
Stochastic Analysis of Real-Time Systems under

Preemptive Priority-Driven Scheduling

Jośe Maŕıa López Jośe Luis D́ıaz Joaqúın Entrialgo

Daniel Garćıa

Abstract

Exact stochastic analysis of most real-time systems under preemptive priority-driven

scheduling is unaffordable in current practice. Even assuming a periodic and independent

task model, the exact calculation of the response time distribution of tasks is not possible

except for simple task sets. Furthermore, in practice, tasks introduce complexities such as

release jitter, blocking in shared resources, etc., which cannot be handled by the periodic

independent task set model.

In order to solve these problems, exact analysis must be abandoned for an approxi-

mated analysis. However, in the real-time field, approximations must not be optimistic,

i.e. the deadline miss ratios predicted by the approximatedanalysis must be greater than

or equal to the exact ones. In order to achieve this goal, the concept of pessimism needs

to be mathematically defined in the stochastic context, and the pessimistic properties of

the analysis carefully derived.

This paper provides a mathematical framework for reasoningabout stochastic pes-

simism, and obtaining mathematical properties of the analysis and its approximations.

This framework allows us to prove the safety of several proposed approximations and

extensions. We analyze and solve some practical problems inthe implementation of the

stochastic analysis, such as the problem of the finite precision arithmetic or the truncation

of the probability functions. In addition, we extend the basic model in several ways, such

as the inclusion of shared resources, release jitter or non-preemptive sections.

1. Introduction and previous work

Traditionally, researchers in the field of real-time systems have used pessimistic as-

sumptions in order to make the computational cost of the analysis affordable. For ex-

ample, the execution time is modelled as a single value, the WCET, which is calculated

1

so as to always be greater than the actual execution time. Techniques such as processor

utilization analysis (Liu and Layland, 1973; Lehoczky, 1990) and response time analy-

sis (Tindell et al., 1994), use this simplification. The advantage of this approach is that

the computational cost of the analysis is very small. The disadvantage is that it is too pes-

simistic; while the WCET is very infrequent, the analysis assumes that it does occur in all

instances of all tasks, thus giving rise to oversized real-time systems.

Recently, some researchers have suggested using random variables to model the tasks’

execution times. Thus, the execution time is not a single value, but a collection of possible

values, each one with an associated probability. The distribution of this random variable

can be obtained by measurement, or using hybrid techniques (Bernat et al., 2002). The

main problem with this approach is that the complexity and computational cost of the

stochastic analysis is excessive. In order to reduce this complexity, some approaches to

the random stochastic analysis require a special scheduling model to provide isolation

between tasks, so that each task can be analyzed independently of other tasks in the sys-

tem (Atlas and Bestavros, 1998; Abeni and Buttazzo, 2001). Other methods use common

scheduling algorithms, but introduce worst-case assumptions to simplify the analysis: the

critical instant assumption (Tia et al., 1995; Gardner, 1999; Gardner and Liu, 1999), re-

strictive load conditions like the heavy traffic condition (Lehoczky, 1996, 1997), or re-

strictions on preemption (Manolache et al., 2007).

In (Dı́az et al., 2002), we proposed a technique for the analysis of periodic and inde-

pendent tasks without assuming worst-case or restrictive conditions. This allows for the

analysis of systems with a maximum system utilization higher than one, whenever the

average system utilization remains lower than one. Provided with the exact distributions

of the executions time of the tasks, the analysis will outputthe exact distributions of the

response times of the tasks. From these distributions is trivial to obtain schedulability pa-

rameters such as the probability of missing any given deadline, etc. However, the exact

analysis proposed in (Dı́az et al., 2002) applies only to periodic and independent tasks,

and the analysis techniques are computationally expensive.

In (Dı́az et al., 2004) we investigated the use of pessimism in a stochastic context, in or-

der to reduce the complexity of the analysis and open the doorto extensions in the model.

This new pessimistic stochastic analysis no longer produces the exact distributions of the

response times, but distributions which arepessimisticor conservative, in the sense first

defined in (Abeni and Buttazzo, 2001). Using the concept of pessimism, some practical

problems of the analysis were solved, and the model was extended to allow for blocking

in shared resources. However, the approach used in (Dı́az etal., 2004) was not general

enough, and it required complex proofs. Nor was it flexible enough to investigate other

possible extensions for the model, such as including release jitter.

In this paper, we present a reelaboration and extension of (Dı́az et al., 2004). Some of

the material presented there, such as the formal definition of pessimism and the character-

ization of pessimistic analysis, is repeated here. However, a new mathematical framework

2

for proving the properties of the stochastic analysis is developed. This new framework

allows us to deal with new issues not addressed before, such as the impact of the finite

precision arithmetic used by computers in the analysis results, or the inclusion of release

jitter in the model. For completeness, the rest of the applications of pessimism are also

listed here, but not developed in depth, since the details are published in (Dı́az et al.,

2004).

The rest of this article is organized as follows. Section 2 describes the basic system

model, which exclusively considers periodic independent tasks. Section 3 summarizes

the stochastic analysis presented in (Dı́az et al., 2002) ofthe basic system model, intro-

ducing the notation and showing one complete example. Section 4 formalizes the con-

cept of pessimism in the stochastic analysis and gives its motivation. Section 5 provides

a general framework for reasoning about pessimism and performing safe stochastic ap-

proximations. Section 6 presents some applications of these ideas: the problem of priority

assignment in the stochastic scenario is solved in Section 6.1, practical issues related to

computer aided analysis are addressed in Section 6.2, and finally Section 6.3 extends the

stochastic analysis to deal with blocking in shared resources, non-preemptive sections and

release jitter. The pros and cons of stochastic analysis arediscussed in Section 7. Finally,

Section 8 presents our conclusions and future work.

2. Basic system model

The basic task model was introduced and discussed in (Dı́az et al., 2004), and it is

summarized here for the reader.

The system is composed of a set ofN independent periodic tasks{τ1, . . . ,τi , . . . ,τN}.

The parameters of each taskτi are the period,Ti , its initial phase,Φi (also called offset),

the execution time,Ci , the real-time constraint of the task, expressed by the deadline, Di ,

and the maximum allowable probability of deadline misses,Mi.

The execution time,Ci , is a discrete random variable1 with a known probability func-

tion (PF), denoted byfCi (·), where fCi(c) = P{Ci =c}. Alternatively, the execution time

distribution can also be specified using its cumulative distribution function (CDF), de-

noted byFCi (·), whereFCi(x) = ∑x
c=0 fCi (c).

Each periodic taskτi gives rise to an infinite sequence of jobs,Γi, j , whose release time

λi, j is deterministic (in particularλi, j = Φi + jTi). The response time of a taskτi is another

random variable, denoted byRi , which is calculated from the response time of all its jobs.

Taskτi is said to be schedulable ifP{Ri >Di} ≤ Mi. The reader should note thatMi = 0

in the deterministic analysis of hard real-time systems.

The scheduling policy we assume is a general, preemptive, priority-driven policy that

assigns a static priority,Pj , to each job,Γ j , and schedules jobs according to this prior-

ity. We are not concerned with the policy used to assign priorities to jobs, as long as the

priority assignment is repeated periodically each hyperperiod. This model includes well

3

known fixed priority policies such asDeadline Monotonic(DM), as well as the optimal

priority assignment presented in section 6.1, and non-fixedpriority policies such asEar-

liest Deadline First(EDF),

The basic task model will be extended in forthcoming sections, so that random release

times in the form of release jitter are allowed. In addition,dependencies will be allowed

through blocking in shared resources. Finally, the scheduling policy will be extended to

allow for non-preemptive sections.

3. Stochastic Analysis

The stochastic analysis described in this section was first presented in (Dı́az et al.,

2002). A summary of this work with improved notation was presented in (Kim et al.,

2005), and (Dı́az et al., 2004). The basic procedure of the analysis is briefly repeated here,

and, in order to facilitate its understanding, we give a complete step-by-step example of

calculation of a periodic task random response time.

In order to simplify the notation in the following, we will not track the task to which

each job belongs, but will use a single subindex,j, when referring to a jobΓ j and the

parameters of that job such as its release time,λ j , random execution time,C j, priority,

Pj , etc. This single index refers to the order of the job in the infinite sequence of jobs

generated by all the instances of all tasks under analysis, assuming this sequence to be

ordered by release time, that is,j1 < j2 ⇒ λ j1 ≤ λ j2.

