
Probabilistic Analysis of the Response Time in a

Real-Time System

Jośe Luis D́ıaz, Jośe Maŕıa López

University of Oviedo

Departamento de Inforḿatica

{jdiaz,chechu}@atc.uniovi.es
October 2001

Abstract

Classical analysis of real-time systems focuses on guaranteeing the schedulability of

the system when all jobs use their worst computation time. In this report, the computation

time of each job is modeled as an stochastic variable of known probability density function.

Thus, we consider not only the worst-case computation time, but all the possible compu-

tation times and their probabilities. We present an algorithm to calculate the statistical

distribution of the response time for each job. This result allows us to assess the feasibility

of the system from a statistical point of view. We also show that the statistical analysis can

be done inO(m3n2), wherem is the number of jobs andn is the maximum number of points

defining the statistical distribution of their computation times. Finally, we discuss briefly

how the model can be applied to periodic task sets.

1 Introduction

Traditional scheduling algorithms and analysis methods have focused on strict “hard” deadlines,

by which a system is deemed schedulable only if every instance of every task in the system is

guaranteed to meet its deadline. To achieve such a guarantee, the engineer must provide the

activation period and “worst-case computation time” for each task in the system. Once this

information is provided, two classic analysis methods are available [4, chap. 3]. The first is the

processor utilization analysis[11, 9], which guarantees the schedulability whenever the total

1

utilization is below a bound which depends on the number of tasks and the scheduling policy.

The second method is theresponse time analysis[7, 2, 15, 3], which uses a different approach:

the exact value of the worst-case response time is obtained for each task, which allows the

analyst to assess the system feasibility by means of comparing this worst-case response time

against the task deadline.

Both approaches are very restrictive, as the worst computation time assumed for each task

may be too pessimistic, and the situation under which each task would suffer the maximum

interference from other tasks may be very unlikely, especially if we allow for variable compu-

tation times in the tasks. Both these factors lead to very high calculated response times, which

could occur in theory, but with littleprobability in practice. There are many soft real-time ap-

plications in which tasks have highly variable computation requirements and deadlines are not

hard. For these applications, the probability of missing a deadline could serve as a measurement

of its Quality of Service (QoS). Moreover, knowledge of these probabilities can still be useful

for the design of hard real-time systems, as long as the application allows for a given failure

rate (for example, the probability of missing a deadline could be as small as the probability of

hardware failure).

Variance of computation times from their worst-case may cause an excess of capacity which

can be used by soft real-time tasks. Many algorithms have been developed to schedule them

together with hard real-time periodic tasks, as for example the deferred and sporadic server

algorithms [13, 10] or the more recent slack-stealing algorithms [8, 5]. These algorithms focus

on enhancing the responsiveness of the soft real-time tasks without jeopardizing deadlines of

the hard real-time ones. However, the statistical characterization of the system’s behavior is

poor, as no statistical distribution is obtained for the response times of the tasks (except for the

average response time of soft real-time tasks, usually by means of simulation).

A different approach to relaxing the assumption of fixed resource requirements is the one

proposed by Atlas and Bestavros [1]. In their paper, a modification of the scheduler is intro-

duced. This new scheduler allows a task to be executed in a variable amount of time, within a

pre-fixed limit calledallowance. Atlas and Bestavros determine the necessary allowances for

guaranteeing that no more than a given percentage of deadlines is missed. Due to the need for

a suitable scheduler, this analysis is not valid for the classic priority based scheduler, which is

the one implemented in most real-time operating systems.

Mok and Chen [12] introduce the multiframe model, in which the computation time of a task

may vary greatly from one instance to another, but this variation follows a known pattern. This

behavior is modeled by specifying the computation time of a task not as a single (worst-case)

number, but as a finite list of numbers from which computation times of successive instances

2

will be generated. They investigated this model under the fixed priority preemptive scheduler,

deriving new utilization bounds which improved those of Liu and Layland [11]. Whenever

the system under analysis has an total utilization lower than Mok and Chen’s bound, all dead-

lines will be met. However, when the utilization bound is exceeded, there is no clue about the

probability of deadline misses for each task.

