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Abstract

Exact stochastic analysis of most real-time systems uneenmptive priority-driven
scheduling is unaffordable in current practice. Even assigm periodic and independent
task model, the exact calculation of the response timeibligion of tasks is not possible
except for simple task sets. Furthermore, in practice, saskoduce complexities such as
release jitter, blocking in shared resources, etc., whighrot be handled by the periodic
independent task set model.

In order to solve these problems, exact analysis must bedayeed for an approxi-
mated analysis. However, in the real-time field, approxioreg must not be optimistic,
i.e. the deadline miss ratios predicted by the approximatgalysis must be greater than
or equal to the exact ones. In order to achieve this goal, threcept of pessimism needs
to be mathematically defined in the stochastic context, hagessimistic properties of
the analysis carefully derived.

This paper provides a mathematical framework for reasordabgut stochastic pes-
simism, and obtaining mathematical properties of the asialand its approximations.
This framework allows us to prove the safety of several pegapproximations and
extensions. We analyze and solve some practical probletie implementation of the
stochastic analysis, such as the problem of the finite pmaterithmetic or the truncation
of the probability functions. In addition, we extend theibasodel in several ways, such
as the inclusion of shared resources, release jitter or pa@emptive sections.

1. Introduction and previous work

Traditionally, researchers in the field of real-time systamave used pessimistic as-
sumptions in order to make the computational cost of theyaigmhffordable. For ex-
ample, the execution time is modelled as a single value, t&&W which is calculated



S0 as to always be greater than the actual execution timénitgees such as processor
utilization analysis (Liu and Layland, 1973; Lehoczky, 09@nd response time analy-
sis (Tindell et al., 1994), use this simplification. The adtege of this approach is that
the computational cost of the analysis is very small. Thadiiantage is that it is too pes-
simistic; while the WCET is very infrequent, the analysiswases that it does occur in all

instances of all tasks, thus giving rise to oversized nea¢-systems.

Recently, some researchers have suggested using randainlesato model the tasks’
execution times. Thus, the execution time is not a singleejdiut a collection of possible
values, each one with an associated probability. The digtan of this random variable
can be obtained by measurement, or using hybrid technid@eradt et al., 2002). The
main problem with this approach is that the complexity anchgotational cost of the
stochastic analysis is excessive. In order to reduce tgptExity, some approaches to
the random stochastic analysis require a special schedoiodel to provide isolation
between tasks, so that each task can be analyzed indeplgrafesther tasks in the sys-
tem (Atlas and Bestavros, 1998; Abeni and Buttazzo, 200themethods use common
scheduling algorithms, but introduce worst-case assumgto simplify the analysis: the
critical instant assumption (Tia et al., 1995; Gardner,%39ardner and Liu, 1999), re-
strictive load conditions like the heavy traffic conditidrefioczky, 1996, 1997), or re-
strictions on preemption (Manolache et al., 2007).

In (Diaz et al., 2002), we proposed a technique for the amabyf periodic and inde-
pendent tasks without assuming worst-case or restrictimeitions. This allows for the
analysis of systems with a maximum system utilization highan one, whenever the
average system utilization remains lower than one. ProMidéh the exact distributions
of the executions time of the tasks, the analysis will outhatexact distributions of the
response times of the tasks. From these distributionsvialtto obtain schedulability pa-
rameters such as the probability of missing any given deadétc. However, the exact
analysis proposed in (Diaz et al., 2002) applies only t@oplér and independent tasks,
and the analysis techniques are computationally expensive

In (Diaz et al., 2004) we investigated the use of pessimisastochastic context, in or-
der to reduce the complexity of the analysis and open thetdatensions in the model.
This new pessimistic stochastic analysis no longer pragltiexact distributions of the
response times, but distributions which gessimistior conservative, in the sense first
defined in (Abeni and Buttazzo, 2001). Using the concept eEjpeism, some practical
problems of the analysis were solved, and the model was @ateto allow for blocking
in shared resources. However, the approach used in (Dialz, 2004) was not general
enough, and it required complex proofs. Nor was it flexiblewggh to investigate other
possible extensions for the model, such as including relgtsr.

In this paper, we present a reelaboration and extensioniak(ét al., 2004). Some of
the material presented there, such as the formal definifipessimism and the character-
ization of pessimistic analysis, is repeated here. Howeveew mathematical framework



for proving the properties of the stochastic analysis isetigyed. This new framework
allows us to deal with new issues not addressed before, suttteampact of the finite

precision arithmetic used by computers in the analysidtesar the inclusion of release
jitter in the model. For completeness, the rest of the appbos of pessimism are also
listed here, but not developed in depth, since the detalgpablished in (Diaz et al.,

2004).

The rest of this article is organized as follows. Section 2cdees the basic system
model, which exclusively considers periodic independasks. Section 3 summarizes
the stochastic analysis presented in (Diaz et al., 2008)eobasic system model, intro-
ducing the notation and showing one complete example. @edtiformalizes the con-
cept of pessimism in the stochastic analysis and gives its/atmn. Section 5 provides
a general framework for reasoning about pessimism and noeirig safe stochastic ap-
proximations. Section 6 presents some applications oétlaess: the problem of priority
assignment in the stochastic scenario is solved in Sectibrnp6actical issues related to
computer aided analysis are addressed in Section 6.2, ally f8ection 6.3 extends the
stochastic analysis to deal with blocking in shared resesjncon-preemptive sections and
release jitter. The pros and cons of stochastic analysidiscassed in Section 7. Finally,
Section 8 presents our conclusions and future work.

2. Basic system model

The basic task model was introduced and discussed in (Riak,&004), and it is
summarized here for the reader.

The system is composed of a setNdindependent periodic taskgy,...,Tj,..., In}-
The parameters of each tagkare the periodT;, its initial phase®; (also called offset),
the execution timeg;, the real-time constraint of the task, expressed by theltead;,
and the maximum allowable probability of deadline missés,

The execution timeg;, is a discrete random variaBlavith a known probability func-
tion (PF), denoted bye, (), wherefe, (c) = IP{Ci=c}. Alternatively, the execution time
distribution can also be specified using its cumulativertistion function (CDF), de-
noted by, (), whereFg, (X) = Y%, fe, (C).

Each periodic task; gives rise to an infinite sequence of jobs;, whose release time
Aij is deterministic (in particulaki ; = ®; + jTj). The response time of a tagkis another
random variable, denoted Ky, which is calculated from the response time of all its jobs.
TaskT; is said to be schedulable#{R;>D;} < M;. The reader should note thisli =0
in the deterministic analysis of hard real-time systems.

The scheduling policy we assume is a general, preemptii@jtgrdriven policy that
assigns a static priorityg;, to each jobJ j, and schedules jobs according to this prior-
ity. We are not concerned with the policy used to assign piesrto jobs, as long as the
priority assignment is repeated periodically each hypgode This model includes well



known fixed priority policies such a@3eadline Monotoni¢DM), as well as the optimal
priority assignment presented in section 6.1, and non-fxexity policies such agar-
liest Deadline Firs{EDF),

The basic task model will be extended in forthcoming sestigo that random release
times in the form of release jitter are allowed. In additidapendencies will be allowed
through blocking in shared resources. Finally, the schegydolicy will be extended to
allow for non-preemptive sections.