The (random) response time of a jobΓ j is given by

R j = W(λ j)+C j + I j (1)

In this equation all variables are random variables, but note that release times are still

deterministic.W(λ j) is the backlog at timeλ j ; it represents the workload of prioritiesPj

and higher that have not yet been processed immediately prior to λ j , the release time of

Γ j . TermC j is the execution time of jobΓ j andI j is the interference inΓ j of all the jobs

of higher priority than jobΓ j released at or after jobΓ j .

The backlog at the release time of any jobΓ j , denotedW(λ j), can be calculated using

the following iterative equation:

W(λk0) = 0

W(λk) = SHRINK(W(λk−1)+Ck−1,λk−λk−1) for k > k0, Pk ≥ Pj

(2)

λk0 being the release time of the first job with priority greater than or equal toPj . Equa-

tion (2) starts with zero backlog and continues with a new iteration for each higher pri-

ority job released beforeΓ j . Note that each iteration requires the addition of two random

variables (W(λk−1) +Ck−1), which produces a new random variable whose probability

4

function is obtained by convolution. Finally, the functionSHRINK() is applied to this ran-

dom variable.SHRINK(·) produces a new random variable whose probability function is

obtained by Equation (3):

fSHRINK(W,∆)(x) =























0 if x < 0
0

∑
w=−∞

fW(w+∆) if x = 0

fW(x+∆) if x > 0

(3)

Graphically, this transformation consists of shifting theoriginal PF in∆ units to the

left, and accumulating in zero all the negative values afterthe shifting.

Once the backlog at the release time ofΓ j is known, it is added to its execution time

C j , as given by Equation (1). The PF of the addition is calculated by convolving the PF of

both random variables. This provides thepartial response timeR[0,λ j+1−λ j]
j = W(λ j)+C j ,

whereλ j+1 is the release time of the first high priority job released at or after Γ j . This

partial response timeR[0,λ j+1−λ j]
j is equal to the final response time if there are no in-

terfering jobs afterλ j , which is the case of the highest priority task under fixed prior-

ity scheduling. Otherwise, partial response times are random variables whose PF coin-

cide with that of the final response time in the range shown in the superindex, therefore,

P{R j =r} =P{R
[0,λ j+1−λ j]
j

=r} for all r ∈ [0,λ j+1−λ j].

Iterating over the sequence of interfering jobs, each new iteration extends the range in

which the partial response time coincides with the final response time. When this range in-

cludes the deadlineD j , the iterative procedure can be stopped. Each new partial response

time of Γ j is calculated using Equation (4)

R
[0,λ j+1−λ j]
j = W(λ j)+C j

R
[0,λk+1−λ j]
j = AF(R

[0,λk−λ j]
j ,λk−λ j ,Ck) for k > j, Pk > Pj

(4)

The function AF() applies to two random variablesR andC (partial response time and

computation time) and one integer∆ (the time intervalλk−λ j),and produces as result a

new random variable, whose PF is given by a partial convolution defined in Equation (5)

fAF(R,∆,C)(x) =











fR(x) for x≤ ∆
∞

∑
i=∆+1

fR(i) · fC(x− i) for x > ∆
(5)

The partial convolution leaves the PF ofR in interval[0,∆] unchanged, convolving the

PF ofR with that ofC only in interval[∆+1,∞].

The iterative procedure can stop whenD j < ∆ = λk+1 − λ j , and the probability of

deadline misses for the jobΓ j can be obtained asP{R j >D j} = 1−∑
k=D j

k=0 P{R
[0,∆]
j

=k}.

The probability of a task missing its deadline is calculatedby averaging the probabil-

ities of all its jobs missing that deadline, but the number ofthese jobs is infinite. How-

5

ever, whenŪ < 1 the system reaches a periodic steady-state (Dı́az et al., 2002). In the

steady-state the probability of a job missing its deadline becomes constant for the same

job released one, two or any number of hyperperiods later. Thus, the probability of a task

missing its deadline can be calculated by considering only those of its jobs released in one

hyperperiod, namely, the steady-state hyperperiod.

Figure 1 provides a simple example, in which the random response time of taskτ2 is

calculated. Note that in this figure jobs are subindexed according to the task to which they

belong, but in the previous exposition of the analysis we used a single index, representing

the order of arrival. Following the timeline from left to right in the figure, we discover

that this ordering isΓ1,1, Γ2,1, Γ1,2, Γ1,3 andΓ2,2, which would then becomeΓ1, Γ2, . . . ,

Γ5 respectively using the single index notation. This single index is a convenient way to

specify the order in which the previous equations should be applied. However, for the sake

of clarity, we maintain the more classical notation with twosubindexes (task number, and

job within the task number) in the figure and the explanations.

The steady-state backlog at the release time of jobsΓ2,1 andΓ2,2, which make up task

τ2, is calculated by iterating until convergence is reached (this convergence is guaranteed

since the system’s̄U is 0.94167, less than 1). A different approach would be to model the

backlog as a Markovian process, defined by its Markov matrix,and calculate its eigenval-

ues. Next, the random response time of jobsΓ2,1 andΓ2,2 is calculated considering all the

high priority jobs released after the arrival of the jobs, but before their absolute deadline.

This step produces the cumulative distribution functions (CDFs) of these jobs. Finally, the

CDF of the response time of taskτ2 is calculated by averaging the CDF of response times

of Γ2,1 andΓ2,2.

Figure 2 shows the CDF of the backlog at the release time ofΓ2,1, at timest = 20,

t = 140 (after one hyperperiod), timet = 260 (after two hyperperiods) and at the steady-

state. Parameters in the example have been chosen to improvethe visualization of back-

logs, making convergence slower than usual. In addition, Figure 2 depicts the CDF of the

random response times ofΓ2,1 andΓ2,2, as well as their average. Introducing the dead-

line of taskτ2 as the abscissa in the CDF of the average, the probability of meeting the

deadline is obtained.

For the case of EDF scheduling, the only difference is the computation of the initial

backlog for each job. Once this initial backlog is obtained,the computation of the response

time of the job follows the same algorithm outlined above. Inorder to obtain the initial

backlog of a given jobΓ j , released at instantλ j , we must consider the workload generated

for all previous jobs with a greater priority, which in the case of EDF means with an

earlier absolute deadline. This can be done easily by computing the steady-state backlog

generated by all jobs in the system. From this system backlog, the job-level backlog for

each job in the hyperperiod can be easily derived. In fact, the EDF case is simpler than

the fixed-priority one, because the system backlog is computed only once, and valid for

all jobs in the hyperperiod, while for the fixed-priority case it is necessary to compute

6

t20

Γ1,1

C1

60

Γ1,2

C1

100

Γ1,3

C1

0 120

Hyperperiod

High
Priority

Task(τ1)

t50

Γ2,1

C2

110

Γ2,2

C2

Task under
analysis

(τ2)

TASK PARAMETERS

c fC1(c) = fC2(c)

10 0.1

20 0.4

21 0.2

22 0.2

50 0.1

T1 = 40 T2 = 60

Φ1 = 20 Φ2 = 50

P1 > P2 D2 = 90

CALCULATION OF THE STEADY-STATE BACKLOG

W(20) = 0

W(50) = SHRINK(W(20)+C1, 50−20)

W(60) = SHRINK(W(50)+C2, 60−50)

W(100) = SHRINK(W(60)+C1, 100−60)

W(110) = SHRINK(W(100)+C1, 110−100)

W(140) = SHRINK(W(110)+C2, 140−110)

W(20) = W(140)

W(50) = SHRINK(W(20)+C1, 50−20)
...

Iterate

Compute one hyperperiod

CALCULATION OF THE RESPONSETIME OF JOB Γ2,1

R
[0,60−50]
2,1 = W(50)+C2 =AF(W(50),0,C2)

R
[0,100−50]
2,1 = AF(R

[0,60−50]
2,1 ,100−50,C1)

R
[0,140−50]
2,1 = AF(R

[0,140−50]
2,1 ,140−50,C1) =⇒ STOP (since 140−50≥ D2)

F
R

[0,t]
2,1

=
t

∑
r=0

f
R

[0,140−50]
2,1

(t) WITH t ≤ 140−50= 90

CALCULATION OF THE RESPONSETIME OF JOB Γ2,2

R
[0,140−110]
2,2 = W(110)+C2 = AF(W(110),0,C2)

R
[0,180−110]
2,2 = AF(R

[0,140−110]
2,2 ,180−110,C1)

R
[0,220−110]
2,2 = AF(R

[0,180−110]
2,2 ,220−110,C2) =⇒ STOP (since 220−110≥ D2)

F
R

[0,t]
2,2

=
t

∑
r=0

f
R

[0,220−110]
2,2

(t) WITH t ≤ 220−110= 110

AVERAGING THE RESPONSE TIMES OFΓ2,1 AND Γ2,2

F
R

[0,t]
2

= 0.5(F
R

[0,t]
2,1

+F
R

[0,t]
2,2

)

CALCULATION OF THE PROBABILITY OF MEETING THE DEADLINE

P{R2≤D2} = F
R

[0,t]
2

(D2) = 0.496

Figure 1: Example of calculation of the random response timeof a task.