When the worst-case total utilization of the system is greater than one, the system is deemed

unschedulable using the classic analysis, even if its average total utilization is very small. Tia

et al. [14], address this problem by modeling the computation time of the tasks as a random

variable, and extending the time-demand analysis method, substituting the sums of fixed com-

putations by convolutions. They restrict the analysis to the first activation of the task, and

assume that deadlines cannot be greater than periods. This assumption is lifted by Gardner in

his PhD. thesis [6], which extends the technique of Tiaet al. by computing the probability of

deadline misses for each task instance released in the first busy-period, and picking the min-

imum of these probabilities. This way, a lower bound on the probability of deadline misses

is found. However, this approach fails when the busy-period can have an infinite length, and

indeed this will be the case when the worst-case total utilization is greater than one. Moreover,

by restricting the analysis to the first busy period, the obtained probability of deadline misses is

optimistic, since in the next hyperperiod the probability of having pending workload is not null,

and then the response times would be greater.

As an initial step towards a more complete analysis, we formalize and extend the ideas

of [14], providing mathematical proofs and detailed algorithms for finding the probability dis-

tribution functions of the response times. We present a model in which the system is not seen

as a set of periodic tasks, but as a set of jobs released in a given sequence. This broader model

will provides us a framework for reasoning about the stochastic behaviour of the system.

The report is organized as follows. Section 2 introduces our model, defines some terminol-

ogy, and shows a simple example. Section 3 is the core, in which the methodology of analysis

is displayed, the main theorems and propositions are proved, the complexity of the algorithm

is investigated and some experimental results are shown. Section 4 explores some ideas for ap-

plying our methods to the classical system model in which jobs are instances of periodic tasks.

Section 5 presents the conclusions and future work.

2 System model

The system is modeled as a set of jobs{Γi}, each job being a three-tuple(λi ,Pi ,Ci) where

λi is the release instant of the job,Pi is the priority under which the job runs, andCi is the re-

3

Job λi Pi fCi

Γ1 0 10 Discrete U[5,7]
Γ2 6 15 Discrete U[8,9]
Γ3 9 5 Discrete U[3,5]
Γ4 17 10 Discrete U[5,7]

Table 1: A simple example system

quired computation time, which is a random variable1 with a known probability density function

(PDF), denoted byfCi
, where fCi

(c) = P{Ci =c}.
Note that our model does not use the classical concept of periodic tasks; each job is released

only once. However, the periodic task model can be considered as a particular case, as will be

shown in section 4.

Without loss of generality, we assume that release times are integers, and that job sub-

indexes are ordered in increasing release times (that isλi ≤ λ j for i < j). The computation

time, Ci , is a discrete random variable and its maximum value is bounded. This way, its PDF

can be represented as a finite vector of values{ fCi
(0), fCi

(1), . . . , fCi
(Cmax

i)} whereCmax
i is the

worst-case computation time required by jobΓi . No other assumption is made about the PDF

of Ci .

For example, consider the system shown in Table 1, made up of four jobs, with release

times 0, 6, 9 and 17. The computation time of each job is a random discrete variable, uniformly

distributed between two given values. The table shows, for instance, that the computation time

of the first job,Γ1, is U[5,7]; this means that it can take value of 5, 6 or 7 with an equal

probability of1/3.

The scheduler assumed is a priority-based preemptive scheduler, i.e. it guarantees that the

job which gains access to the processor (therunning job), is the one with the highest priority

among the ready jobs. We are not concerned with the policy used to assign priorities to jobs.

We will denote byRi the response time of jobΓi , and byEi the instant when this job finishes

its execution, soRi = Ei − λi . Note thatRi is a random variable. For example, in Figure 1

the Gantt diagram of two possible execution scenarios are shown. In this figure, the shaded

rectangles represent ready jobs unable to run because some other ready job(s) of greater priority

exists. The white rectangles represent running jobs. In the first diagram, all the jobs require

their minimum computation time; in this best-case scenario the jobΓ3 finishes atE3 = 17,

with a response time ofR3 = 8. In the second diagram, all the jobs require their maximum

computation time, which causesE3 = 28and thusR3 = 19.

