
not fit into the processors using the allocation algorithm &l LLB on each processor. The
proof will be divided into four parts:

1. The task set is presented.

2. The task set is proved to be made upofasks and to have total utilization equal to

NaUa + Uy — (n—1)a +¢.
3. The utilization factors of the task set are proved to b&lytiat is, 0O< u; < a.

4. The claim that the task set does not fit into the multipreces proved.
13

Part 1. The set o tasks is built as follows, strictly in the order indicatedhefe are
[(m—1)/n] subsets ofi = (ny +n,) tasks each. All these subsets are made um, ¢ésks of

utilization factor

Ua—a £
Y= Tm—D)/n] m-1 (12)
followed byn, tasks of utilization factor
U,—a €
= 1
= Tm-1/n] w1 13)

Following the previous(m—1)/n| subsets, there arg tasks of utilization factou,. Finally,
there is the last task;,, of utilization factora.

Part 2. As a whole, the task set is made uf p?;—lj + 1) ny tasks of utilization factous,
(|™=L]) n, tasks of utilization factow, and one task of utilization factar. The number of

tasks in the set |§mT‘1J (Ng+ny) +na+ 1. Substituting the values of andn,

m-1 m+n-—1
- n+m+n—1— — n+1

Bearing in mind tha[mﬂr]“lj = nglj + 1, it follows that the task set is made uprotasks.
In order to check the correctness of the total utilizatioa will consider two casegm— 1)

is a multiple ofn, and(m— 1) is not a multiple ofn. In the first casep, = 0, n, = n, and
_ Yp—a

Up = "1 + &1 The total utilization i§m— 1)u, + a, which coincides witmgUa + n U, —

(n—1)a+e. Inthe second case™-2] = M= | 1= | ™N=1] The total utilization becomes

(5 i) 2 (o) -

Na(Ua—a) +ny(U,—a) +a+ mg_l er—] 1J (Na+ny) +na)

Taking the expressions af andn, into account we get the total utilizationUa +-n U, — (n—
la+e

Part 3. It is necessary to prove that the utilization factarsall the tasks are valid, i.e,
O<u<afori=1,...,n

For x > 0, functionx(2/* — 1) decreases asincreases. Therefore, it follows thidf, >

14

Uz > limy_o0 x(21/x —1) =In2> a, and sau, u, and the utilization factor of all the tasks are
higher than zero. The utilization factor of the last task j&nd therefore it is less than or equal
to a. In addition, we must prove that, < a andu, < a in order to prove that the proposed
task set is valid. It is sufficient to prove thgf < a, sinceU, < U, and saua < u,.

Substituting the value df, in the definition ofu,

et (217 1) —a
[(m=1)/n] -

U,. =
b m—1

From the hypothesis of the Theorem> nf | 5. Sincef, g is a natural numbefm—1) >
nB g, L(M=1)/n| > B,z >1,and|(m+n-1)/n] > (B, g +1). In addition, forx > 0,

functionx(2/X — 1) decreases asincreases. Hence,

{%HJ (21/Lm+,']‘*1J - 1) <(B.g+ l)(21/(/3LLB +1) _ 1)

From, inequality (11), presented in the previous section; (2V/(Pue*b — 1) and we obtain
u, < (2Y(Puetd — 1)+ _E. . Thus, by making close to zero we finally get, < a.

Part 4. Next, we will prove that the task set does not fit ineorthultiprocessor. The first
(m—1) tasks are allocated by the WF heuristic as indicated in Eidur Numbers within
parenthesis in Figure 1 represent task indices. Each rowesepts the tasks allocated to one

processor and horizontal distances indicate utilization.

na:2{ uq (1) uq (6) ug (11) ug (16) P
ua (2) uq (7) ug (12) ug (17) P,
up (3) U (8) w (13) Py

ny =3 up (4) u (9) u (14) Py
uy (5) uy (10) up (15) Ps

{m — 1J = 3 subsets of 5 tasks
n

Figure 1: Example of allocation of the fireih— 1) tasks in Theorem 3, fan= 18 andn = 5.