7

Accumulated

Probability

Time value
0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FR2,2

FR2,1

FR2
W(20)

W(140)

W(260)

W(20+120k), k→ ∞

D2

0.496
P{R2≤D2}

Figure 2: Cumulative distribution functions of backlogs and response times forτ2.

one system backlog for each priority level. More details andone example can be found

in (Dı́az and López, 2007).

4. Pessimism in the stochastic context

In the deterministic analysis of real-time systems, all approximations arepessimisticin

the sense that the response times obtained by the approximated analysis are guaranteed to

be greater than the exact response times of the system. However, in stochastic analysis, the

response times are random variables and real-time constraints are expressed in terms of

probabilities of deadline misses. With these ideas in mind,we will define the relationship

“greater than” among random variables. In this way, we will be able to reason about

the pessimism in the stochastic analysis, and say that certain types of approximations

are pessimistic in the sense that the random response times given by the analysis are

“greater than” the real random response times. Thus, an approximation which leads to a

pessimistic analysis is a safe approximation.

The concepts in this section were first introduced in (Dı́az et al., 2004). They are re-

peated and refined here since they are important to understand the rest of the article.

Definition 1. Let X and X′ be two random variables. We state thatX′ is greater than

X (or alternatively,X is less thanX′), and denote it byX′ ≻ X (alternatively,X ≺ X′)

if P{X′≤D} ≤ P{X≤D} for any D, and the two random variables are not identically

distributed.

8

1

r

FR(r),FR′(r),FR′′(r)

D

R′ ≻ R

R′′ ≻ R

R′′ 6≻ R′

R′ 6≻ R′′

R

R′

R′′

Figure 3: Graphical interpretation of the “greater than” relationship among response time
distributions.

Note that, ifX represents an exact response time, andX′ is an approximation, the above

definition guarantees that the probability of deadline misses forX′ is greater than that of

X, for any deadlineD. We state thatX′ is a pessimistic approximation, and therefore, the

stochastic analysis providingX′ is pessimistic.

The relationshipgreater thanbetween two random response times is a stochastic order,

analogous to the concept offirst stochastic order, defined in statistics (Levy, 1992), and

also used informally in the context of real-time systems in (Abeni and Buttazzo, 2001).

Likewise, we state that random variableX2 is greater than or equal to the random

variableX1 (X2 < X1 or X1 4 X2), if FX2(x) ≤ FX1(x). Note that the restriction “not

identically distributed” has been removed.

The definition has a simple graphical interpretation: random variableX′ is greater than

random variableX if the cumulative probability function (CDF) ofX′ is always below the

CDF of X. Figure 3 graphically compares three response time random distributions. In

this figure,R′ ≻ R, i.e, R′ is greater thanR, sinceFR′(·) is belowFR(·). Therefore, the

probability of missing any deadlineD calculated fromR′ is greater than when calculated

from R. However,FR′′(·) andFR′(·) cross, so it is not true thatR′′ ≻ R′ norR′′ ≺ R′.

Once a way of comparing random variables has been formally defined, we can also

define other useful concepts, such as thesupremum(a random variable which isgreater

thanany other in a given set), and theinfimum(a random variable which isless thanany

other in a given set).

Definition 2. Given a set of random variables{Xi}, we define the supremum of that set,

denotedsup{Xi}, as the random variable with CDF

Fsup{Xi}(x) = min
i

FXi (x) (6)

Definition 3. Given a set of random variables{Xi}, we define the infimum of that set,

denotedinf{Xi}, as the random variable with CDF

Fsup{Xi}(x) = max
i

FXi(x) (7)

9

1

x

FX(x)

0 1 2 3 4 5 6 7 8 9 10 11

X1
X2
X3

sup(X1,X2,X3)

Figure 4: Construction of the supremum of a set of random variables

Note that thesupremum(and theinfimum) of a set is a new random variable, not nec-

essarily in the set, defined by an artificially constructed probability function. Figure 4

graphically shows how this construction is achieved, by taking the minimum of allFXi(·)

(note that the plot of the supremum has been slightly shifteddown for better legibility of

the figure). By construction, sup{Xi}<Xi , and inf{Xi}4Xi for all i. Thus, the supremum

of a set of random variables is analogous to the maximum of a set of real numbers, and

the infimum is analogous to the minimum. These concepts will be useful when translating

classical results of the deterministic analysis to the stochastic scenario.

5. Pessimism preservation in the analysis

The main idea in this section is to find out how the mathematical properties of the

relationship “greater than” interact with the mathematical procedures used in the analysis,

leading to conclusions such as “if pessimistic execution times for the tasks are introduced

in the model, pessimistic response times would be obtained in the analysis”. Although

some of these properties were already presented in (Dı́az etal., 2004), in this paper we

introduce a much more general approach.

First, in section 5.1 we will provide a general framework to deal with pessimistic ap-

proximations indeterministicanalysis, since this is the basis of pessimistic approxima-

tions in the stochastic analysis. In fact, stochastic analysis can be seen as a summary of

all the possible deterministic scenarios making up the sample space.

Next, in section 5.2 we will provide a general rule that transforms pessimistic determin-

istic approximations into pessimistic stochastic approximations. Finally, using this rule

and the deterministic approximations of Section 5.1, the basic stochastic approximations

are presented at the end of Section 5.2.

5.1. Pessimistic approximations in deterministic analysis

The objective of this subsection is to define pessimistic approximations in the deter-

ministic analysis, which we will transform later into theirequivalent stochastic approxi-

mations. Throughout this subsection, we will use the word “increases” with the meaning

10

of “does not change or increases”, for the sake of brevity.

Figure 5(a) depicts the general deterministic scenario under priority-driven scheduling,

in which the response time of jobΓ j is to be calculated.

t

Γ j−2

Cj−2

λ j−2

Γ j−1

Cj−1

λ j−1 t

Γ j

Cj

λ j = 0

Γ j+1

Cj+1

λ j+1

(a) General deterministic scenario for the response time calculation ofΓ j .

t

Γ′
j−1

W(λ ′
j−1)

λ ′
j−1

Γ j

Cj

λ j = 0

Γ j+1

Cj+1

λ j+1

(b) Equivalent scenario after replacing jobsΓ j−2 andΓ j−1 by the resultant backlog atλ ′
j−1.

t

Γ′′
j−1

W(λ ′
j−1)

λ ′′
j−1

Γ j

Cj

λ j = 0

Γ′
j+1

Cj+1

λ ′
j+1

(c) Delaying the release time ofΓ′
j−1 from λ ′

j−1 to λ ′′
j−1 ≤ λ j and advancing the release time ofΓ j+1 from

λ j+1 to λ ′
j+1 ≥ λ j increases the response time ofΓ j .

Figure 5: Approximations in deterministic analysis.

For the time being, we will assume that priorities are independent of release times. This

assumption is valid under fixed priority scheduling, but notunder EDF scheduling. Later,

this restriction will be removed.

None of the jobs of priority less thanΓ j have any influence on the response time of job

Γ j . In order to simplify the notation, we assume all these jobs were previously removed.

In addition, release times are relative to the release time of Γ j . Therefore, the release time

of Γ j , the job under analysis, becomesλ j = 0.

In general, the response time ofΓ j under preemptive priority-driven scheduling is ex-

clusively a function of all execution and release times. This relationship can be expressed

as

Rj = F(. . . ,(λ j−1,Cj−1),Cj ,(λ j+1,Cj+1), . . .) (8)

It is well-known in deterministic analysis that increasingthe execution time of one or

more jobs in the system increases the response time of any job, i.e, F(·) is a monotonic

increasing function of anyCk, with k = (. . . , j −1, j, j + 1, . . .). Therefore, any approxi-

mation of execution times that provides higher execution times than the exact ones is a

pessimistic approximation.

A direct consequence of the previous result is that adding a new job,Γk, to the job set

introduces pessimism. The proof is simple by comparing the new job set, includingΓk,

with the original job set, after adding a job of zero execution time released at the same

11

time asΓk.

It is possible to simplify the job set and therefore Equation(8), as shown in Figure 5(b).