1Throughout this report we use a calligraphic typeface for denoting random variables, likeCi , Ri , etc.

4

Our goal is to compute the probability of occurrence of each possible response time over all

the possible execution scenarios, for each job in the system, i.e.:

fRi
(r) = P{Ri =r} i = 1,2, . . .

Priority

time

5

10

15

0 5 10 15 20 25

Γ1

Γ2

Γ3

Γ4

(a) Best case scenario

Priority

time

5

10

15

0 5 10 15 20 25

Γ1

Γ2

Γ3

Γ4

(b) Worst case scenario

Figure 1: Scheduling of the example in two possible scenarios

3 Calculation of the statistical distribution of the response

time

In this section we will derive a set of propositions and theorems allowing us to determine the

probability density function (PDF) of the response time for any of the jobs in the system. To

calculate the response time of a job, we have to take into account not only the computation time

required by the job and the interference that future jobs could cause on it due to preemption,

but also the pending workload not yet serviced at the instant the job is released. So, we first

investigate how to determine the PDF of the pending workload at any instant.

3.1 Calculation of the pending workload PDF

We will define the pending workload in relation to a certain priority level, because we are

interested in its influence on the response time of a job, and there is no influence from jobs of

lower priority.

5

Definition 1. The pending workload of priority levelPat timet, noted asWP,t is the sum of all

computation times not yet serviced for all jobs of priority greater than or equal toPat timet.

W5,t

t

5
8

3

λ1=0 λ2=6 λ3=9 λ4=17

(a) Best case scenario

W5,t

t

7

9

5

λ1=0 λ2=6 λ3=9 λ4=17

(b) Worst case scenario

Figure 2: Pending workload of priority 5, in two different scenarios

As an example, Figure 2 shows the evolution in time of the pending workload of priority

level 5, for the best and the worst execution scenarios of the example presented in Table 1.

In this figure, each vertical arrow represents the release of a job, and the length of the arrow

(labeled to its right) is the computation time required by this job.

The reader can see from this example that the pending workload of priorityP= 5, at the

instantλ2, can take two possible values: 0 units (best case) or 1 unit (worst case). In general,

WP,t is a random variable, which can take any value at a given time. We are now interested in

determining the probability of occurrence for each value.

It is easy to determine the PDF of the pending workload at any instantt ′ if we know the

PDF of the pending workload at another previous instantt, and we know that no new jobs were

released in the interim. See for example Figure 3(a), which represents a hypothetic PDF for the

pending workload of priorityP, at a given instantt. Let us consider another instant,t ′, 6 units

of time aftert, and suppose that no new jobs of priority greater than or equal toP are released

betweent andt ′. If the pending workload att is 6 or less, the pending workload att ′ will be

6

zero. The probability for this, in the example of Figure 3, is:

P{WP,t ′ =0}= P{WP,t ≤6}= 1/27+3/27+1/27= 5/27

If the pending workload att is greater than 6, the pending workload att ′ will be 6 units

less, as this is the time elapsed. Thus, we can build the PDF of the new pending workload by

“shifting” the PDF ofWP,t 6 units to the left, and “accumulating” in the origin the values with

w≤ 0 after the “shift”. The result of this manipulation is shown in Figure 3(b). This idea is

formalized in the following proposition.

P{WP,t =w}

w0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t ′− t

1/27

3/27

1/27

3/27

5/27

3/27
2/27

4/27

2/27
1/27

2/27

(a) For the instantt

P{WP,t ′ =w}

w0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5/27

3/27

5/27

3/27
2/27

4/27

2/27
1/27

2/27

(b) For the instantt ′ = t +6

Figure 3: Example of the PDF of the pending workload in two different instants,t and t ′,
separated by 6 units of time

Proposition 1. If no job with priority greater thanP, released in the interval[t, t ′] exists, then

fWP,t′ (w) =

t ′−t

∑
i=0

fWP,t
(i) for w = 0

fWP,t
(w+ t ′− t) for w > 0

(1)

Proof. Since no workload is added to the system betweent andt ′, the workload int ′ will be

equal to the one int, minus the elapsed time(t ′− t). However, the pending workload cannot be

negative, so if the workload att is less than or equal tot ′− t, the workload att ′ will be zero.