3. Stochastic Analysis

The stochastic analysis described in this section was fiegemted in (Diaz et al.,
2002). A summary of this work with improved notation was er@ed in (Kim et al.,
2005), and (Diaz et al., 2004). The basic procedure of thyais is briefly repeated here,
and, in order to facilitate its understanding, we give a clatepstep-by-step example of
calculation of a periodic task random response time.

In order to simplify the notation in the following, we will ndrack the task to which
each job belongs, but will use a single subindgxwhen referring to a joly j and the
parameters of that job such as its release tiljerandom execution timeg j, priority,
P;, etc. This single index refers to the order of the job in thiinite sequence of jobs
generated by all the instances of all tasks under analysssinaing this sequence to be
ordered by release time, that is,< jo = Aj; <Aj,.

The (random) response time of a jbbis given by

Rj =W(Aj)+Cj+7; 1)

In this equation all variables are random variables, bué ribat release times are still
deterministicW(A;) is the backlog at timdj; it represents the workload of prioriti€%
and higher that have not yet been processed immediatelytprig, the release time of
[j. TermCj is the execution time of jobj andJj is the interference ifij of all the jobs
of higher priority than jold”j released at or after job;.

The backlog at the release time of any jojp denotedW(A;), can be calculated using
the following iterative equation:

W(Ag,) =0

2)
W(Ak) = SHRINK(W(Ak-1) + Ck-1,Ak — Ak-1) fork>ko, Rc> P

Ak, being the release time of the first job with priority greateart or equal td®. Equa-
tion (2) starts with zero backlog and continues with a newatten for each higher pri-
ority job released beforgj. Note that each iteration requires the addition of two rando
variables W(Ak-1) + Cx_1), which produces a new random variable whose probability



function is obtained by convolution. Finally, the functisarINK() is applied to this ran-
dom variable SHRINK(+) produces a new random variable whose probability funcson i
obtained by Equation (3):

0 ifx<O
O .
fSHRINK(WA) (X) = Z fy (W+A) if x=0 3)
W=—o00
fw(x+4) if x>0

Graphically, this transformation consists of shifting thréginal PF inA units to the
left, and accumulating in zero all the negative values dftershifting.

Once the backlog at the release time gfis known, it is added to its execution time
Cj, as given by Equation (1). The PF of the addition is calcdl&égeconvolving the PF of
both random variables. This provides fherrtial response timé{EO’A”r)‘” =W(A})+Cj,
whereAj., is the release time of the first high priority job releasedraafterI"j. This
partial response timéigo”\”l_’\i] is equal to the final response time if there are no in-
terfering jobs after\j, which is the case of the highest priority task under fixedrpri
ity scheduling. Otherwise, partial response times areagandariables whose PF coin-
cide with that of the final response time in the range showheénsuperindex, therefore,
P{Rj=r} = ]P{REO’)‘JH*)‘HJ} forallr € [0,Aj 11— Aj].

Iterating over the sequence of interfering jobs, each neration extends the range in
which the partial response time coincides with the final oesg time. When this range in-
cludes the deadlinBj, the iterative procedure can be stopped. Each new parsipbrse
time of [ is calculated using Equation (4)

RPN = w(xp) + ¢

| | (4)
REO,)\kJrl*AJ] _ AF(ngO,)\k*)\J},)\k_)\j,ek) fork>j, B> P

The function AR) applies to two random variabl&sandC (partial response time and
computation time) and one integlr(the time intervally — Aj),and produces as result a
new random variable, whose PF is given by a partial convatutiefined in Equation (5)

f (X) forx <A

f X)=1 < °

AF(R,A,G)( ) fp(i)- fe(x—i) forx>A ©)
i=A+1

The partial convolution leaves the PF®fin interval[0,A] unchanged, convolving the
PF of R with that of C only in interval[A+ 1, c].

The iterative procedure can stop whBpn < A = A1 — Aj, and the probability of
deadline misses for the jdby can be obtained @B{R;>D;} =1— Z:Z(?j IP{REO’N =k}.

The probability of a task missing its deadline is calculdigdaveraging the probabil-

ities of all its jobs missing that deadline, but the numbethefse jobs is infinite. How-



ever, wherU < 1 the system reaches a periodic steady-state (Diaz et0@i2)2In the
steady-state the probability of a job missing its deadlieedmes constant for the same
job released one, two or any number of hyperperiods laters;Tine probability of a task
missing its deadline can be calculated by considering drdge of its jobs released in one
hyperperiod, namely, the steady-state hyperperiod.

Figure 1 provides a simple example, in which the random nespdime of tasky is
calculated. Note that in this figure jobs are subindexedraaeg to the task to which they
belong, but in the previous exposition of the analysis welassingle index, representing
the order of arrival. Following the timeline from left to hgin the figure, we discover
that this ordering i$11, 21, M12, M'13 andl 22, which would then becomgy, I, .. .,

I'5 respectively using the single index notation. This singliex is a convenient way to
specify the order in which the previous equations shouldopéied. However, for the sake
of clarity, we maintain the more classical notation with tsubindexes (task number, and
job within the task number) in the figure and the explanations

The steady-state backlog at the release time of [@elsandl"; », which make up task
To, is calculated by iterating until convergence is reachkeid (tonvergence is guaranteed
since the systeml is 0.94167, less than 1). A different approach would be to model th
backlog as a Markovian process, defined by its Markov madrid, calculate its eigenval-
ues. Next, the random response time of jbbs andl , > is calculated considering all the
high priority jobs released after the arrival of the jobs;, before their absolute deadline.
This step produces the cumulative distribution functidBBFs) of these jobs. Finally, the
CDF of the response time of taskis calculated by averaging the CDF of response times
of M1 andlMpp.

Figure 2 shows the CDF of the backlog at the release time,af at timest = 20,

t = 140 (after one hyperperiod), tinte= 260 (after two hyperperiods) and at the steady-
state. Parameters in the example have been chosen to intpeviesualization of back-
logs, making convergence slower than usual. In additicqguyre 2 depicts the CDF of the
random response times b, andl",», as well as their average. Introducing the dead-
line of task1, as the abscissa in the CDF of the average, the probabilityeeting the
deadline is obtained.

For the case of EDF scheduling, the only difference is thepmdation of the initial
backlog for each job. Once this initial backlog is obtairteé,computation of the response
time of the job follows the same algorithm outlined aboveotder to obtain the initial
backlog of a given jolb j, released at instai, we must consider the workload generated
for all previous jobs with a greater priority, which in theseaof EDF means with an
earlier absolute deadline. This can be done easily by cangptlie steady-state backlog
generated by all jobs in the system. From this system bagckhegjob-level backlog for
each job in the hyperperiod can be easily derived. In faet BBDF case is simpler than
the fixed-priority one, because the system backlog is coegpanly once, and valid for
all jobs in the hyperperiod, while for the fixed-priority ea# is necessary to compute



Hyperperiod TASK PARAMETERS
High c fel(c) = fez(C)
19 r I [
Priority 11 L2 -3 10101 -_
TaSk(Tl) Tel T(‘Zl Iel 20104
21| 0.2 I
0 20 60 100 120 t 22| 0.2
50| 0.1
Task under
analysis M21 M2z T.=40 T,=60
(T2) ]ez Iez ®, =20 ,=50
50 110 t Pl > Pz D2 =90