All the jobs released beforet, with t ≤ 0, can be replaced by an equivalent job of release

time t and execution time equal to the backlog at timet, denotedW(t). In general, the

equivalent job released att summarizes the whole history beforet. Now,Rj can be calcu-

lated from

Rj = F((t,W(t)), . . . ,(λ j−1,Cj−1),Cj ,(λ j+1,Cj+1) . . .) with t < λ j = 0 (9)

Instantt is renamedλ ′
j−1 in Figure 5(b), since the equivalent job is the nearest job

released beforeΓ j .

SinceF(·) is a monotonic increasing function of the execution times coming from real

or equivalent tasks, any approximation that substitutes the exact backlog,W(t), at any

time t < 0 for a higher backlog increases the response timeRj , and so is a pessimistic ap-

proximation. For example, this approximation is carried out implicitly when jobs missing

their deadlines are forced to finish in the real system, but are not removed in the analysis.

Thus, we conclude thatF(·) is a monotonic increasing function ofW(t), for anyt < 0.

Let us focus now on pessimistic approximations related to release times. LetΓk be a

job released beforeΓ j , i.e, with λk < 0. If the release time ofΓk is delayed toλ ′
k and in

the new situationΓk is not released afterΓ j , then the response time ofΓ j increases. This

transformation is shown in Figure 5(c) for jobΓ′
j−1, which becomesΓ′′

j−1. The proof is

simple, bearing in mind that the response time ofΓ j can be expressed as

Rj = W(0)+Cj + I j (10)

whereW(0) is the backlog at the release time ofΓ j , Cj is its execution time, andI j is

the interference onΓ j of the jobs released at or afterΓ j . Making one or more of the jobs

released beforeΓ j closer toΓ j on the left, delays their processing, increments the backlog

W(0) and, indirectly, the interferenceI j , and thus increments the response time ofΓ j .

Therefore, we conclude thatF(·) is a monotonic increasing function of anyλk, whenever

λk < 0.

Under EDF scheduling the priority of a job decreases as its release time is delayed,

since its absolute deadline is also delayed. In this case, the priority of the job should

be calculated with regard to the initial release time, instead of the delayed release time.

Otherwise, the analysis may not be pessimistic.

An analogous result is derived for any jobΓk released afterΓ j , i.e, fulfilling λk > 0. If

the release time ofΓk is advanced toλ ′
k < λk, and in the new situationΓk is not released

beforeΓ j , then the response time ofΓ j will increase. The transformation is shown in

Figure 5(c) for jobΓ j+1, which becomesΓ′
j+1. This result can be proved again from

Equation (10). Making one or more of the jobs released afterΓ j closer toΓ j without

crossing to its left, increments the interferenceI j , and thus increments the response time

12

of Γ j . Therefore, we conclude thatF(·) is a monotonic decreasing function of anyλk,

wheneverλk > 0.

Under EDF scheduling the priority of a job increases as its release time is advanced.

Thus, the previous approximation is also pessimistic underEDF scheduling.

An alternate expression to Equation (8) is Equation (11) below, which summarizes the

whole history before any timeλk, with λk ≥ λ j = 0, by the partial response timeR[0,λk]
j .

Rj = G(R[0,λk]
j ,(λk,Ck),(λk+1,Ck+1), . . .) with λk ≥ λ j = 0 (11)

TermR[0,λk]
j is a partial response time ofΓ j , which assumes that jobsΓk and subsequent

do no exist, so it is a valid response time forΓ j in interval [0,λk]. It is well-known in

deterministic analysis that by artificially increasing anypartial response time of the task,

the final response time of the job increases, since it increments the interference of job

Γk and subsequent jobs. Therefore, functionG(·) is a monotonic increasing function of

R[0,λk]
j with λk ≥ 0. Thus, any approximation that provides partial response times greater

than the exact ones is a pessimistic approximation.

Now, let us transform these results regarding pessimism in the deterministic analysis

into their stochastic counterparts.

5.2. Pessimistic approximations in stochastic analysis

A random response timeR′ is pessimistic when it is greater than the exact one,R, i.e,

whenR′ ≻ R. The problem is how to perform approximations within stochastic analysis

parameters, while guaranteeing that the resultant random response times are pessimistic

or identically distributed, thus making the approximated stochastic analysis safe.

Proposition 1 is a simple but powerful result, which translates deterministic approxi-

mations, like those given in Section 5.1, into their stochastic counterparts.

Proposition 1. Let y= g(x1, . . . ,xk, . . . ,xm) be a real-valued function of real variables

(x1, . . . ,xk, . . . ,xm) and Y a random variable evaluated asY = g(X1, . . . ,Xk, . . . ,Xm),

where (X1, . . . ,Xk, . . . ,Xm) are discrete and independent random variables. LetY′ =

g(X1, . . . ,X
′
k, . . . ,Xm) and Y′′ = y(X1, . . . ,X

′′
k, . . . ,Xm), whereX′′

k ≻ X′
k. The following

asserts hold:

• If g(x1, . . . ,xk, . . . ,xm) is a monotonic increasing function of xk, then it follows that

Y′′
< Y′.

• If g(x1, . . . ,xk, . . . ,xm) is a monotonic decreasing function of xk, then it follows that

Y′′ 4 Y′.

13

Proof. The CDF of random variablesY′ andY′′ can be calculated from

FY′(p) =P{Y′≤p} =
+∞

∑
q=−∞

P{Y′≤p|X′
k = q} ·P{X′

k=q}

FY′′(p) =P{Y′′≤p} =
+∞

∑
q=−∞

P{Y′′≤p|X′′
k = q} ·P{X′′

k =q}

ProbabilitiesP{Y′≤p|X′
k = q} andP{Y′′≤p|X′′

k = q} only depend on random variables

X j , with j , k, so they are identical forFY′(p) andFY′′(p). Let us rename these probabil-

ities (. . . ,w1,w2, . . . ,wq, . . .), wherewq = P{Y′≤p|X′
k = q} = P{Y′′≤p|X′′

k = q}. There-

fore, probabilitiesP{Y′≤p} andP{Y′′≤p} are calculated as a weighted sum of probability

functions

(. . . ,P{X′
k=1},P{X′

k=2}, . . . ,P{X′
k=q}, . . .), and

(. . . ,P{X′′
k =1},P{X′′

k =2}, . . . ,P{X′′
k =q}, . . .)

respectively, where the weights are given by(. . . ,w1,w2, . . . ,wq, . . .), with ∑∞
q=−∞ wq = 1.

The proposition states thatX′′
k ≻ X′

k, so it follows thatP{X′′
k
≤q} ≤ P{X′

k
≤q}, i.e,

probabilities inX′
k are located at values ofq lower than inX′′

k.

If y(x1, . . . ,xk, . . . ,xm) is a monotonic increasing function ofxk, then it can be proved

that(· · · ≥ w1 ≥ w2 ≥ ·· · ≥ wq ≥ . . .). Therefore, the weighted sum gives more weight to

low values ofq than to high values ofq and it follows thatP{Y′≤p} ≥P{Y′′≤p} for any

p, i.e,Y′′ < Y′.

If y(x1, . . . ,xk, . . . ,xm) is a monotonic decreasing function ofxk, then it can be proved

that(· · · ≤ w1 ≤ w2 ≤ ·· · ≤ wq ≤ . . .). Therefore, the weighted sum gives higher weight

to high values ofq than to low values ofq and it follows thatP{Y′≤p} ≤ P{Y′′≤p} for

any p, i.e,Y′′
4 Y′. �

To illustrate Proposition 1, let us consider a random experiment in which we throw

two dice and calculate the sum of the values provided by both dice, which is modelled

by random variableY. The result provided by either die is a number in[1,6], the first

die modelled byX1 and the second byX2, soY = X1 +X2. In this case, the real-valued

function is simplyy= g(x1,x2) = x1+x2. If the first die is substituted for another die that

provides a result in[2,7], modelled by random variableX′
1, then we can state thatX′

1 ≻X1

and thenY′ = X′
1+X2 < Y = X1+X2, sincey(x1,x2) = x1+x2 is a monotonic increasing

function ofx1.

Next, Theorem 1 provides seven pessimistic stochastic approximations, which are proved

by applying Proposition 1 to the pessimistic approximations for the deterministic analysis.

Theorem 1. Let {. . . ,Γ j−1,Γ j ,Γ j+1, . . .} be a set of jobs made up ofΓ j and all the jobs

of higher priority thanΓ j , of random release times{. . . ,L j−1,L j = 0,L j+1, . . .} relative

to the release ofΓ j , and random execution times{. . . ,C j−1,C j ,C j+1, . . .}. LetR j be the

random response time of jobΓ j . If any of the following transformations is performed:

14

1. The random execution time of any jobΓk is substituted for another random execu-

tion timeC′
k, such thatC′

k ≻ Ck.