From these considerations, the proof of the proposition is immediate.

Let us now address the case in which the workload is increased by the release of a new job,

7

at instantλk. The following proposition relates the PDF of the workload just after the instantλk

with the PDF just beforeλk.

Proposition 2. Let WP,λ−k denote the pending workload of priorityPat instant(λk− ε), when

ε → 0, and letWP,λ+
k

denote the workload of priorityP at instant(λk + ε) whenε → 0. If a

single jobΓk, with priority Pk ≥ Pis released at instantλk, then:

fWP,λ+
k
(w) =

(
fWP,λ−k

⊗ fCk

)
(w) (2)

where⊗ is the discrete convolution operator (see appendix).

Proof. The pending workload at instantλk suffers a discontinuity, since it is increased by the

job released atλk, by an amount equal to its computation timeCk. The pending workload and

the computation time are both random variables, so, by elementary statistical theory, the PDF

of their sum is obtained by convolution of their respective PDFs, as stated in eq. (2).

These propositions give us an algorithm for calculating the PDF of the pending workload

for a given priority levelPat any instantλn, as follows:

1. Start at instantt = λ0. At this instant the PDF of the pending workload is assumed to be

known (in fact, the initial pending workload is usually zero).

2. Repeat until reaching the desired instant

(a) Advance to the instantλk in which the next job with priority greater than or equal

to P is released. Calculate the PDF of the pending workload at this instant using

Proposition 1. The result is the pending workload just before the release of the job

Γk.

(b) Calculate the PDF of the pending workload just after the release of the new job,

using Proposition 2.

3.2 Calculation of the response time PDF

In this section we will derive the method for obtaining the PDF of the response timeRΓi of an

arbitrary jobΓi released at instantλi (that is, the probability ofRΓi being equal to any given

value).

8

Job λi Pi fCi

Γ1 0 5 Discrete U[2,5]
Γ2 3 10 Discrete U[1,2]
Γ3 6 15 Discrete U[1,3]

Table 2: Second example system

3.2.1 Preliminary example

In order to clarify the problem and the method for solving it, we develop a simple example.

Once the ideas are presented through this example, the method will be formalized in a theorem.

Consider the system shown in Table 2. We want to obtain the PDF of the response time for

the jobΓ1, which is released atλ1 = 0.

For this example we will assume that no pending workload is present in the system whenΓ1

is released. So, if the computation time of jobΓ1 is less than or equal to(λ2−λ1), its response

time will be equal to this computation time, becauseΓ1 will be finished before any other job in

the system can preempt it. However, if the computation requirement is greater than(λ2−λ1),
then jobΓ2 will preemptΓ1, increasing its response time by an amount equal toC2. On the

other hand, ifC1 > (λ2−λ1) and(C1 +C2) > (λ3−λ1), then jobΓ3 will interfere, and thus

R1 = (C1 +C2 +C3).
The proposed approach for obtaining the PDF ofR1 will require several steps. In step zero,

we obtain the PDF ofR1 without considering any future preemption. In step one, we modify

this PDF considering the first preemption thatΓ1 could suffer. In step two, we modify it again

considering the next possible preemption, and so on. LetG j
Γ1

denote the PDF obtained this way

in step j.

Step zero: In our example,G0
Γ1

will be equal toC1, because we assumed there was no pending

workload when jobΓ1 was released. In a more general case,G0
Γi

will be the convolution ofCi

with the pending workload of priorityPi at instantλi . The plot ofG0
Γ1

is shown at the top of

Figure 4(a). This function, gives part of the PDF ofR1, because:

P{RΓ1
=r}= G0

Γ1
(r) for r ≤ λ2−λ1

Figure 4(a) shows that the functionG0
Γ1

splits into two functions, which we will callgl0Γ1
(l for

low) andgh0
Γ1

(h for high). The splitting point is 3, which is(λ2−λ1). Functiongh0
Γ1

can be

saved as part of the desiredfRΓ1
.