CALCULATION OF THE STEADY-STATE BACKLOG

W(20)
W(50) = SHRINK(W(20) + €1, 50— 20)
W(60) = SHRINK(W(50) + €5, 60— 50)
W(100) = SHRINK(W(60) + €;, 100—60) | COmpute one hyperperiod
(W(
(W(

0

W(110) = SHRINK(W(100) + €1, 110— 100)
140) = SHRINK(W(110) + €5, 140— 110)
W(20) = W(140)

W(50) = SHRINK(W(20) + €;, 50— 20) lterate

v

CALCULATION OF THE RESPONSETIME OF JOB 21

jQ[Zc?,lso—SO] = W(50) + €, =AF(W(50),0, C,)
315050 _ A9 10050,

RL0.140-50 _ AtF(Jz[Z?’f“”q ,140—50,C4) — STOP (since 140 50> Dy)

FR[Z?I] = rZO f:R[z?iM(FSO] (t) WITH t<140-50=90

2

CALCULATION OF THE RESPONSETIME OF JOB [

R[Z(?,chulq = W(110) + €, = AF(W(110),0, C,)

Ry 09 = AF(RD; 1 180 110,€1)

jz[29.222(»11(1 _ AF(R[207218(}11Q’220_ 110.C,) = STOP (since 226- 110> D)
] t ?

F = f t WITH t<220-110=110
ygg] r; R[zf?,zzzwnq( ) =

¥
AVERAGING THE RESPONSE TIMES OIF_Z]_ AND r2‘2
FiR[zo“] = O'S(F:R,[ff] + F:R[{’Q])

v

CALCULATION OF THE PROBABILITY OF MEETING THE DEADLINE

P{Ry<Dy} = F:Rgn](Dz) =0.496

Figure 1: Example of calculation of the random response tifrgetask.
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Figure 2: Cumulative distribution functions of backlogslaesponse times fap.

one system backlog for each priority level. More details and example can be found
in (Diaz and Lopez, 2007).

4. Pessimism in the stochastic context

In the deterministic analysis of real-time systems, allragpnations argoessimisticn
the sense that the response times obtained by the appreximaalysis are guaranteed to
be greater than the exact response times of the system. ldgwestochastic analysis, the
response times are random variables and real-time camstiaie expressed in terms of
probabilities of deadline misses. With these ideas in miewill define the relationship
“greater thari among random variables. In this way, we will be able to remabout
the pessimism in the stochastic analysis, and say thatircayjaes of approximations
are pessimistic in the sense that the random response tivess lgy the analysis are
“greater thari the real random response times. Thus, an approximationiwlkads to a
pessimistic analysis is a safe approximation.

The concepts in this section were first introduced in (Diazl.e 2004). They are re-
peated and refined here since they are important to unddrdtamest of the article.

Definition 1. Let X and X’ be two random variables. We state th¥étis greater than

X (or alternatively,X is less thanX’), and denote it byX’ = X (alternatively,X < X')

if P{X'<D} <P{X<D} for any D, and the two random variables are not identically
distributed.
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Figure 3: Graphical interpretation of the “greater thanatienship among response time
distributions.

Note that, ifX represents an exact response time,¥hid an approximation, the above
definition guarantees that the probability of deadline esserX’ is greater than that of
X, for any deadlind. We state thal(’ is a pessimistic approximation, and therefore, the
stochastic analysis providirly is pessimistic.

The relationshigreater tharnbetween two random response times is a stochastic order,
analogous to the concept fifst stochastic orderdefined in statistics (Levy, 1992), and
also used informally in the context of real-time systemsAibgni and Buttazzo, 2001).

Likewise, we state that random varialdle is greater than or equal to the random
variable X'y (X2 > Xy or Xy < Xp), if Fy,(X) < Fx,(X). Note that the restriction “not
identically distributed” has been removed.

The definition has a simple graphical interpretation: randariableX’ is greater than
random variabl& if the cumulative probability function (CDF) &' is always below the
CDF of X. Figure 3 graphically compares three response time randsimbdtions. In
this figure,®’ - R, i.e, R’ is greater tharR, sinceFy (-) is belowFx(-). Therefore, the
probability of missing any deadling calculated fromR’ is greater than when calculated
from R. HoweverFg/(-) andFz () cross, so it is not true th&” = R’ norR” < R’.

Once a way of comparing random variables has been formaflpett we can also
define other useful concepts, such asghpremuni{a random variable which igreater
thanany other in a given set), and thidimum(a random variable which igss tharany
other in a given set).

Definition 2. Given a set of random variabld$(; }, we define the supremum of that set,
denotedsup{X;}, as the random variable with CDF

Foupiac (¥) = MinFy, () (6)

Definition 3. Given a set of random variablgs(;}, we define the infimum of that set,
denotednf{X;}, as the random variable with CDF

Pt (9 = maxF, () ™)
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Figure 4: Construction of the supremum of a set of randonattes

Note that thesupremun{and theinfimun) of a set is a new random variable, not nec-
essarily in the set, defined by an artificially constructeabpbility function. Figure 4
graphically shows how this construction is achieved, byngkhe minimum of alFy, (-)
(note that the plot of the supremum has been slightly shdtedn for better legibility of
the figure). By construction, s{f;} > Xj, and infX; } < X for all i. Thus, the supremum
of a set of random variables is analogous to the maximum of afseal numbers, and
the infimum is analogous to the minimum. These concepts willseful when translating
classical results of the deterministic analysis to thelsetic scenario.

5. Pessimism preservation in the analysis

The main idea in this section is to find out how the mathemipoaperties of the
relationship greater thariinteract with the mathematical procedures used in theyais|
leading to conclusions such as “if pessimistic executiomes for the tasks are introduced
in the model, pessimistic response times would be obtaingdda analysis”. Although
some of these properties were already presented in (Dialz, &@004), in this paper we
introduce a much more general approach.

First, in section 5.1 we will provide a general framework gabwith pessimistic ap-
proximations indeterministicanalysis, since this is the basis of pessimistic approxima-
tions in the stochastic analysis. In fact, stochastic aiglgan be seen as a summary of
all the possible deterministic scenarios making up the saspace.

Next, in section 5.2 we will provide a general rule that tfan®is pessimistic determin-
istic approximations into pessimistic stochastic appr@ations. Finally, using this rule
and the deterministic approximations of Section 5.1, thedostochastic approximations
are presented at the end of Section 5.2.

5.1. Pessimistic approximations in deterministic analysi

The objective of this subsection is to define pessimistiac@gmations in the deter-
ministic analysis, which we will transform later into theiquivalent stochastic approxi-
mations. Throughout this subsection, we will use the wongrgéases” with the meaning
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of “does not change or increases”, for the sake of brevity.
Figure 5(a) depicts the general deterministic scenari@updority-driven scheduling,
in which the response time of jdl is to be calculated.

M1 i r
. ! . j+1
)\j;z )\j;l t i )\j#O Aj+1 t

(a) General deterministic scenario for the response tirtweiledion ofT ;.

\
\

!
" M rj

Tewaly g Misa
Cit+1
)‘jl—l )\j =0 )\Hl t

(b) Equivalent scenario after replacing jabs 2 andlj 1 by the resultant backlog at_;.

M1 T
r
W(A[_1) Ci o
Ci+1
N1 Aj=0 N

(c) Delaying the release time ﬁfj,l from )\J-Ll to /\le < Aj and advancing the release timefqgf,; from
Aj+1t0A{ 1 > Aj increases the response timel gf

Figure 5: Approximations in deterministic analysis.