As aresult of the allocation of the firein— 1) tasks, the firsh, processors holf(m— 1) /n|

tasks of utilization factors,. These processors may hold one additional task of utibndtc-

15

torUs— [(m—1)/njus=a —€[(m—1)/n] /(m—1). Therefore, the last task of utilization
factora does not fit into any of these processors using LLB. Nor cameth@ainingn,, proces-
sors hold the last task because at most they can hold onecaddlitask of utilization factor
Uy~ [(M=1)/nju,=a—&[(m—1)/n] /(m—1).

We conclude that the proposed task set of total utilizatiguy 4+ n U, — (n— 1)a does not
fit into n processors using LLB whem— 0™, so the utilization bountd558WF (m,n, a) must

be less than or equal @U, +n,U, — (n—1)a. O
Corollary 1 provides the multiprocessor utilization bodadWF allocation and LLB.
Corollary 1. If m> nf, g, it follows that ;B WF(m,n,a <In2) = nUa+n U, — (n—1)a
Proof. : The proof is direct from Theorem 1 and Theorem 3. 0

It can be proved that the multiprocessor utilization bouoddny reasonable allocation
algorithm under dynamic allocation coincides with theimétion bound for (static) WF allo-
cation, given by Corollary 1. Dynamic allocation appearewlthe task set changes to deal
with variable environments. In variable environments, sdasks are removed, increasing the
available capacity of the processors, while other tasksdded to the system and allocated
using the available processor capacities. There are a&s that can not be stopped, which
are common to different environments. These tasks can rgrateiamong processors, as this
would require stopping and starting them again.

With respect to the allocation algorithm, there are tasksipusly allocated to processors,
which are common to different environments, and new tasés riust be allocated within
the remaining room as the environment changes. Indepdgddrthe reasonable allocation
algorithm, the worst-case situation appears when the quely allocated tasks are located
according to the pattern described in Figure 1, giving theekt utilization bound among the
reasonable allocation algorithms.

The reader should note that the lowest utilization boupgs = U5:BWF, can be applied
only to steady states (a long time after the last task setgehaof the system. More com-
plex schedulability conditions are required to deal witmsient states (just after the task set

changes) [19].

16

5 Utilization bound for RAD allocation

The Reasonable Allocation DecreasifiBAD) algorithms are a class of reasonable allocation
algorithms fulfilling the following conditions:

e Tasks are ordered by decreasing utilization factors befadeng the allocation, i.ej; >

Uy > -+ > Un.
o Tasks are allocated sequentially, That is, tagls allocated first, next task,, and so on
until task .

The heuristics FFD and BFD, belong to this class. After arndgrthe FFD heuristic al-
locates each task to the first processor with enough rentpgapacity to hold the task. Pro-
cessors are visited in the ordey, P,, ..., R,. After ordering, the BFD heuristic allocates each
task to the processor with the lowest remaining capacityregbose with enough remaining
capacity to hold the task. That is, the task is allocatedegtiocessor in which it fits best [6].

Theorem 4 provides a lower limit on the multiprocessor zdition bound associated with
the class of RAD allocation algorithms and LLB. This lowenii coincides with the upper
limit on the multiprocessor utilization bound associatethwny allocation algorithm and LLB.
Therefore, both bounds also coincide with the utilizationtd associated with any RAD allo-
cation algorithm and LLB, as given by Corollary 2. FurthersydRAD allocation algorithms
are optimal from the point of view of the utilization boundnggLLB, since there is no alloca-

tion algorithm which guarantees a higher utilization bound

Theorem 4. If m > nf, | g, the utilization bound for RAD allocation using LLB on eadab-p
cessor fulfills

ULLBRAD M n > 1, a) > (B g+ 1) (2Y/ PuetD _1)

Proof. Let{1y,..., Tm} be a set oh tasks which does not fit into the multiprocessor using LLB
on each processor. Lef be the first task in the set which does not fit into the multipssor.