2. A high priority job is added to the system.

3. The random backlog at any relative time t≤ 0, denotedW(t), is substituted for

another random backlogW′(t), such thatW′(t)≻ W(t).

4. The partial response timeR[0,Lk]
j , at relative timeLk < 0, is substituted for another

partial response timeR
′[0,Lk]
j , such thatR

′[0,Lk]
j ≻ R[0,Lk]

j .

5. The relative random release timeLk, of any jobΓk with Lk ≺ 0, i.e, released before

Γ j , is substituted for another relative random release timeL′
k, such thatLk ≺ L′

k 4

0.

6. The relative random release timeLk, of any jobΓk with Lk ≻ 0, i.e, released after

Γ j , is substituted for another relative random release timeL′
k, such that04 L′

k ≺

Lk.

7. The relative random release timeLk of any jobΓk is substituted by a relative ran-

dom release timeL′
k = 0.

then the new random response time ofΓ j , denotedR′
j , fulfils R′

j < R j , so all the above

transformations can be considered pessimistic approximations.

Proof. Equations (12), (13) and (14) are the stochastic counterparts of Equations (8), (9)

and (11), respectively.

R j = F(. . . ,(L j−1,C j−1),C j ,(L j+1,C j+1), . . .) (12)

R j = F((t,W(t)), . . .,(L j−1,C j−1),C j ,(L j+1,C j+1) . . .), with t 4L j = 0 (13)

R j = G(R
[0,Lk]
j ,(Lk,Ck),(Lk+1,Ck+1), . . .), with Lk < L j = 0 (14)

The proof of statements 1 to 6 is direct from Proposition 1 andEquations (8), (9), (11),

(12), (13) and (14), taking into account the following deterministic results provided in

Section 5.1:

• F(·) in Equations (8) and (9) is a monotonic increasing function of: Ck, W(t) with

t < 0, andλk with λk < 0.

• F(·) in Equation (8) is a monotonic decreasing function ofλk with λk > 0.

• G(·) is a monotonic increasing function ofR[0,λk]
j with λk ≥ 0.

15

t

Γ j−1

L j−1

Γ j+1

L j+1

Γ j+2

L j+2

t

Γ−
j−1

λ−
j−1

L j−1 ≺ λ−
j−1 4 0

Γ0
j+1

λ 0
j+1 = 0

Γ+
j+2

λ+
j+2

0 4 λ+
j+2 ≺ L j+2

Γ j

L j = 0

Job under
analysis

Figure 6: Illustration of the transformations 5, 6 and 7 in Theorem 1.

Statement 7 requires more elaboration. Let us divide the sample space in three sub-

spaces:Lk ≺ 0, Lk = 0 andLk ≻ 0. It follows that

P{R j ≤r} =P{R j ≤r|Lk ≺ 0} ·P{Lk≺0}+

P{R j ≤r|Lk = 0} ·P{Lk=0}+

P{R j ≤r|Lk ≻ 0} ·P{Lk≻0}

From statements 5 and 6 it follows thatP{R j ≤r|Lk ≺ 0} ≥ P{R j ≤r|Lk = 0} and

P{R j ≤r|Lk ≻ 0} ≥ P{R j ≤r|Lk = 0}. Bearing in mind thatP{Lk≺0}+P{Lk=0}+

P{Lk≥0} = 1, it follows that

P{R j ≤r} ≥P{R j ≤r|Lk = 0} = P{R′
j ≤r}

and thus,R′
j < R j . �

Theorem 1 will be the basis of all the approximations performed in the next sections.

Approximations 5 to 7 in Theorem 1 are related to release times and deserve special

attention. Figure 6 depicts three high priority jobs,Γ j−1,Γ j+1,Γ j+2, and a low priority

job Γ j , whose random response time has to be calculated. JobsΓ j−1,Γ j+1 andΓ j+2 are

released at random timesL j−1,L j+1 andL j+2, indicated by rectangles. The earliest re-

lease time with non-zero probability coincides with the left end of the rectangle, while the

latest release time with non-zero probability coincides with the right end.

Γ j−1 is released before thanΓ j with probability one, since the right end of its rectangle

is prior to the release time ofΓ j . From pessimistic approximation 5, we can delayΓ j−1,

obtainingΓ−
j−1, which is released atλ−

j−1, the latest release time ofΓ j−1. Note that we

have transformed jobΓ j−1, with a random release time, into a job with a deterministic

release time (it has no rectangle around it), and the transformation is pessimistic. This is

the final objective of all the release time approximations: to transform the random release

16

times into pessimistic deterministic release times, making the stochastic analysis both

affordable and safe.

Γ j+2 is released afterΓ j with probability one, since the left end of its rectangle is

posterior to the release time ofΓ j . Using pessimistic approximation 6 onΓ j+2, this job

is transformed into jobΓ+
j+2, released at deterministic timeλ+

j+2, which coincides with

the earliest release time ofΓ j+2. Finally, Γ j+1 may be released before or afterΓ j , since

its rectangle includes the release time ofΓ j . Using approximation 7 onΓ j+1 we obtain

job Γ0
j+1, which is released at a deterministic time equal to that ofΓ j . Note that we did

not apply this approximation to jobsΓ j−1 andΓ j+2 since it would be too pessimistic, and

approximations 5 and 6 are less pessimistic and equally safe.

6. Applications of the concept of pessimism

6.1. Priority assignment

The analysis algorithm presented in Section 3 does not assume any policy of priority

assignment, as long as the assignment is repeated each hyperperiod. One possible policy

for assigning static priorities isRate Monotonic. However, according to (Audsley, 1991)

and (Tindell et al., 1994), this assignment is not optimal when the existence of a critical

instant is not guaranteed, nor when the deadlines are not equal to the periods. For these

cases, they provide an alternative algorithm, described indetail in (Audsley, 1991).

For the deterministic case, the algorithm is optimal, i.e.,it always finds a feasible as-

signment of priorities if one exists. The proof (Audsley, 1991) is based on the fact that

increasing the priority of a task never decreases its schedulability, or conversely, decreas-

ing a task priority never increases its schedulability. In the stochastic scenario, a taskτi is

schedulable if it fulfils its stochastic real-time constraint, i.e., ifP{Ri >Di} ≤ Mi . Proving

that decreasing a task priority never increases its schedulability proves that the algorithm

is also optimal for stochastic analysis, since the rest of the proof coincides with the proof

of deterministic analysis. This result can be proved directly from Theorem 1, statement 2.

Decreasing the priority of any taskτi introduces high priority jobs coming from other

tasks into the analysis, which worsens the random response time of all the jobs making up

τi, and increments the probability of missing the deadline ofτi . Therefore, the algorithm

described in (Audsley, 1991) is also optimal in the stochastic scenario.

6.2. Computational problems

There are a number of computational problems in order to implement the analysis pre-

sented in Section 3:

• Computing the steady-state backlog by iterating until convergence is reached, presents

the problem of how to choose the “initial backlog” which leads to a quick conver-

17

c

fC

0 1 2 3 4 5 6 7 8

3
14 2

14

4
14

2
14 1

14
1
14

1
14

c

f ′
C

0 1 2 3 4 5 6 7 8

3
14 2

14

4
14

2
14

3
14

AggregateDeadline

Figure 7: Moving probabilities towards lower execution times.

gence and does not produce an optimistic approximation of the steady-state back-

log. This problem was addressed in (Dı́az et al., 2004).

• The theoretical steady-state backlog has a probability function with an infinite num-

ber of points. Even if we use the approximation found by iteration, which is not

infinite, the number of points can be too large to be stored in acomputer. The obvi-

ous solution is to truncate the probability function. However, this gives rise to one

question: if we use truncated versions of the probability functions instead of the

complete ones, is the analysis valid? More important, is it safe (i.e: pessimistic)?

In (Dı́az et al., 2004) it is proved that this kind of approximation is indeed pes-

simistic, and thus the analysis using truncated PFs is stillvalid.

• The complexity of the analysis depends largely on the numberof non-zero points

of the probability functions used. It is necessary to find a way of reducing this

size, without affecting the validity of the analysis, i.e.,preserving the pessimism.

In (Dı́az et al., 2004) it is shown that clusters of probabilities can be aggregated

towards the worst execution time of the cluster, and that this kind of transformation

is pessimistic and reduces the number of points to store in memory.

Another simplification can be carried out in the following context: if a task of dead-

line Di is dropped just at the moment it misses its deadline, then itsexecution time

can not be higher than(Di + 1). Therefore, the probabilities of execution times

(Di +2),(Di +3), . . . ,Cmax
i can be moved to execution time(Di +1), as shown in

Figure 7. Note that this transformation is not mandatory, but highly recommended,

since it reduces the analysis time and pessimism of the results.