Step one: Let us consider the calculation ofP{R1=r}, with r > (λ2− λ1) = 3, for example

for r = 5. Since this event can only happen whenC1 > (λ2− λ1), we have to calculate the

9

G0
Γ1

r0 1 2 3 4 5 6 7

1/4 1/4 1/4 1/4

gl0Γ1

r0 1 2 3 4 5 6 7 8

1/4 1/4

gh0
Γ1

r0 1 2 3 4 5 6 7 8

1/4 1/4

λ2−λ1 = λ ′1

(a) “Splitting” the functionG0
Γ1

at r = 3

G1
Γ1

r0 1 2 3 4 5 6 7 8 9

1/4 1/4

1/8

1/4

1/8

gl0Γ1

r0 1 2 3 4 5 6 7 8

1/4 1/4

gh0
Γ1
⊗ fC2

r0 1 2 3 4 5 6 7 8 9

1/8

1/4

1/8

(b) Construction of the functionG1
Γ1

Figure 4: Calculations for step one

probability of an intersection of events:

P{RΓ1
=5}= P{(C1 > 3)∧(C1 +C2 = 5)}

This probability can be obtained by adding the probabilities of all possible cases in the

intersection:

P{RΓ1
=5}=

5

∑
i=4
P{C1= i} ·P{C2=5− i}

This summation is indeed the convolution of the PDF ofC2 with the functiongh0
Γ1

shown in

Figure 4(a). This argument is true for anyr > (λ2−λ1). On the other hand, forr ≤ (λ2−λ1)
the probabilities were the ones “saved” in functiongl0Γ1

from the previous step. We can then

write:

G1
Γ1

(r) = gl0Γ1
(r)+

(
gh0

Γ1
⊗ fC2

)
(r)

Figure 4(b) illustrates this operation.

10

G1
Γ1

r0 1 2 3 4 5 6 7 8 9

1/4 1/4

1/8

1/4

1/8

gl1Γ1

r0 1 2 3 4 5 6 7 8 9

1/4 1/4

1/8

1/4

gh1
Γ1

r0 1 2 3 4 5 6 7 8 9

1/8

λ3−λ1 = λ ′2

(a) “Splitting” the functionG1
Γ1

at r = 6

G2
Γ1

r0 1 2 3 4 5 6 7 8 9 10 11 12

1/4 1/4

1/8

1/4

1
24

1
24

1
24

gl1Γ1

r0 1 2 3 4 5 6 7

1/4 1/4

1/8

1/4

gh1
Γ1
⊗ fC3

r0 1 2 3 4 5 6 7 8 9 10 11

1
24

1
24

1
24

(b) Construction of the functionG2
Γ1

Figure 5: Calculations for step two

Step two: The ideas presented above are also applicable to this step. The functionG1
Γ1

obtained

in the previous step, splits into functionsgl1Γ1
and gh1

Γ1
, the splitting point being equal to 6

(which isλ3−λ1), as shown in Figure 5(a). The functiongl1Γ1
gives us the first points ofG2

Γ1
,

and the functiongh1
Γ1

is convolved with the PDF ofC3 to obtain the remaining points ofG2
Γ1

.

This process is presented graphically in Figure 5(b).

Since no more jobs are released in this system, the functionG2
Γ1

obtained in the last step,

is the PDF ofR1. If more jobs were released, the calculation would continue with new steps,

analogous to the ones already seen.

In the following section we formalize these ideas.

3.2.2 Iterative method for calculating the PDF of the response time

Suppose that we want to determine the PDF of the response time of an arbitrary jobΓi , that

is, the functionfRΓi
. In order to simplify the notation, we will denote asΓ′1,Γ′2, . . . , all jobs of

11

priority greater thanPi which are released after the instantλi . Computation times of these jobs

will be denoted asC′1,C′2, . . . , and their release instants asλ ′1,λ ′2, For completeness, we will

also denote the jobΓi asΓ′0, its computation time asC′0, and its release instant asλ ′0. In the

interest of simplicity, we also change the time origin to the instantλi . This situation is shown

in Figure 6.

tλi = λ ′0 = 0

Ci = C′0

λ ′1

C′1

λ ′2

C′2

λ ′j

C′j
.