Since RAD allocation algorithms are reasonable, from (3pete
(m+1)YM —1)—U; <y, forallj=1,...,n (14)

whereU; is the total utilization of then; tasks allocated to procesdgr andu, is the utilization

17

factor of taskr,. The total utilization of the firsk tasks fulfils

n

n
Ziui > 3 (m+1)2YMH —1) — (n—1)u, (16)
i= j
Tasks were ordered in decreasing utilization factors lgefarrying out the allocation, sg <
k
% Substituting this inequality into (16) and findirzgﬁ‘:l U;

k n

P

The total utilization of the firsk tasks is less than or equal to the total utilization of the iho

m +1) 1)

task set. Thus,

> 12 (m; + 1)+ — 1) (17)

Let us defind; = (m; +1) andg(ly,...,In) = 374 1;(2"" — 1)

- k
k4+n—-1

a(ly,---51n)

T, is the first task which does not fit into the multiprocessorud;tone constraint of the,
valuesis thagj_, m; = (k—1). This constraint is totally equivalent to the constrgifit, I; =
(k+n—1). Bearing this last constraint in mind and applying Corgll@rof Appendix with

=(k+n-1)

> k- 1)(2VkH=1) _ 1) = g(2V/(k+n=1) 1) (18)

The right hand term of inequality (18) increases monotdhics k increases. In addition,
by definition of B 5, each processor can allocate at ledsts tasks and son; > f3 | .
We know thatk = 3'_;m; + 1. Thereforek is constrained to bé& > (nf g +1). Un-

der this constraint, the right hand term of expression ($8pinimized fork = (nf g +1),

18

and so it follows that) > (nB, g +1)(2Y(Pus*b —1). Therefore, a necessary condition
to be fulfilled by the total utilization of any task set whiclee® not fit into then proces-

sors isU > (nB g +1)(2YBus ™Y —1). In other words, any task set of total utilization less
than or equal tdnB, | g + 1)(2Y/(Pus*Y — 1) fits into then processors. Finally, we conclude

ULLB-RAD (mn > 1, a) > (B, g +1)(2Y (Bue+D) — 1) O
Corollary 2 provides the multiprocessor utilization bodadRAD allocation and LLB.

Corollary 2. Ifm>nf, g

m(2/m—1) ifn=1
U RA(m.n, o) =
(nB g+ 1)(2Y (Bustl) 1) ifn>1
Proof. The proof is direct from Theorem 2, Theorem 4, and LLB. O

6 Analysis of the theoretical results

In this section, we analyze the functions

L g(mna<In2) =nUa+nU,— (n—1)a

m(2/m—1) ifn=1
H g(mna)=

(nB g +1(2Y P 1) ifn>1

L, g (m,n,a) is the minimum multiprocessor utilization bound evaluaaedong all the rea-
sonable allocation algorithms using LLB. This minimum amdes with the utilization bound
for WF allocation. It can be seen that for the uniprocesseetg z(mn=1a <In2) =
m(21/™— 1), and so it coincides with LLB.

The expression of, | 5 provided in this article has one theoretical limitatiam:can not
be higher than In2: 0.69. However, this is not a practical limitation. For a givdlo@ation
algorithm, the utilization bound can be obtained by sulimgce — 0" from the minimum
utilization evaluated among all the task sets which do nanfa the multiprocessor. Thus, if

a > In2, all the task sets fulfillingi, <In2 also fulfill u; < a, and thereford. g (mn,a >

19

In2) <L, g(mn,In2). From Figure 2, we can extrapolate the valud.gf; (m,n,In2) to be
very low for a = In2, which makes the utilization bournd, 5 (m,n, a > In2) of little practical
importance in this case.

One of the difficulties of dealing with the functidg , ; (m,n,a <In2) is its complexity.
Nevertheless, if we had applied Corollary 3 of the Appendstéad of Proposition 1 in the

proof of Theorem 1, we would have obtained
Lg(mna)> (m+n—1)2Y™"D 1) — (n—1)a

The differencenaUa + n U, — (m+n—1)(2"(M"=1) _ 1) has been evaluated, giving the result

o< MaYa+tnUy,— (m+n—1)(2V/(Mn=1) _ 1)
o n

<0.0054 forl<n<m

Thus, we can statg | 5 (m,n,a <In2) ~ (m+n—1)(2Y (™M= _1) _ (n—1)a. In addition,
it can be seen that for the uniprocessor case this expregises LLB.