For the time being, we will assume that priorities are inaelaat of release times. This
assumption is valid under fixed priority scheduling, butmatier EDF scheduling. Later,
this restriction will be removed.

None of the jobs of priority less thdn have any influence on the response time of job
[j. In order to simplify the notation, we assume all these jobsewpreviously removed.
In addition, release times are relative to the release tinig.ol herefore, the release time
of I'j, the job under analysis, becomigs= 0.

In general, the response time[of under preemptive priority-driven scheduling is ex-
clusively a function of all execution and release timessThklationship can be expressed
as

Rj=F(..,(4-1,Cj-1).Cj, (Aj41,Cj11),- ) ®

It is well-known in deterministic analysis that increasihg execution time of one or
more jobs in the system increases the response time of anigob (-) is a monotonic
increasing function of angy, withk=(...,j—1,j,j+1,...). Therefore, any approxi-
mation of execution times that provides higher executiores than the exact ones is a
pessimistic approximation.

A direct consequence of the previous result is that addingwajab, 'y, to the job set
introduces pessimism. The proof is simple by comparing #we job set, includind k,
with the original job set, after adding a job of zero exeautime released at the same

11



time asl k.

It is possible to simplify the job set and therefore Equat®yas shown in Figure 5(b).
All the jobs released befote witht < 0, can be replaced by an equivalent job of release
timet and execution time equal to the backlog at timeenoted// (t). In general, the
equivalent job released ssummarizes the whole history befdaréNow, Rj can be calcu-
lated from

Rj =F((t,W(t)),...,(Aj-1,Cj-1),Cj, (Aj+1,Cj+1) ...) witht <A;=0 9

Instantt is renamed)\j’_1 in Figure 5(b), since the equivalent job is the nearest job
released beforE;.

SinceF (-) is a monotonic increasing function of the execution timesiog from real
or equivalent tasks, any approximation that substitutesettact backlogW(t), at any
timet < O for a higher backlog increases the response Rpeand so is a pessimistic ap-
proximation. For example, this approximation is carrietimplicitly when jobs missing
their deadlines are forced to finish in the real system, ihat removed in the analysis.
Thus, we conclude thd&t(-) is a monotonic increasing function ¥f(t), for anyt < 0.

Let us focus now on pessimistic approximations related fease times. Lelk be a
job released beforEj, i.e, with Ay < 0. If the release time df is delayed toA; and in
the new situatiorir is not released aftdr;, then the response time bf increases. This
transformation is shown in Figure 5(c) for jdkf],l, which becomef’j’fl. The proof is
simple, bearing in mind that the response timé& ptan be expressed as

Rj =W(0) +Cj +1; (10)

whereW(0) is the backlog at the release timeof, C; is its execution time, andj is
the interference ofj of the jobs released at or aftéy. Making one or more of the jobs
released beforg; closer tol"; on the left, delays their processing, increments the backlo
W(0) and, indirectly, the interferendg, and thus increments the response timé pf
Therefore, we conclude thkf-) is @ monotonic increasing function of aay, whenever
Ak < 0.

Under EDF scheduling the priority of a job decreases as lease time is delayed,
since its absolute deadline is also delayed. In this cageptiority of the job should
be calculated with regard to the initial release time, iadtef the delayed release time.
Otherwise, the analysis may not be pessimistic.

An analogous result is derived for any jbk released after j, i.e, fulfilling Ax > 0. If
the release time dfy is advanced tdy < Ak, and in the new situatiof is not released
beforel j, then the response time &f; will increase. The transformation is shown in
Figure 5(c) for jobIj.1, which becomeS"Hl. This result can be proved again from
Equation (10). Making one or more of the jobs released dftecloser tol"; without
crossing to its left, increments the interferemgeand thus increments the response time

12



of ['j. Therefore, we conclude th&t(-) is a monotonic decreasing function of ady,
wheneven > 0.
Under EDF scheduling the priority of a job increases as isas®e time is advanced.
Thus, the previous approximation is also pessimistic ud#E scheduling.
An alternate expression to Equation (8) is Equation (119Wwglvhich summarizes the
whole history before any tima&, with Ay > Aj = 0, by the partial response tinﬁéo’}\"].
[0,Ak]

Rj = G(Rj (A, Cr) s (Aks1,Cir1),-..) WithAk>A=0 (11)

Term Rgov’\k] is a partial response time bf, which assumes that jolbg and subsequent
do no exist, so it is a valid response time for in interval [0, Ay. It is well-known in
deterministic analysis that by artificially increasing grartial response time of the task,
the final response time of the job increases, since it incnésnie interference of job
'k and subsequent jobs. Therefore, funct{®p) is a monotonic increasing function of
RO with Ak > 0. Thus, any approximation that provides partial respoinsest greater
than the exact ones is a pessimistic approximation.

Now, let us transform these results regarding pessimisrhdardeterministic analysis
into their stochastic counterparts.

5.2. Pessimistic approximations in stochastic analysis

A random response tim&’ is pessimistic when it is greater than the exact dhd,e,
when®’ = R. The problem is how to perform approximations within ststltaanalysis
parameters, while guaranteeing that the resultant ranésponse times are pessimistic
or identically distributed, thus making the approximatextlastic analysis safe.

Proposition 1 is a simple but powerful result, which tratedadeterministic approxi-
mations, like those given in Section 5.1, into their stotica®unterparts.

Proposition 1. Let y= g(x1,...,X,...,Xn) be a real-valued function of real variables
(X1, %,---,Xm) @and Y a random variable evaluated d$ = g(Xy,...,Xk,...,Xm),
where (X1,...,Xx,...,Xm) are discrete and independent random variables. Yet
9(X1,.. ., Xy ..., Xm) @and Y’ = y(Xq,..., X, ..., Xm), whereXy - X,. The following
asserts hold:

e If g(X1,...,X,.-.,Xm) iS @ monotonic increasing function of,then it follows that
y// > y/.

e If g(x1,...,X,--..,%m) iS @ monotonic decreasing function qf then it follows that
g// < H/-
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Proof. The CDF of random variablég andY” can be calculated from

~+o00

Fy(p)=P{¥'<p}= 5 P{¥'<pX=a} P{X-a}
g=—00
~+o00

Fyr(p) =P{¥'<p} = 5 P{Y'<p|Xy = a} P{X;-a}
g=—00
ProbabilitieslP{Y’' < p|X} = q} andIP{Y"<p|X} = q} only depend on random variables
Xj, with j # k, so they are identical fdfy (p) andFy»(p). Let us rename these probabil-
ities (..., W1, Wo,...,Wg,...), wherewg = P{Y’ < p| X}, = q} = P{Y"<p|X} = q}. There-
fore, probabilitieP{Y’ < p} andlP{Y" < p} are calculated as a weighted sum of probability
functions

(...,P{X, =1}, P{X;=2},...,P{X},=q},...), and
(.. P{X] -1}, P{X}-2},..., P{X/~q},...)

respectively, where the weights are given(by, wi,Wo, ..., Wg, ... ), With 3 ¢, Wq= 1.

The proposition states thaf; >~ Xj, so it follows thatP{X}<q} < P{X|<q}, i.e,
probabilities inX; are located at values gflower than inXj,.