• The computer representation of real numbers using finite precision formats, such as

IEEE-754 floating point standard, may cause round-off errors. How can we guaran-

tee that those errors never introduce optimism in the results? This problem has not

been addressed before, and we analyze it in the rest of this section.

6.2.1. Using finite precision arithmetic From an arithmetic point of view, stochastic

analysis is a long sequence of additions and multiplications of probabilities, i.e, real num-

bers in the range[0,1]. Usually, the calculation of a single random response time requires

18

millions of additions and multiplications, which can be carried out in two ways: finite

precision arithmetic or infinite precision arithmetic. Infinite precision arithmetic provides

exact results for all the operations, but the memory and processing time required are un-

affordable in current practice. For example, if significands (fractional parts) of execution

time probabilities are coded usingn bits, after convolving two execution time probability

functions, 2n bits are required to code each probability of the result exactly. Therefore,

after thousands or millions of convolutions, the number of bits required to code a single

probability of the result would become prohibitively huge.

The solution to this problem is the use of finite precision arithmetic. Commonly, finite

precision arithmetic of real numbers is carried out using floating point arithmetic, but fixed

point arithmetic implemented on an integer unit is also possible. All the results provided

in this section are valid for both fixed and floating point arithmetic.

Finite precision arithmetic solves the computational problems of infinite precision arith-

metic, but introduces round-off errors, so the analysis is no longer exact. The problem now

is how to round off the results so that the analysis is guaranteed to be pessimistic.

Let us analyze the effects of the usual rounding modes: roundto nearest, round towards

zero, round towards−∞ and round towards+∞.

Round to nearestis the most common rounding mode and provides the representable

number closest to the exact result. However, this rounding mode does not provide pes-

simistic results. For example, during the calculation of the steady-state backlog we con-

volve the current backlog with a random execution time, giving a new backlog, defined by

an array of time points and their probabilities. Using roundto nearest, the probability of

the minimum backlog for the resultant backlog distributionmay be higher than the exact

distribution. In that case, the resultant random variable would not be greater than or equal

to the exact one.

Round towards zeroandround towards−∞ are equivalent for the stochastic analysis,

since probabilities are numbers in the range[0,1]. Round towards 0 makes results pes-

simistic, since all the probabilities are less than or equalto the exact. The probability

deficit coming from the rounding can be assumed to be located at +∞. Figure 8 depicts

the exact probability function and one approximated probability function after rounding

towards 0.

Rounding towards zero solves the problem of pessimistic rounding, but introduces a

new one. Each addition and multiplication reduces the probability mass of the resultant

distribution, since part of this mass goes to infinity, and soit never returns to finite values.

For example, let us assume that 108 floating point operations are involved in the calcula-

tion of a probability value of the steady-state backlog distribution. Using IEEE-754 single

precision format to store the probabilities, the average probability deficit generated by

any of these operations isε = 0.5 ·2−24 ≈ 3 ·10−8, since this format uses 24 bits for the

significand, 23 explicit and 1 implicit. Therefore, after 108 floating point operations on

the same point, the resultant steady-state backlog would bezero or close to zero, since the

19

w

Exact
f (w)

f1

w1

f2

w2

f3
w3 w

Rounded towards 0
f (w)

f1− ε1

w1

f2− ε2

w2

f3− ε3

w3

ε1 + ε2+ ε3

+∞

w

Improved
f (w)

f1− ε1

w1

f2− ε2

w2

f3− ε3+ d̂
w3

d̂ = 1− (f1− ε1)− (f2− ε2)− (f3− ε3)

(Round towards 0)

Round towards
zero

Optimization

Figure 8: Effects of rounding towards 0.

whole probability mass would be located at infinity.

Of course, a simple solution is the use of longer floating point formats, such as the

double and extended double formats, at the cost of more memory and processing time for

the analysis tool. However, this is not a solution, but only postpones its onset.

A simple but effective way to alleviate probability leakage, is to estimate the probability

deficit, denotedd, by subtracting from 1.0 the sum of all the probabilities in the resultant

distribution, also using round towards zero in the subtractions. The estimation, denoted̂d,

is an underestimation of the probability deficitd, because of the rounding towards zero,

which is then added to the probability of the maximum value ofthe distribution with

non-zero probability, using round towards zero in the addition. Figure 8 also depicts this

optimization.

In general, the convolution of two arrays of probabilities of mpoints each require about

2m2 operations in total2, so the probability deficit using rounding towards zero and IEEE-

754 single format is about 2m2 × 0.5× 2−24. Applying the previous optimization, the

probability deficit is reduced tom×0.5×2−24, since there arem operations in the calcu-

lation of the initial deficit and its correction, incrementing the probability of the maximum

value with non-zero probability.

It should be noted that the previous optimization should be applied only when the queue

of the distribution has not been truncated. Otherwise, the optimization would be pointless,

since the whole probability deficit should be added to the infinity point.

It is also possible to perform pessimistic rounding using round towards+∞. Initially,

there would be probability excess instead of probability deficit, which is overestimated

using again rounding towards+∞, and removed by starting from the lowest point with

non-zero probability, using round towards zero in this case. Therefore, a probability deficit

would once again be reached.

20

6.3. Extensions to the basic stochastic analysis

This section presents other applications of the concept of pessimism in stochastic anal-

ysis, extending the basic model and the stochastic analysisof periodic independent task

sets. Firstly, Section 6.3.1 presents the stochastic analysis of dependent task sets that can

block in shared resources. Section 6.3.2 allows for non-preemptive sections in the tasks.

Finally, Section 6.3.3 considers random release times coming from release jitter.

6.3.1. Blocking in shared resourcesWhen two or more tasks use shared resources,

they often need to orchestrate the access in such a way that they never access the shared

resource simultaneously. Usually, thesecritical sectionsin which the resource access must

be mutually exclusive are guarded by locks or semaphores. This may cause apriority

inversionproblem, in which a task with higher priority is blocked whentrying to enter

a critical section whose semaphore is held by a task of lower priority. This situation is

especially critical in the real-time field since, in order tofind the worst-case scenario,

the duration of the blocking times must have an upper limit. Some algorithms have been

devised for providing such a guarantee, such as the PriorityInheritance Protocol (PIP) and

Priority Ceiling Protocol (PCP) for fixed priority scheduling (Sha et al., 1990), as well

as the Stack Resource Policy (SRP) for fixed and non-fixed priority scheduling (Baker,

1991).

The deterministic analysis of real-time systems which use these protocols is performed

by computing the value of the worst-case blocking time of each task, adding this blocking

time to the execution time of the tasks, and then performing the classical analysis using

these augmented execution times. The value of the worst-case blocking time can be de-

rived from the worst-case duration of each critical sections, although the precise way in

which this derivation is performed depends on the protocol used (PIP, PCP or SRP).

Most of the previous ideas are applicable to the stochastic scenario, bearing in mind

that in this case the lengths of the critical sections, and thus the duration of the blocking

suffered by higher priority tasks, are random variables instead of single-valued worst-case

values. Let us summarize these ideas:

• The blocking time a taskτi can suffer is a random variableBi , but an adequate

shared resource protocol ensures that its value is bounded (i.e:P{Bi >xb} = 0 for a

finitexb, equal to the worst-case blocking time of the deterministiccase). The shared

resource protocol which ensures this can be one of those previously mentioned for

the deterministic case (i.e: PIP, PCP, SRP)

• The exact distribution ofBi is difficult (if not impossible) to obtain, but an approx-

imationB′
i can be computed and it can be shown thatB′

i < B, so it is conservative

to use the pessimistic approximation.

• The distribution of the random variableB′
i can be derived from the lengths of the

critical sections of the tasks (these lengths also being random variables). The exact

21

way in which this can be done depends on the shared resource protocol considered,

but the procedure is a straightforward translation of the one used for the determinis-

tic case, by using the concepts of supremum and infimum (see definitions 6 and 7)

in place of maximum and minimum. For details see (Dı́az et al., 2004).

• The execution time of the taskCi is artificially increased by addingB′
i to it (this

involves performing the convolution of their probability functions). It is worth not-

ing that only the execution time of the job under analysis is incremented by the

blocking time. Incrementing the execution time of the otherjobs of the task would

introduce unnecessary pessimism.

• The stochastic analysis presented in Section 3 can be applied to the new system

using these augmentedCi

6.3.2. Non-preemptive sectionsThe system model presented in Section 2 assumes pre-

emption. If one high priority job is released while a low priority task is executing, a con-

text switch takes place, moving the low priority job to the pending queue and executing

the higher priority job.