Figure 2 depicts the functiob | g (m,n,a <In2)/n as a function of the number of pro-
cessors, for different values of. Althoughn is an integer, it is represented as a continuous
function with the aim of improving its visualization. Thepresentation is normalized, since
L, g is divided by the number of processors, in order to show teeame degree of utilization
of the processors. For each valuecotwo different curves have been plotted. The top curve
is associated with the minimum number of tasks, e+ (nB, 3 +1). The bottom curve is
associated with the maximum number of tasks,me . The shaded area between the top
and bottom curves corresponds to valuemah (nf g +1,).

For high values ot the utilization bound. | 5 is too small. However, ag nears 0, the uti-
lization bound becomes closendn 2. In this case, the multiprocessor behaves approximatel
like a uniprocessom times faster.

H, g (mn, a) is the maximum of the multiprocessor utilization boundslfbB evaluated
among all the reasonable allocation algorithms. This maxrincoincides with the multipro-
cessor utilization bound for RAD allocation. The class offRallocation algorithms includes
allocation algorithms such as FFD and BFD. All of them havegame utilization bound, and

there is no allocation algorithm which guarantees a utiiebound higher thahl, | g (m,n, o)

20

using LLB. In this respect, RAD allocation algorithms areioyal.

Figure 2 depicts the functidd, | g (m,n> 1, a)/nas afunction of the number of processors
for different values ofa. Althoughn is an integer, it is again represented as a continuous
function to improve its visualization. This function hast heen represented for= 1, since
in this case the utilization bound coincides with the welbln utilization boundn(21/™—1).
Forn> 1 it does not depend on the number of tasksThe representation is normalized, since
H, | g is divided by the number of processors. Each curve in Figwarésponds to a different
value off3 | g, and therefore to a different value of

Fora > (2Y/2 — 1) we obtainB, gz = 1, andH, g (mn > 1,a) = (n+1)(2Y2 - 1). The
addition of one processor increases the valud,gf, by (2/2—1) ~ 0.414. Whera — 0 then
B g — @ andH(mn>1,a — 0) =nIn2. That is, the multiprocessor behaves like an ideal
uniprocesson times faster.

For example, the multiprocessor utilization bound assediwith LLB and FFD allocation
in a multiprocessor made up of two processors(RéL@ — 1)~ 1.242, about (62 per processor.

If the tasks have utilization factors less than or equéPté? — 1) ~ 0.41 thenB, g = 2. In this
case, the utilization bound for FFD allocation takes theied{ 2/2 — 1) ~ 1.300, about (65

per processor, close to the ideal In2.69.

7 Analysis of pessimism

The multiprocessor utilization bounds presented in theipus sections are useful not only
to decide the schedulability of the system quickly, but atsdetermine the influence of key
parameters on schedulability, such as the number of proxeasthe number of tasksy, and
the task sizesy.

However, the multiprocessor utilization bounds may be tesspmistic. The pessimism
of a multiprocessor utilization bound for a given allocatialgorithm could be obtained by
comparing this bound with an exact multiprocessor schéditlacondition for the allocation
algorithm. This exact multiprocessor schedulability dind consists of taking each task and
trying to allocate it to any of the processors, following #ication algorithm and using an

exact uniprocessor schedulability condition on each msmeto decide whether the tasks fits.

21

44

)

a<In?2

Lprp(m,n,

0.75 — 0.75 —
0.69 ax0 0.69 a0,
a=2% —1 a=21 — 1
¥a:2%—1
3 a=27 —1
0.5 — a:2§_1 — 0.5 —
g a=0.6
~ £
a:2%—1 §/
Q
~
0.25 — g 0.25 —
a=0.6
0 | | | | | 0 | | | | |
1 5 10 15 20 25 2 5 100 15 20 25

Number of processors (n) Number of processors (n)

Figure 2: Plotsot || s (m,n,a <In2)/nandH g(mn>1a)/n.