If y(xq1,...,%,-..,Xn) iS @ monotonic increasing function &, then it can be proved
that(--- >w; >wy > --- >wq > ...). Therefore, the weighted sum gives more weight to
low values ofg than to high values af and it follows thafP{Y’<p} > IP{Y"<p} for any
p, ey =Y.

If y(Xa,...,X;---,Xm) iS @ monotonic decreasing functionxgf then it can be proved
that(--- <wp <wp <--- <wg < ...). Therefore, the weighted sum gives higher weight

to high values ofy than to low values of] and it follows thatP{Y’'<p} < IP{Y"<p} for
anyp,i.e Y’ <VY. m|

To illustrate Proposition 1, let us consider a random expent in which we throw
two dice and calculate the sum of the values provided by biztd, dvhich is modelled
by random variabléj. The result provided by either die is a number[1ng], the first
die modelled byX; and the second b¥>, soY = X1 + Xo. In this case, the real-valued
function is simplyy = g(x1,X2) = X1 + Xo. If the first die is substituted for another die that
provides a resultif2, 7], modelled by random variabl€/, then we can state that > Xq
and therl)’ = X} + X2 > Y = X1+ Xy, sincey(x,X2) = X1 + Xz IS @ monotonic increasing
function ofx;.

Next, Theorem 1 provides seven pessimistic stochastioappations, which are proved
by applying Proposition 1 to the pessimistic approximagifon the deterministic analysis.

Theorem 1. Let{...,["j_1,[j,[j11,...} be a set of jobs made up Bf and all the jobs
of higher priority thanl"j, of random release timgs..,Lj_1,L; =0,Lj41, ...} relative
to the release of j, and random execution timgs. ., Cj_1,Cj,Cjt1,... }. LetR; be the
random response time of jdh. If any of the following transformations is performed:
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1. The random execution time of any jopis substituted for another random execu-
tion timeC}, such that - C.

2. A high priority job is added to the system.

3. The random backlog at any relative timectO, denotedW(t), is substituted for
another random backloy'(t), such thatW’(t) > W(t).

4. The partial response timﬁé&ovﬁk], at relative timely > O, is substituted for another
partial response tim&|%%4, such thatR{04Kl - R4,

5. The relative random release tinig, of any jobl"y with L < 0, i.e, released before
[, is substituted for another relative random release tilgesuch thatly < Lj <
0.

6. The relative random release tiMg, of any jobl'y with Ly > O, i.e, released after
[, is substituted for another relative random release tifje such tha0 < Lj <
L.

7. The relative random release tinig of any jobly is substituted by a relative ran-
dom release timé; = 0.

then the new random response timepf denotedR;, fulfils Rj > Rj, so all the above
transformations can be considered pessimistic approxonat

Proof. Equations (12), (13) and (14) are the stochastic countsrpaEquations (8), (9)
and (11), respectively.

Rj=F(..,(£j-1,€j-1),€},(Lj11,Cj11),...) (12)
ij = F((t,W(t)),...,(Lj,l,ej_l),(:’j,(Lj+1,€j+1) )y witht < Li=0 (13)
Rj = G(R*™, (Lx, €4, (Licr 1. Cur)s ), With L > £ =0 (14)

The proof of statements 1 to 6 is direct from Proposition 1 &qdations (8), (9), (11),
(12), (13) and (14), taking into account the following detaristic results provided in
Section 5.1:

e F(+)in Equations (8) and (9) is a monotonic increasing functibrCg, W(t) with
t < 0, andAg with A < O.

e F(-) in Equation (8) is a monotonic decreasing functiolpfvith A, > 0.

e G(-) is a monotonic increasing function B with A, > 0.
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Figure 6: lllustration of the transformations 5, 6 and 7 iredrem 1.

Statement 7 requires more elaboration. Let us divide thgokaspace in three sub-
spaces{k < 0, Lk = 0 andLg = 0. It follows that

P{Rj<r} =P{Rj<r|Lx < 0} - IP{Lk=<0}+
P{Rj<r|Lx =0} - P{Lx=0}+
P{R;j<r|Lk > O} - IP{Ly~0}

From statements 5 and 6 it follows thB{R;<r|Lx < 0} > P{Rj<r|Lx = 0} and
P{Rj<r|Lk = 0} > P{Rj=r|Lx = O}. Bearing in mind thatP{Lx~<0} + P{Lk=0} +
P{Lk>=0} = 1, it follows that

P{Rj<r} >P{Rj<r|Lx =0} = ]P{R/jﬁl’}

and thusiRj > R;. O

Theorem 1 will be the basis of all the approximations perfedrin the next sections.

Approximations 5 to 7 in Theorem 1 are related to releasegiar deserve special
attention. Figure 6 depicts three high priority jobs, 1, j+1, j+2, and a low priority
job I'j, whose random response time has to be calculated.lJolsl j1 andlj, are
released at random timés _1,Lj,1 andLj,», indicated by rectangles. The earliest re-
lease time with non-zero probability coincides with the &fd of the rectangle, while the
latest release time with non-zero probability coincidethwhe right end.

Ij—1 is released before thdn with probability one, since the right end of its rectangle
is prior to the release time 6f;. From pessimistic approximation 5, we can deflgy;,
obtainingl"j_,, which is released a;_,, the latest release time 6fi_;. Note that we
have transformed jobj_1, with a random release time, into a job with a deterministic
release time (it has no rectangle around it), and the tramsfioon is pessimistic. This is
the final objective of all the release time approximatioagransform the random release
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times into pessimistic deterministic release times, mgkhe stochastic analysis both
affordable and safe.

Ij+2 is released aftef; with probability one, since the left end of its rectangle is
posterior to the release time bf. Using pessimistic approximation 6 éi», this job
is transformed into joly i, ,, released at deterministic timig", ,, which coincides with
the earliest release time bf_». Finally, ['j 1 may be released before or affey, since
its rectangle includes the release time¢f Using approximation 7 ofij.; we obtain
job 9, 1, which is released at a deterministic time equal to thdt jofNote that we did
not apply this approximation to jolds_; andl j,» since it would be too pessimistic, and
approximations 5 and 6 are less pessimistic and equally safe

6. Applications of the concept of pessimism

6.1. Priority assignment

The analysis algorithm presented in Section 3 does not asamypolicy of priority
assignment, as long as the assignment is repeated eaclpéypdr One possible policy
for assigning static priorities iRate MonotonicHowever, according to (Audsley, 1991)
and (Tindell et al., 1994), this assignment is not optimaéwkhe existence of a critical
instant is not guaranteed, nor when the deadlines are nat egjthe periods. For these
cases, they provide an alternative algorithm, describeieiail in (Audsley, 1991).

For the deterministic case, the algorithm is optimal, iteaJways finds a feasible as-
signment of priorities if one exists. The proof (Audsley91)is based on the fact that
increasing the priority of a task never decreases its sdabitlity, or conversely, decreas-
ing a task priority never increases its schedulabilityhi@ stochastic scenario, a tagks
schedulable if it fulfils its stochastic real-time consttai.e., if P{R;>D;} < M;. Proving
that decreasing a task priority never increases its schbility proves that the algorithm
is also optimal for stochastic analysis, since the rest@pttoof coincides with the proof
of deterministic analysis. This result can be proved diydobm Theorem 1, statement 2.
Decreasing the priority of any task introduces high priority jobs coming from other
tasks into the analysis, which worsens the random responsef all the jobs making up
T;, and increments the probability of missing the deadling .ot herefore, the algorithm
described in (Audsley, 1991) is also optimal in the stodbhastenario.