There are situations in which it is necessary to execute a setof instructions atomically.

The set of instructions executed atomically is called a non-preemptive section.

If a high priority job is released while a low priority job is executing within a non-

preemptive section, the high priority job will suffer blocking. In the worst case, the block-

ing will be equal to the length of the non-preemptive section. The situation is analogous

to that of blocking while accessing protected shared resources.

Non-preemptive sections can be introduced in the analysis as if they were pseudo-

critical sections protected by a single binary pseudo-semaphore with a ceiling equal to

the maximum priority (or preemption level) in the system. Once a task enters in a non-

preemptive section, pseudo-semaphore is locked and its ceiling receives the maximum

preemption level in the system. Therefore, the task can not be preempted until it leaves

the pseudo-critical section.

In general, critical sections and non-preemptive sectionsshould be kept short, since

they introduce pessimism in the stochastic analysis.

6.3.3. Release jitterThere are situations in which the actual release time of a task differs

from its theoretical release time. The difference between the theoretical and actual release

times is called release jitter. Release jitter is not a fixed quantity, but varies between zero

and a maximum jitter.

The simplest approach to account for release jitter in the deterministic analysis is to

increment the execution time of all the jobs by their releasejitters. Therefore, using this

approach, the deterministic response time of any job increases monotonically with release

jitter, which requires the use of the maximum jitter. For example, a job of theoretical re-

lease timeλ j , maximum jitterJmax
j and execution timeCj , can be safely replaced by a

22

Γ j

λ j

C j

λ j +Jmax
j

L j = λ j +J j

Pessimistic
transformation

Γ′
j

λ j

L′
j = λ j

C′
j = C j +Jmax

j

Figure 9: Simple job transformation to account for release jitter.

job without jitter released atλ j , with execution time(Cj +Jmax
j). Under stochastic anal-

ysis, the random execution timeC j would be replaced by(C j + J j). Bearing in mind

thatJmax
j < J j and Proposition 1 on the addition function, we conclude thatjitter can be

safely removed in the stochastic analysis using the random execution time(C j +Jmax
j), as

depicted in Figure 9.

However, this approach is suitable only if the maximum release jitter is small, as oth-

erwise the pessimism introduced in the analysis may be excessive.

Another approach that would reduce the previous pessimism would be to model the

jitter between the theoretical and real release time as a random variable, and perform an

exact stochastic analysis that deals jointly with random release times and random execu-

tion times. However, this stochastic analysis is far more complex than the current stochas-

tic analysis, which works with deterministic release times. In addition, jitter is usually a

small fraction of time, which is difficult to measure or estimate, especially if we need its

random distribution.

A practical solution to this problem is to modify the basic stochastic analysis, so that

results are pessimistic using the maximum release jitter, independently of the exact distri-

bution of jitter. Theorem 2 follows this idea, providing a simple transformation that allow

us to deal safely with jitter in the stochastic analysis, assuming moderate pessimism.

Theorem 2. Let{. . . ,Γ j−1,Γ j ,Γ j+1, . . .} be a set of jobs scheduled using fixed priorities,

of random release times{. . . ,(λ j−1 + J j−1),(λ j + J j),(λ j+1 + J j+1), . . .}, whereλ j is

the deterministic theoretical release time of jobΓ j , andJ j its random jitter of maximum

value Jmax
j . Let{. . . ,C j−1,C j ,C j+1, . . .} be the random execution times, and letR j be the

random response time of jobΓ j .

If the release times of all the jobs are transformed so that:

• Any jobΓk with λk +Jmax
k < λ j , becomes released at deterministic timeλ−

k = λk +

Jmax
k , and is denotedΓ−

k .

• Any jobΓk with λk−Jmax
j > λ j , becomes released at deterministic timeλ+

k = λk−

Jmax
j , and is denotedΓ+

k .

• Any job Γk with λk + Jmax
k ≥ λ j ≥ λk − Jmax

j (including Γ j) becomes released at

deterministic timeλ 0
k = λ j , and is denotedΓ0

k.

23

t

Γ j−1

L j−1

Γ j+1

L j+1

Γ j+2

L j+2

J′j+2 = Jj+2−Jj

−Jmax
j

Jmax
j+2

t

Γ−
j−1

λ−
j−1

L j−1 ≺ λ−
j−1 4 0

Γ0
j+1

λ 0
j+1 = 0

Γ+
j+2

λ+
j+2

0 4 λ+
j+2 ≺ L j+2

Theorem 2

Γ j

L j = 0

Job under
analysis

Figure 10: Pessimistic approximations under random releases coming from release jitter.

It follows that the new random response time ofΓ j , denotedR′
j , fulfils R′

j < R j .

Proof. Making release times relative to the release time ofΓ j does not change the re-

sponse time ofΓ j . The relative release of any jobΓk becomes(λk +Jk)− (λ j +J j) =

(λk−λ j)− J j + Jk. In particular, the release time ofΓ j becomes zero. There are two

components of jitter in the relative release time: a negative component,−J j , induced

by the release jitter ofΓ j , represented by shaded rectangles in Figure 10, and a positive

component,Jk, coming from jobΓk itself, represented by white rectangles in the same

figure. Therefore, any jobΓk is randomly released in the relative interval[λk−λ j −Jmax
j ,

λk−λ j +Jmax
k].

If λk−λ j +Jmax
k < 0 then jobΓk is released beforeΓ j with probability one, so applying

statement 5 of Theorem 1, the first transformation guarantees that the new response time

of Γ j fulfils R′
j < R j whenΓk is released at relative timeλk−λ j +Jmax

k , i.e., at absolute

timeλ−
k = λk +Jmax

k .

If λk−λ j −Jmax
j > 0 then jobΓk is released afterΓ j with probability one, so applying

statement 6 of Theorem 1, the second transformation guarantees that the new response

time of Γ j fulfils R′
j < R j when Γk is released at relative timeλk − λ j − Jmax

j , i.e., at

absolute timeλ+
k = λk−Jmax

j .

Finally, if λk−λ j −Jmax
j ≤ 0≤ λk−λ j +Jmax

k , applying statement 7 of Theorem 1, the

third transformation guarantees that the new response timeof Γ j fulfils R′
j < R j whenΓk

is released at relative time zero, i.e., at absolute timeλ 0
k = λ j . �

Figure 10 depicts the transformations of Theorem 2. White rectangles are used to rep-

resent the random jitter of the jobs, while shaded rectangles represent negative jitter, in-

duced by the random release jitter ofΓ j , after making release times relative to the release

of Γ j . It should be noted that the delay of jobΓ j−1 in Figure 10 is produced by its worst

jitter in the calculation of the random response time ofΓ j , and cannot be improved by any

approximation in which only the maximum release jitter is known.

24

The problem now is how to apply Theorem 2 to calculate in practice the pessimistic

response times of periodic tasks with release jitter. The response time of any jobΓ j is cal-

culated fromR j = W(λ j)+C j + I j , as explained in Section 3. TermW(λ j) is calculated

for the first job of each task in a steady-state hyperperiod, considering that it is released

with zero release jitter, and considering all the jobs of type Γ−
k (including those coming

from the same task asΓ j) to be released at deterministic timesλk +Jmax
k , i.e., at their lat-

est release times. The calculation ofR j is completed using the jobs of typesΓ0
k, released

at λ j , and typesΓ+
k , released atλk− Jmax

j , i.e., at their earliest release times taking into

account the negative jitter induced by jobΓ j .

The previous results for jitter are also valid under EDF scheduling, assuming that dead-

lines are defined relative to the theoretical release times of the tasks, making job priorities

independent of jitter.

Finally, the reader should observe that jitter worsens the response time of the tasks, so

it should be kept as low as possible.

7. Stochastic analysis: pros and cons

The ideal response time analysis would be one that predicts exactly the complete se-

quence of response times we would measure in the real system for each task. Determin-

istic analysis is the simplest analysis, since it summarizes the whole sequence in a single

worst-case value. Stochastic analysis of course is not ideal, but is closer to the ideal, since

it summarizes the sequence into a set of values and frequencies of appearance (probabili-

ties).

The biggest problem of deterministic analysis is that worst-case execution times are

extremely pessimistic in practice. Worst-case execution times rarely appear and are one

or more orders of magnitude higher than the typical execution times. Working with worst-

case execution times gives rise to excessively oversized systems. Stochastic analysis deals

with a configurable number of points for the execution times,reducing system oversizing

and cost. However, it involves a design cost, as shown below.