The task set is schedulable if all the tasks can be allocktedever, we do not follow this ap-
proach since it would require considering the task peribdgead, we will consider a practical
utilization bound of value 0.9 on each processor, as we Wwilslater.

Extensive simulations have been carried out in order to tifyahe pessimism of the mul-
tiprocessor utilization bounds. We have focused on fowrcalion algorithms: WF, FF, WFD
and FFD. WF has been chosen because it is the worst allo@gorithm in terms of the mul-
tiprocessor utilization bound; FF because it is one of thgpsest heuristics, and WFD and FFD
because both provide the highest multiprocessor utibmabound and are the decreasing size
counterparts of WF and FF.

Task utilization factors have been randomly generatedjusia Beta distribution of proba-
bility as a base. The standard deviation of the distribytmris limited by a maximum value,
Omax, Which is a function of the expected value of the distribatidask sets witlr > In2 have
been discarded, in order to meet the size limitation of therRiprocessor utilization bound.

Figures 3 and 4 show schedulability results for differenmnbers of processors and tasks,
as well as for different standard deviations of the utii@mafactors. Each subfigure depicts six
plots: three for a low value of standard deviation,omax = 0.2, and three for a high value of
standard deviationg /omax = 0.8. For a given standard deviation, the leftmost plot represse
the percentage of schedulable task sets using the mukigsoc utilization bound derived from
LLB. Note that the bound for FF allocation was presented 5].[The central plot represents
the percentage of schedulable task sets using the allaadgorithms jointly with LLB bound
on each processor. That is, instead of using the multipsocesilization bound, an attempt is
made to allocate each task of each task set following theatitan algorithm and using LLB on
each processor to decide whether the task fits. The tasksgteslulable if all the tasks can be
allocated. This plot, when compared to the leftmost pldbyed us to estimate the pessimism of
the worst-case task set used in the proof of the multipracegsization bound. The rightmost
plot is analogous to the central plot, but uses a uniproceggization bound of value 0.9 on
each processor holding two or more tasks. The value 0.9 ia@ipal uniprocessor utilization
bound for most task sets under RM scheduling. Thus, we carosippately quantify the
pessimism of using RM instead of exact uniprocessor schédity conditions, without the

need for modeling task periods, which depend largely onqudatr real-time systems.

23

We can extract several consequences from Figures 3 and 4ddimaal simulations, not

shown in the article:

e Schedulability depends strongly on the standard deviaifahe utilization factors. If
the utilization factors are very different among the taskdedulability becomes more
difficult.

e Increasing the number of processors decreases the redatieelulability of the system.
This effect was previously reported in Figure 2 for the nuutticessor utilization bounds.

e Increasing the number of tasks raises the probability ofrtgalower values ofa, im-
proving the multiprocessor utilization bounds.

e Ordering the tasks by decreasing utilization factors makesperformance of all the
allocation heuristics almost identical. WFD, FFD and BF@réasing have almost iden-
tical behavior. The results for BFD decreasing have not [semwn in the figures for
the sake of brevity. This behavior coincides with that prcestli from the multiprocessor
utilization bounds. All the RAD allocation algorithms ska common utilization bound.

There are several factors than can contribute to the pessiwiithe multiprocessor utiliza-

tion bounds:

e The multiprocessor utilization bounds are obtained forstgase task sets, which may
be infrequent in practice. These worst-case task sets vedireed in the proofs of Theo-
rems 2 and 3. The pessimism coming from this source can beeddrom the horizontal
gap between the leftmost and central plots in the figuresa fiven standard deviation.
This pessimism increases with the variability of the uéition factors. Nevertheless it
may be reduced by dividing the task set into several task sath covering a different
range of utilization factors. For example, if one of the takk&s a utilization factor of 0.99
and the rest have low utilization factors, we get an impravdation bound by adding
0.99 to the multiprocessor utilization bound fon— 1) tasks andn — 1) processors. A

similar approach was followed in [1] to improve the relaB@N, , /Nop)-

e Using LLB in each processor during the allocation insteaeaict schedulability condi-
tions reduces processor capacities. The capacity of oreegsor under RM scheduling
is usually much higher than LLB [18]. Nevertheless the inteat depends on task set

characteristics, such as task periods and utilizatiofact his pessimism for the multi-
24

processor schedulability is given by the horizontal gapvken the central and rightmost
curves, for a given standard deviation. In relative terrhgs pessimism is lower for
multiprocessor scheduling than for uniprocessor schegullhe reason is that it is not

always possible to take advantage of all the extra capacity.

e The multiprocessor utilization bounds derived using LLBeath processor may not be

strictly tight.