6.2. Computational problems

There are a number of computational problems in order toempht the analysis pre-
sented in Section 3:

e Computing the steady-state backlog by iterating until esggnce is reached, presents
the problem of how to choose the “initial backlog” which lead a quick conver-
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Figure 7: Moving probabilities towards lower execution éisn

gence and does not produce an optimistic approximationeo$tbady-state back-
log. This problem was addressed in (Diaz et al., 2004).

e The theoretical steady-state backlog has a probabilitgtion with an infinite num-
ber of points. Even if we use the approximation found by tiera which is not
infinite, the number of points can be too large to be storedconaputer. The obvi-
ous solution is to truncate the probability function. Hoeg\this gives rise to one
question: if we use truncated versions of the probabilityctions instead of the
complete ones, is the analysis valid? More important, isfié gi.e: pessimistic)?
In (Diaz et al., 2004) it is proved that this kind of approxition is indeed pes-
simistic, and thus the analysis using truncated PFs isvatitll.

e The complexity of the analysis depends largely on the nurabaobn-zero points
of the probability functions used. It is necessary to find & wéareducing this
size, without affecting the validity of the analysis, i.preserving the pessimism.
In (Diaz et al., 2004) it is shown that clusters of probdieidi can be aggregated
towards the worst execution time of the cluster, and thatkimd of transformation
is pessimistic and reduces the number of points to store mang

Another simplification can be carried out in the followinghtext: if a task of dead-
line D; is dropped just at the moment it misses its deadline, thesxgsution time
can not be higher thafD; + 1). Therefore, the probabilities of execution times
(Di+2),(Dj+3),...,CM"**can be moved to execution tint{®; + 1), as shown in
Figure 7. Note that this transformation is not mandatoryhighly recommended,
since it reduces the analysis time and pessimism of thetsesul

e The computer representation of real numbers using finitegioa formats, such as
IEEE-754 floating point standard, may cause round-off sridow can we guaran-
tee that those errors never introduce optimism in the r€8dlhis problem has not
been addressed before, and we analyze it in the rest of tttisise

6.2.1. Using finite precision arithmetic From an arithmetic point of view, stochastic
analysis is a long sequence of additions and multiplicatadrprobabilities, i.e, real num-
bers in the rang@, 1]. Usually, the calculation of a single random response teggires

18



millions of additions and multiplications, which can bered out in two ways: finite
precision arithmetic or infinite precision arithmetic. hfe precision arithmetic provides
exact results for all the operations, but the memory andgssing time required are un-
affordable in current practice. For example, if significauflactional parts) of execution
time probabilities are coded usimgits, after convolving two execution time probability
functions, 21 bits are required to code each probability of the result #axatherefore,
after thousands or millions of convolutions, the numberitd kequired to code a single
probability of the result would become prohibitively huge.

The solution to this problem is the use of finite precisiothanietic. Commonly, finite
precision arithmetic of real numbers is carried out usingtffgy point arithmetic, but fixed
point arithmetic implemented on an integer unit is also fimssAll the results provided
in this section are valid for both fixed and floating pointamitetic.

Finite precision arithmetic solves the computational peots of infinite precision arith-
metic, but introduces round-off errors, so the analysisinger exact. The problem now
is how to round off the results so that the analysis is guarghto be pessimistic.

Let us analyze the effects of the usual rounding modes: rtundarest, round towards
zero, round towards-c and round towards-o.

Round to nearess the most common rounding mode and provides the reprddenta
number closest to the exact result. However, this roundingemdoes not provide pes-
simistic results. For example, during the calculation @f $teady-state backlog we con-
volve the current backlog with a random execution time,rgiva new backlog, defined by
an array of time points and their probabilities. Using rotmdiearest, the probability of
the minimum backlog for the resultant backlog distributioay be higher than the exact
distribution. In that case, the resultant random varialdeld not be greater than or equal
to the exact one.

Round towards zerandround towards— are equivalent for the stochastic analysis,
since probabilities are numbers in the rarj@el]. Round towards 0 makes results pes-
simistic, since all the probabilities are less than or eqaahe exact. The probability
deficit coming from the rounding can be assumed to be locdtedoa Figure 8 depicts
the exact probability function and one approximated prdiglbunction after rounding
towards 0.

Rounding towards zero solves the problem of pessimistiading, but introduces a
new one. Each addition and multiplication reduces the ilibamass of the resultant
distribution, since part of this mass goes to infinity, and sever returns to finite values.
For example, let us assume thaf Idating point operations are involved in the calcula-
tion of a probability value of the steady-state backlogribstion. Using IEEE-754 single
precision format to store the probabilities, the averagebability deficit generated by
any of these operations &= 0.5- 2724~ 3. 108, since this format uses 24 bits for the
significand, 23 explicit and 1 implicit. Therefore, after®lftbating point operations on
the same point, the resultant steady-state backlog woutéimeor close to zero, since the
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Figure 8: Effects of rounding towards 0.

whole probability mass would be located at infinity.

Of course, a simple solution is the use of longer floating ptmmats, such as the
double and extended double formats, at the cost of more nyeanolr processing time for
the analysis tool. However, this is not a solution, but ordgtpones its onset.

A simple but effective way to alleviate probability leakageto estimate the probability
deficit, denotedl, by subtracting from D the sum of all the probabilities in the resultant
distribution, also using round towards zero in the subimast The estimation, denoteld
is an underestimation of the probability defiditbecause of the rounding towards zero,
which is then added to the probability of the maximum valughef distribution with
non-zero probability, using round towards zero in the additFigure 8 also depicts this
optimization.

In general, the convolution of two arrays of probabilitiésmpoints each require about
2n? operations in tot&l so the probability deficit using rounding towards zero dFEHE-
754 single format is aboutr® x 0.5 x 2724, Applying the previous optimization, the
probability deficit is reduced tm x 0.5 x 2724, since there are operations in the calcu-
lation of the initial deficit and its correction, incremargithe probability of the maximum
value with non-zero probability.

It should be noted that the previous optimization shoulddmiad only when the queue
of the distribution has not been truncated. Otherwise, ftieazation would be pointless,
since the whole probability deficit should be added to thenityfipoint.

It is also possible to perform pessimistic rounding usingniebtowards+co. Initially,
there would be probability excess instead of probabilitifaite which is overestimated
using again rounding towardse, and removed by starting from the lowest point with
non-zero probability, using round towards zero in this caberefore, a probability deficit
would once again be reached.
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6.3. Extensions to the basic stochastic analysis

This section presents other applications of the concepg¢sdimism in stochastic anal-
ysis, extending the basic model and the stochastic analygisriodic independent task
sets. Firstly, Section 6.3.1 presents the stochastic sisaly dependent task sets that can
block in shared resources. Section 6.3.2 allows for noempive sections in the tasks.
Finally, Section 6.3.3 considers random release timesmgiindom release jitter.