The exact calculation of worst-case execution times is not possible in many cases

because of hardware/software complexities, which requirethe use of pessimistic worst-

case execution times. The problem of finding execution timesbecomes even worse under

stochastic analysis, since we should introduce into the analysis not only single worst-case

execution times, but worst-case distributions of execution times.

Current techniques of hardware optimization introduce execution time dependencies.

For example, cache memory makes the execution time of the highest priority job de-

pendent on the previously released jobs. Deterministic andstochastic analyses assume

independent tasks (although some special dependencies like blocking in shared resources

can be dealt with successfully). Dependencies can be removed using pessimistic execu-

tion times, but finding pessimistic execution times is a complex problem, especially if

25

execution times are modelled as random variables.

Another of the cons the stochastic analysis is the time required to perform the analysis.

Obviously, it is several orders of magnitude higher than thetime required for the deter-

ministic analysis. Nonetheless, we have the theoretical tools to perform approximations

that allow us to trade-off computational cost and pessimism. One of the keys to make

stochastic analysis possible is the correct choice of tasksperiods during system design.

In general, periods should be chosen to have common factors,which reduces the length

of the hyperperiod and the computational cost of the stochastic analysis. For example,

in the context of control systems, sampling periods, which define task periods, can be

shortened in order to reduce the hyperperiod length. This increments the computational

cost of the control system, but improves the controllability , and makes stochastic analysis

applicable. Thus, the dimension and cost of the system may bereduced.

A common misconception about the stochastic analysis is that it is applicable only to

trivial task sets and that it lacks of accuracy. However it isnot the case. In fact, the time

required to analyze a task set made up of 35 periodic tasks, ofperiods: 100, 200, 250,

400, 500, 600 and 1000, and execution time probability functions each made up of 100

points, was about 25 minutes in a low-end 32 bit workstation with a single 2 GHz CPU

and 512 MBytes of RAM. The response time probability functions were calculated with

an error about 10−14. In addition, system utilization was about 0.95 and maximumsystem

utilization about 13.0. The interested reader can find on theweb this example along with

a stochastic analyzer calledstochan3, which implements the analysis described in this

article.

8. Conclusions and future work

Stochastic analysis is a valuable tool that greatly improves deterministic analysis. In

fact, deterministic analysis is a particular case of stochastic analysis, as it is the most

pessimistic stochastic analysis. As the improvement strongly depends on task sets charac-

teristics, we have not presented comparative results between deterministic and stochastic

analysis.

Current theory allows us to analyse periodic tasks, both independent and communicat-

ing through shared resources, with or without jitter and with or without non-preemptive

sections. Stochastic analysis may be extended in future to other types of tasks, using the

theoretical framework about stochastic pessimism introduced in the article.

Most of the article is about the relationships “≻” and “<” between the random variables

of a real-time system. Thanks to these relationships, it is possible to state that a random

execution time distribution is higher (worse) than another, that a random blocking time

distribution is higher than another, etc. The ordering between random variables allows us

a direct translation of well known real-time deterministicresults to the stochastic scenario.

Stochastic analysis is costly in computational terms, but can be configured to trade-off

26

computational cost and pessimism. In addition, task periods should be chosen carefully

during the design stage in order to obtain reasonable hyperperiod lengths.

Major problems to make the stochastic analysis applicable in practice are obtaining

execution time distributions and the problem of non-independent execution times due to

hardware dependencies, such as cache memories. Both problems are common to deter-

ministic analysis, but become even more difficult in the stochastic analysis.

Future work will address the following theoretical issues:

• The analysis of sporadic tasks. They are common in real-timesystems, so must be

included in the model and analysis.

• Finding suboptimal phase assignments in order to improve the fulfillment of the

stochastic real-time constraints. It is our belief that phases have great influence on

schedulability in the stochastic analysis, even higher than in the deterministic anal-

ysis.

• A study of the applicability of stochastic analysis to strictly hard-real time systems.

In this case, the probability of missing the deadlines is so low, that we may face with

serious precision problems in the stochastic analysis, or conclude that deterministic

analysis is a better choice.

• Extend stochastic analysis to simple distributed real-time systems.

References

L. Abeni and G. Buttazzo. Stochastic Analysis of a Reservation Based System. InProc.

of the 9th Int. Workshop on Parallel and Distributed Real-Time Systems, Apr. 2001.

A. K. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. InProc. of the 19th

IEEE Real-Time Systems Symposium, pages 123–132, Dec. 1998.

N. C. Audsley. Optimal priority assignment and feasibilityof static priority tasks with

arbitrary start times. Technical Report YCS 164, Dept. Computer Science, University

of York, December 1991.

T. P. Baker. Stack-based scheduling of realtime processes.Real-Time Systems, 3(1),

March 1991.

G. Bernat, A. Colin, and S. Petters. WCET Analysis of Probabilistic Hard Real-Time

Systems. InProc. of the 23rd IEEE Real-Time Systems Symposium, Dec. 2002.

J. L. Dı́az and J. M. López. Some notes on stochastic analysis using EDF scheduling.

Technical report, Departamento de Informática, University of Oviedo, 2007. Also avail-

able athttp://www.atc.uniovi.es/research/SNSAUES07.pdf.

27

J. L. Dı́az, D. F. Garcı́a, Kanghee Kim, Chang-Gun Lee, LuciaLo Bello, J. M. López,

Sang Lyul Min, and Orazio Mirabella. Stochastic Analysis ofPeriodic Real-Time Sys-

tems in a Real-Time System. InProc. of the 23rd IEEE Real-Time Systems Symposium,

pages 289–300, Austin, Texas, December 2002.

José Luis Dı́az, José Marı́a López, Manuel Garcı́a, Antonio Manuel Campos, Kanghee

Kim, and Lucia Lo Bello. Pessimism in the stochastic analysis of real-time systems:

Concept and applications. InProc. of the 25rd IEEE Real-Time Systems Symposium,

Lisboa, Portugal, December 2004.

M. K. Gardner and J. W.S. Liu. Analyzing Stochastic Fixed-Priority Real-Time Systems.

In Proc. of the 5th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, Mar. 1999.

Mark K. Gardner.Probabilistic Analysis and Scheduling of Critical Soft Real-Time Sys-

tems. PhD thesis, University of Illinois, Urbana-Champaign, 1999.

K. Kim, J. L. Dı́az, L. Lo Bello, J. M. López, C. G. Lee, and S. L. Min. An exact stochastic

analysis of priority-driven periodic real-time systems and its approximations.IEEE

Transactions on Computers, 54(11), November 2005.

J. P. Lehoczky. Real-Time Queueing Theory. InProc. of the 17th IEEE Real-Time Systems

Symposium, pages 186–195, Dec. 1996.

J. P. Lehoczky. Real-Time Queueing Network Theory. InProc. of the 18th IEEE Real-

Time Systems Symposium, pages 58–67, Dec. 1997.

John P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Dead-

lines. InProc. of the 11th IEEE Real-Time Systems Symposium, pages 201–209, De-

cember 1990.

Haim Levy. Stochastic dominance and expected utility: survey and analysis.Management

Science, 38(4):555–593, 1992. ISSN 0025-1909.

L. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-

Time Environment.Journal of ACM, 20(1):46–61, 1973.

Sorin Manolache, Petru Eles, and Zebo Peng.Real-Time Applications with Stochastic

Task Execution Times Analysis and Optimisation. Springer, P.O. Box 17, 3300 AA

Dordrecht, The Netherlands, 2007. ISBN 978-1-4020-5509-6(e-book).

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization.IEEE Transactions on Computers, 39(9):

1175–1185, September 1990.

28

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.W.-S Liu. Proba-

bilistic Performance Guarantee for Real-Time Tasks with Varying Computation Times.

In Proc. of the Real-Time Technology and Applications Symposium, pages 164–173,

Chicago, Illinois, May 1995.

K. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach for Analyzing Fixed

Priority Hard Real-Time Tasks.Real-Time Systems, 6:133–151, 1994.

29

Notes

Affiliation of authors: José M. López, José L. Dı́az, Joaquı́n Entrialgo and Daniel Garcı́a ({chechu,

jldiaz,joaquin,dfgarcia}@uniovi.es),Depto. de Inforḿatica,Universidad de Oviedo(33204, Gijón,

Spain)

1Throughout this paper we use a calligraphic typeface to denote random variables, e.g.C, W, R, etc.

2 In theory, convolutions can be performed using the FFT, thusreducing the complexity fromm2 to

mlogm. In practice, it is effective only when the distributions have similar number of points. This is not

our case, since the number of points of execution time probability functions is usually much lower than the

number of points of backlog or partial response times.
3Available fromhttp://www.atc.uniovi.es/rsa/starts/tools.php

30