8 Conclusions and future work

We have obtained the interval in which the utilization boasdociated with any reasonable al-
location algorithm that uses LLB is found. Since practidimaation algorithms are reasonable,
the interval obtained is of wide applicability.

The WF algorithm was proved to be the worst reasonable aitwcalgorithm in terms of
the utilization bound for multiprocessor RM schedulingngsLLB. Its utilization bound is a
function of the number of processors,the number of tasksn, and a parameteq, that takes
the “task sizes” into account. For high valuesgthe multiprocessor utilization bound is close
to one for any number of processors, while for low valuea difis close to the ideahin2.

In addition, algorithms such as FFD and BFD were proved togiemal in terms of the
utilization bound using LLB. The utilization bound assaetwith these heuristics is close to
the idealnIin2 when the multiprocessor is made up of two processors henvthe utilization
factors of the tasks are small. The utilization bound asgedito these algorithms does not
depend on the number of tasks.

Simulation results have confirmed the schedulability tssdérived from the theoretical
multiprocessor utilization bounds. In addition, simwatiresults have shown that the pes-
simism of these bounds depends on the number of processbteeawariability of the utiliza-
tion factors. In general, pessimism increases when weaserthese two factors.

The task set model of the article considers periodic andpeddent tasks. Nevertheless,
it is also possible to analyze the schedulability of task sstluding sporadic and aperiodic

tasks, when the aperiodic tasks are served by aperiodiersamhose worst-case behavior can

25

1

0.8 0.9

n = 2 processors, m = 20 tasks

0 0.1 02 03 04 05 06 0.7

1

26

n = 2 processors, m = 20 tasks

i
S
= ———===== s | ——=====
L -
\\\\ 0 ‘m \\\\\
-~ 4 0N -

e - < U -
Pr S S NN PNV SEN Py S L s e Y
/e mmmem e I~ /, Y X L L Leduied
> ; o =
rd o td
‘ N |
ey AR NN O AUV SO [P Eppy S sll||6 o A AU RO N A DU P A p=———-

i I
- g
ﬂwm w
U —
N ® = 2 N %
S 3 = z D S 3
M I - S = Il
8 8 S o 8 8
F S = 3 3
rr, I N = &
~ =) N ~
b b __ b b
—
' ; 0
| | S = | |
o
o o O © o © © © o o S o O o o o © © o o
S & ® & & » F ®» a = S & ® & & B F » =
708 YSB) O[qRMPAYDS JO U 5708 Y{Se] O[qRINPaYDS JO U
—
S
— - S
- 9)
-7 © =
T 1 u
P N S Y L +—
td - - -
z —r - ~ o
\‘\\-.I|.I e [\
. s----12 [
AP IR R PR APV ApRpHP PEpEY QU ¥ - o
- g
O.M n
)) -="
N i 2K -7 N %
o o =} % ==~ o o
! o S s [
F 8 8 S o 8 8
3 3 = 3 3
r Ly - 2. W & &
b b I & b
. — .
i = _ i
_ ' S '
o
o © O © o © © © o o S o o © O © o © o O
S & ® & © B F ®» Qa = S & ® & © » F S QO =