6.3.1. Blocking in shared resourcesiVhen two or more tasks use shared resources,
they often need to orchestrate the access in such a way #yahéver access the shared
resource simultaneously. Usually, thesiécal sectionsn which the resource access must
be mutually exclusive are guarded by locks or semaphords. mhy cause griority
inversionproblem, in which a task with higher priority is blocked whieying to enter

a critical section whose semaphore is held by a task of lowierify. This situation is
especially critical in the real-time field since, in orderfiod the worst-case scenatrio,
the duration of the blocking times must have an upper linotn8 algorithms have been
devised for providing such a guarantee, such as the Prlahgritance Protocol (PIP) and
Priority Ceiling Protocol (PCP) for fixed priority schedudj (Sha et al., 1990), as well
as the Stack Resource Policy (SRP) for fixed and non-fixedifyrischeduling (Baker,
1991).

The deterministic analysis of real-time systems which bese protocols is performed
by computing the value of the worst-case blocking time ohdask, adding this blocking
time to the execution time of the tasks, and then performtrgctassical analysis using
these augmented execution times. The value of the worstidasking time can be de-
rived from the worst-case duration of each critical sedjaithough the precise way in
which this derivation is performed depends on the protosetyPIP, PCP or SRP).

Most of the previous ideas are applicable to the stochaséinasio, bearing in mind
that in this case the lengths of the critical sections, and the duration of the blocking
suffered by higher priority tasks, are random variabletesd of single-valued worst-case
values. Let us summarize these ideas:

e The blocking time a task; can suffer is a random variabi®;, but an adequate
shared resource protocol ensures that its value is boundel*{ B; >x,} = 0 for a
finite xp, equal to the worst-case blocking time of the determingige). The shared
resource protocol which ensures this can be one of thosépsty mentioned for
the deterministic case (i.e: PIP, PCP, SRP)

e The exact distribution aB; is difficult (if not impossible) to obtain, but an approx-
imationB] can be computed and it can be shown that B, so it is conservative
to use the pessimistic approximation.

e The distribution of the random variab can be derived from the lengths of the
critical sections of the tasks (these lengths also beindaarvariables). The exact
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way in which this can be done depends on the shared resourtmeprconsidered,
but the procedure is a straightforward translation of thewsed for the determinis-
tic case, by using the concepts of supremum and infimum (deetaas 6 and 7)
in place of maximum and minimum. For details see (Diaz eRal04).

e The execution time of the tadk is artificially increased by addin@; to it (this
involves performing the convolution of their probabilityrfctions). It is worth not-
ing that only the execution time of the job under analysimmgemented by the
blocking time. Incrementing the execution time of the otledis of the task would
introduce unnecessary pessimism.

e The stochastic analysis presented in Section 3 can be dpplithe new system
using these augment&

6.3.2. Non-preemptive sectionslhe system model presented in Section 2 assumes pre-
emption. If one high priority job is released while a low piip task is executing, a con-
text switch takes place, moving the low priority job to thengeg queue and executing
the higher priority job.

There are situations in which it is necessary to execute af sestructions atomically.
The set of instructions executed atomically is called a pggemptive section.

If a high priority job is released while a low priority job ixecuting within a non-
preemptive section, the high priority job will suffer blang. In the worst case, the block-
ing will be equal to the length of the non-preemptive sectiime situation is analogous
to that of blocking while accessing protected shared ressur

Non-preemptive sections can be introduced in the analysi$ they were pseudo-
critical sections protected by a single binary pseudo-gdimiee with a ceiling equal to
the maximum priority (or preemption level) in the system.c@m task enters in a non-
preemptive section, pseudo-semaphore is locked and itagcegceives the maximum
preemption level in the system. Therefore, the task can agirbempted until it leaves
the pseudo-critical section.

In general, critical sections and non-preemptive sectghmild be kept short, since
they introduce pessimism in the stochastic analysis.

6.3.3. Releasejitter There are situations in which the actual release time ofediffers
from its theoretical release time. The difference betwéertheoretical and actual release
times is called release jitter. Release jitter is not a fixeanjity, but varies between zero
and a maximum jitter.

The simplest approach to account for release jitter in therdenistic analysis is to
increment the execution time of all the jobs by their relgdters. Therefore, using this
approach, the deterministic response time of any job ise®emonotonically with release
jitter, which requires the use of the maximum jitter. Formyéde, a job of theoretical re-
lease timeAj, maximum jitterJJmaX and execution tim€;, can be safely replaced by a
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Figure 9: Simple job transformation to account for rele#ser)

job without jitter released at;j, with execution timgC; + J{"®). Under stochastic anal-
ysis, the random execution tin® would be replaced byCj + Jj). Bearing in mind
thatJ}“aX > Jj and Proposition 1 on the addition function, we conclude fitiar can be
safely removed in the stochastic analysis using the rand@eugion time(C; —I—ija)ﬁ, as
depicted in Figure 9.

However, this approach is suitable only if the maximum redejitter is small, as oth-
erwise the pessimism introduced in the analysis may be sixees

Another approach that would reduce the previous pessimisoidibe to model the
jitter between the theoretical and real release time asdorarvariable, and perform an
exact stochastic analysis that deals jointly with randolease times and random execu-
tion times. However, this stochastic analysis is far moraglex than the current stochas-
tic analysis, which works with deterministic release timesaddition, jitter is usually a
small fraction of time, which is difficult to measure or esgit@, especially if we need its
random distribution.

A practical solution to this problem is to modify the basiodtastic analysis, so that
results are pessimistic using the maximum release jittdgpendently of the exact distri-
bution of jitter. Theorem 2 follows this idea, providing axile transformation that allow
us to deal safely with jitter in the stochastic analysisuasag moderate pessimism.

Theorem 2. Let{...,["j_1,["j,[j4+1,... } be aset of jobs scheduled using fixed priorities,
of random release time§..., (Aj_1+3dj-1),(Aj+Jj), (Aj41+ dj+1),... }, whereAj is
the deterministic theoretical release time of jopy and{j its random jitter of maximum
value J"® Let{...,Cj_1,€j,Cj11,... } be the random execution times, andXgtbe the
random response time of jdh.

If the release times of all the jobs are transformed so that:

e Any jobly with Ax+ J"® < Aj, becomes released at deterministic tikge = Ax +
J&® and is denotedT .

e Any jobly with A — ijax > Aj, becomes released at deterministic tikge= Ax —
J"® and is denotedr.

o Any job Ty with A+ J® > Aj > A — J"® (including I'j) becomes released at
deterministic time\¢ = A;, and is denotedr{.
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Figure 10: Pessimistic approximations under random rekeesming from release jitter.

It follows that the new random response timé pfdenotedR;, fulfils Rj > R;.

Proof. Making release times relative to the release timé pfloes not change the re-
sponse time of j. The relative release of any jdlx becomegAx+Jk) — (Aj+3j) =
(Ak—Aj) — dj + dk. In particular, the release time 6f; becomes zero. There are two
components of jitter in the relative release time: a negatwmponent—g;, induced
by the release jitter of j, represented by shaded rectangles in Figure 10, and aveositi
componentJy, coming from jobly itself, represented by white rectangles in the same
figure. Therefore, any joby is randomly released in the relative interyl — Aj — J"®
Ak—Aj+30.

If Ak —Aj+ I < 0 then jobl"y is released beforie; with probability one, so applying
statement 5 of Theorem 1, the first transformation guararites the new response time
of I'j fulfils R > Rj whenl\ is released at relative timi — A; + J'®, i.e., at absolute
timeAg = A+ 0%

If A —Aj —J"®> 0 then jobl' is released afterj with probability one, so applying
statement 6 of Theorem 1, the second transformation guwesrnhat the new response
time of I'; fulfils R > Rj whenT is released at relative timi—Aj —J"® i.e., at
absolute time\," = A —ijax.