908 Y[se) 9[qRINPATDS JO

908 Y[se) S[qRINPAYPS JO U

0 01 02 03 04 05 06 0.7 08 0.9

)
S
o
N
0
o}
o
o
|-
o
N
Il
c

S
o

S
n
S
B
.um
=
O
n
(@)
=
§o;
c
©
=
~
L
LL
0
L
| —
o
Y
)
=
S
n
O
P -

g c

W o
2
© 0
= X
30
ES
m o
n.12
e__
= £
25
D
LL ©

n = 10 processors, m = 100 tasks

n = 10 processors, m = 100 tasks

“‘\“
““‘
\\‘
e o me=m——=
/ ==
\\\\
/
y
\
N
D oo
Il
F 8 8
3 3
I S
o b
//
b b
_ '
1
o o O o o o O o o o
S & ® F & » F H» QO =
$708 [Se] [R[NPOTDS JO U
-~
e T]
“\“ “““““
‘\\\ |||||||
¢ ||\|||
\‘\
Cd
\ \
|||||||||||)
oo
Il
— L
3 3
[£ g
5 ©
~
5 b
_ i
1

1

0.8 0.9

0 0.1 02 03 04 05 06 0.7

1

o ©O o o o o o o o
[N N N =l I e N

100

908 Y[se) S[qRINPAYPS JO U

0 01 02 03 04 05 06 0.7 08 0.9

n = 10 processors, m = 100 tasks

n = 10 processors, m = 100 tasks

-
-
-
-

— 0/Omaz = 0.2
-= 0/Omaz = 0.8

oS o o o o o o o o
[N N N =l T B L X A |

100

5708 Y{se] O[qeINPaYDSs JO ¥

1

0.8 0.9

0 0.1 02 03 04 05 06 0.7

1

908 Y[se) S[qRINPAYPS JO U

0 01 02 03 04 05 06 07 08 0.9

U/n
Figure 4: Simulation results for FF, FFD, WF and WFD schebllity, usingn = 10 processors

andm= 100 tasks.

27

be modeled by periodic tasks [20].

Future work will address the problem of finding the tight npribcessor utilization bounds
for multiprocessor RM scheduling. This will require the udea necessary and sufficient
schedulability condition for uniprocessor RM schedulingtead of LLB. We believe that the
utilization bound provided for the class of allocation aijoms denoted by RAD is strictly
tight, and that the utilization bound provided for WF allboa is almost tight. Nevertheless,

this has yet to be formally proved.
Acknowledgments
Firstly, we would like to thank the reviewers. Their suggess allow us to improve the

guality of this article. Finally, we would also like to ackmkedge the work of Kirstie Gough,

which help us to express our ideas in English.

28

Appendix

Proposition 1. Let {l;,....In} be a set of n positive natural numbers such thidt, 1; = M.

Letg(ly,...,ln) = 3]_11;(2¥' — 1). It follows that
g(l3,---,1n) = (M~ [M/n]n) [M/n] (21”“”/rﬂ - 1) +(n—M+ [M/n|n)[M/n] (21/LM/nJ - 1)

Proof. It can be proved that the minimum of functigrs obtained wheM is quasi-equitably
divided amondl,,...,In}, thatis, wherjlj -l | <1forallj,kinl,...,n. If Mis amultiple of
n then the quasi-equitable distribution is equitable, thaii =1, =M/nforall j,kin1,...,n.
If M is not a multiple of, the quasi-equitable distribution bf producesM — [M/n| n) terms

l; of value[M/n], and(n— M+ [M/n]| n) termsl; of value[M/n|, i.e, one unit less. O

It is interesting to note that the right hand term of Proposii
(M — LM/I’]J n) ﬂ\/l/n"| (21/[M/rﬂ _1) +(n_ M -+ LM/nJ n) LM/nJ (21/LM/nJ _1)

decreases as M increases, since greater values of M givi® igeater elements of the vector
{I}....Tn} giving the minimum of functiory"_, I;(2"/"i — 1).
Proposition 2 is analogous to Proposition 1, but insteadiwflithg M quasi-equitably

among the natural numbefs,, ..., I}, it is equitably distributed among the real numbers

{Ry....,Ru}.

Proposition 2. Let{R;,...,Rn} be a set of n positive real numbers such tfidt; R; = M. Let
9g(Ry,....Rn) = 311 R (2R —1). It follows that gR;, ..., Ry) > M(2VM — 1)

Proof. It can be proved that the minimum of functigms obtained wheM is equitably divided

among{Ry, ..., Rn}. The equitable distribution &l produces termsR; of value(M/n). [

Corollary 3. Let{l,,...,In} be a set of n positive natural numbers such thidt, |, = M. Let

91y, In) = 304 1;(2Y5 = 1). Itfollows that g1, ..., 1n) > M(2VM — 1)

Proof. The lower limit provided by Proposition 2 is applicable te ghositive natural numbers

since these are a subset of the positive real numbers. O

29

References

[1]

2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Oh and S.H. Son, “Allocating fixed-priority periodiagks on multiprocessor system$eal-
Time Systemsol. 9, no. 3, pp. 207-239, 1995.

C. L. Liu and J.W. Layland, “Scheduling algorithms for Hiprogramming in a hard-real-time
environment,”Journal of the ACMvol. 20, no. 1, pp. 46-61, 1973.

S.K. Dall and C.L. Liu, “On a real-time scheduling probig¢ Operations Researchol. 6, no. 1,
pp. 127-140, 1978.

B. Andersson, S. Baruah, and J. Jonsson, “Static-pyi@theduling on multiprocessors,” in
Proceedings of the IEEE Real-Time Systems Sympp2od, pp. 193—-202.

J. Goossens, S. Funk, and S. Baruah, “Priority-drivemedaling of periodic task systems on
multiprocessors,’Real-Time Systemeol. 25, no. 2-3, pp. 187-205, 2003.

M.R. Garey and D.S. Johnso@omputers and IntractabilityWW.H. Freman, New York, 1979.

A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New sigis for assigning real-time tasks to
multiprocessor systems|EEE Transactions on Computerl. 44, no. 12, pp. 1429-1441, 1995.

D. Peng, K. Shin, and T. Abdelzaher, “Assignment and dalieg communicating periodic tasks
in distributed real-time systemsJransactions on Software Engineerjngl. 23, no. 12, pp. 745—
758, 1997.

K. Tindell, A. Burns, and A. Wellings, “Allocating hardeal-time tasks (an np-hard problem made
easy),”Real-Time Systemsol. 4, no. 2, pp. 145-165, 1992,

S. Saez, J. Vila, and A. Crespo, “Using exact feadipilests for allocating real-time tasks in
multiprocessor systems,” roceedings of the 10th Euromicro Workshop on Real-Time &8s
1998, pp. 53-60.

S. Lauzac, R. Melhem, and D. Mosség, “An efficient rms &$ion control and its application to
multiprocessor scheduling,” iRroceedings of the International Parallel Processing Sgsiym
1998, pp. 511-518.

S. Davari and S. Dhall, “On a periodic real-time tasloadition problem,” irAnnual international
Conference on Systems Sciend&86, pp. 133-141.

S. Davari and S. Dhall, “An on line algorithm for real #intasks allocation,” ifProceedings of the
IEEE Real-Time Systems Symposit886, pp. 194—-200.

D. Oh and T.P. Baker, “Utilization bounds for n-procaissate monotone scheduling with static
processor assignmentReal-Time Systemgol. 15, no. 2, pp. 183-193, 1998.

J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcidjtilization bounds for multiprocessor rate-
monotonic scheduling,Real-Time Systemeol. 24, no. 1, pp. 5-28, 2003.

S. K. Baruah and J. Goossens, “Rate-monotonic schegloin uniform multiprocessors,JEEE
Transactions on Computergol. 52, no. 7, pp. 966-970, 2003.

J.M. Lépez, J.L. Diaz, M. Garcia, and D.F. Garcid/drst-case utilization bound for edf schedul-
ing on real-time multiprocessor systems,” Rmoceedings of the Euromicro Conference on Real-
Time System£000, pp. 25-33.

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonicestifling algorithm: Exact characteriza-
tion and average case behavior,"Hroceedings of the IEEE Real-Time Systems SymppRg8,
pp. 166-171.

P. Pedro and A. Burns, “Schedulability changes for mciaignges in flexible real-time systems,”
in Proceedings of the Euromicro Workshop on Real Time Systed88, pp. 172-179.

G. Bernat and A. Burns, “New results on fixed priority épdic servers,” inProceedings of the
Real-Time Systems Symposid®99, pp. 68—78.

30