Finally, if Ak —Aj =" <0 < A — A} + 3, applying statement 7 of Theorem 1, the
third transformation guarantees that the new responsedimgfulfils R} > R; whenl i
is released at relative time zero, i.e., at absolute fiie- A;. O

Figure 10 depicts the transformations of Theorem 2. Whittarggles are used to rep-
resent the random jitter of the jobs, while shaded rectanglpresent negative jitter, in-
duced by the random release jitterfqf after making release times relative to the release
of I'j. It should be noted that the delay of jolp_; in Figure 10 is produced by its worst
jitter in the calculation of the random response timé& pfand cannot be improved by any
approximation in which only the maximum release jitter i@vwm.
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The problem now is how to apply Theorem 2 to calculate in radhe pessimistic
response times of periodic tasks with release jitter. Thpoase time of any job; is cal-
culated fromR; = W(Aj) 4+ Cj +7Jj, as explained in Section 3. Tefi(A;) is calculated
for the first job of each task in a steady-state hyperperiodsicering that it is released
with zero release jitter, and considering all the jobs oktijp (including those coming
from the same task d§) to be released at deterministic timis+ J'®, i.e., at their lat-
est release times. The calculationfdfis completed using the jobs of typER, released
atAj, and typed |, released aAk—JJmaX, i.e., at their earliest release times taking into
account the negative jitter induced by jbh.

The previous results for jitter are also valid under EDF siciiag, assuming that dead-
lines are defined relative to the theoretical release tirhteedasks, making job priorities
independent of jitter.

Finally, the reader should observe that jitter worsens élspaonse time of the tasks, so
it should be kept as low as possible.

7. Stochastic analysis: pros and cons

The ideal response time analysis would be one that predieistlg the complete se-
guence of response times we would measure in the real systesaéh task. Determin-
istic analysis is the simplest analysis, since it summarilze whole sequence in a single
worst-case value. Stochastic analysis of course is nol, iogs closer to the ideal, since
it summarizes the sequence into a set of values and freqgeoicappearance (probabili-
ties).

The biggest problem of deterministic analysis is that woeste execution times are
extremely pessimistic in practice. Worst-case execuiioes rarely appear and are one
or more orders of magnitude higher than the typical exenuimoes. Working with worst-
case execution times gives rise to excessively oversizdsyg. Stochastic analysis deals
with a configurable number of points for the execution tinmeducing system oversizing
and cost. However, it involves a design cost, as shown below.

The exact calculation of worst-case execution times is masible in many cases
because of hardware/software complexities, which reghieeuse of pessimistic worst-
case execution times. The problem of finding execution tioee®mes even worse under
stochastic analysis, since we should introduce into thiysisanot only single worst-case
execution times, but worst-case distributions of execuitiimes.

Current techniques of hardware optimization introducecaetien time dependencies.
For example, cache memory makes the execution time of theekigoriority job de-
pendent on the previously released jobs. Deterministicsaachastic analyses assume
independent tasks (although some special dependencdsdigking in shared resources
can be dealt with successfully). Dependencies can be reingiag pessimistic execu-
tion times, but finding pessimistic execution times is a claxproblem, especially if
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execution times are modelled as random variables.

Another of the cons the stochastic analysis is the time reduo perform the analysis.
Obviously, it is several orders of magnitude higher thantime required for the deter-
ministic analysis. Nonetheless, we have the theoreticd$ ttm perform approximations
that allow us to trade-off computational cost and pessimi®me of the keys to make
stochastic analysis possible is the correct choice of tpski®ds during system design.
In general, periods should be chosen to have common fagtbish reduces the length
of the hyperperiod and the computational cost of the stdzhasalysis. For example,
in the context of control systems, sampling periods, whiefing task periods, can be
shortened in order to reduce the hyperperiod length. Thiements the computational
cost of the control system, but improves the controllapjland makes stochastic analysis
applicable. Thus, the dimension and cost of the system magdueed.

A common misconception about the stochastic analysis tsttieapplicable only to
trivial task sets and that it lacks of accuracy. However ita$ the case. In fact, the time
required to analyze a task set made up of 35 periodic taskseradds: 100, 200, 250,
400, 500, 600 and 1000, and execution time probability fonsteach made up of 100
points, was about 25 minutes in a low-end 32 bit workstatidh & single 2 GHz CPU
and 512 MBytes of RAM. The response time probability funesievere calculated with
an error about 10, In addition, system utilization was about 0.95 and maxinsystem
utilization about 13.0. The interested reader can find omie this example along with
a stochastic analyzer calletochard, which implements the analysis described in this
article.

8. Conclusions and future work

Stochastic analysis is a valuable tool that greatly impsadeterministic analysis. In
fact, deterministic analysis is a particular case of stetitbanalysis, as it is the most
pessimistic stochastic analysis. As the improvement gtyarhepends on task sets charac-
teristics, we have not presented comparative results leeteeterministic and stochastic
analysis.

Current theory allows us to analyse periodic tasks, botepeddent and communicat-
ing through shared resources, with or without jitter anchvait without non-preemptive
sections. Stochastic analysis may be extended in futuréher types of tasks, using the
theoretical framework about stochastic pessimism intcedun the article.

Most of the article is about the relationships™and “>" between the random variables
of a real-time system. Thanks to these relationships, ibssible to state that a random
execution time distribution is higher (worse) than anatliest a random blocking time
distribution is higher than another, etc. The ordering leemvrandom variables allows us
a direct translation of well known real-time determinisgsults to the stochastic scenario.

Stochastic analysis is costly in computational terms, buthee configured to trade-off
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computational cost and pessimism. In addition, task psergituld be chosen carefully
during the design stage in order to obtain reasonable hgperplengths.

Major problems to make the stochastic analysis applicableractice are obtaining
execution time distributions and the problem of non-indhej@nt execution times due to
hardware dependencies, such as cache memories. Bothmpeohte common to deter-
ministic analysis, but become even more difficult in the k&stic analysis.

Future work will address the following theoretical issues:

e The analysis of sporadic tasks. They are common in real$ysgems, so must be
included in the model and analysis.

e Finding suboptimal phase assignments in order to improgéutiillment of the
stochastic real-time constraints. It is our belief thatg@gsahave great influence on
schedulability in the stochastic analysis, even highen thahe deterministic anal-
ysis.

e A study of the applicability of stochastic analysis to dtyitiard-real time systems.
In this case, the probability of missing the deadlines i9gg that we may face with
serious precision problems in the stochastic analysisouclade that deterministic
analysis is a better choice.

e Extend stochastic analysis to simple distributed reaktaystems.
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Spain)

Throughout this paper we use a calligraphic typeface to @etamdom variables, e.§, W, R, etc.

2 In theory, convolutions can be performed using the FFT, tledsicing the complexity fromr? to
mlogm. In practice, it is effective only when the distributionsvRasimilar number of points. This is not
our case, since the number of points of execution time piibtyafonctions is usually much lower than the

number of points of backlog or partial response times.
SAvailable fromhttp: //www.atc.uniovi.es/rsa/starts/tools.php
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