Figure 6: Renumbering of jobs withPj > Pi and time origin shift

We defineG0
Γi

as:

G0
Γi

(r) =
(

fWPi ,λ ′-0
⊗ fC′0

)
(r) (3)

This function can be understood as the PDF ofRi if no new jobs are released after instant

λi = λ ′0. As a generalization of this concept, we define the functionG j
Γi

as the PDF ofRi if no

new jobs are released after instantλ ′j .
Given the functionG j

Γi
, we obtain from it two new functions by “splitting”G j

Γi
at point

(λ ′j+1−λ ′0). These new functions are defined as follows (note that(λ ′j+1−λ ′0) = λ ′j+1 due to

the time origin shift):

gl j
Γi

(r) ,

G j
Γi

(r) for r ≤ λ ′j+1

0 for r > λ ′j+1

(4)

ghj
Γi

(r) ,

0 for r ≤ λ ′j+1

G j
Γi

(r) for r > λ ′j+1

(5)

The following theorem gives a method for calculating the response time PDF of any given

job.

Theorem 1. The PDF of the response time of jobΓi is given by function:

fRi
(r) = G j

Γi
(r), for r < λ ′j+1 (6)

beingG j
Γi

(r) calculated as

G j
Γi

(r) = gl j−1
Γi

(r)+
(
ghj−1

Γi
⊗ fC′j

)
(r) (7)

12

and beingG0
Γi

calculated as in eq. (3).

Proof. Equation 6 is simply derived from the definition ofG j
Γi

, since we defined this function as

the PDF of the response timeRi , if no new jobs were released after instantλ ′j . The probability

of Ri taking a valuer belowλ ′j+1 is given directly by functionG j
Γi

, because for these cases the

job Γi finishes before the instantλ ′j+1, and then none of the jobs arriving afterλ ′j can influence

it.

We will prove the recurrence relation of eq. 7, dividing the proof in two cases, depending

on the value ofr.

Case 1:r ≤ λ ′j
For these values, functionghj−1

Γi
(r) is zero by definition, so the convolution is zero, and

eq. (7) is reduced to:

G j
Γi

(r) = gl j−1
Γi

(r) r ≤ λ ′j

Moreover, forr ≤ λ ′j according to eq. (4) this can be rewritten as:

G j
Γi

(r) = G j−1
Γi

(r) r ≤ λ ′j

According to the meaning given to functionG j
Γi

, the above equation implies that the proba-

bilities of Ri taking any valuer belowλ ′j are the same, whether the job released atλ ′j is taken

into account or not. This is true, because the jobΓ′j cannot preemptΓi , wheneverr ≤ λ ′j (as this

condition implies thatΓi has finished before the release ofΓ′j).

Case 2:r > λ ′j
Let R− be the response time ofΓi without considering the influence of jobΓ′j , andR+ be

the response time after considering its influence. The probability ofR+ = r, whenr > λ ′j is the

probability of an intersection, because two conditions must be met for such an event to occur:

1. The jobΓi must still be active at instantλ ′j . This means that the response timeeven

without consideringthe interference of jobΓ′j , is greater thanλ ′j , that is:R− > λ ′j .

2. The sum of the response timewithout consideringthe interference of jobΓ′j , and the

computation requirements of this job, must be equal tor, that is:R−+C′j = r.

To obtain the probability of this intersection, we have to consider, from all possible cases,

only those which fulfil both conditions. The sum of probabilities of these cases is the desired

13

result. Thus, forr > λ ′j :

P{R+=r}=
∞

∑
k=λ ′j+1

P{R−=k} ·P{C′j =r−k}

By definition,P{R−=k}= G j−1
Γi

(k), so the above sum can be rewritten as:

P{R+=r}=
∞

∑
k=λ ′j+1

G j−1
Γi

(k) · fC′j (r−k)

The functionG j−1
Γi

(k) can be substituted byghj−1
Γi

(k), since both functions are equal in the

range[λ ′j +1,∞), which is the range fork in the summation. Moreover, if we make this change,

we can extend the lower limit of the summation to−∞, because the functionghj−1
Γi

(k) is zero

for all k≤ λ ′j . This leads to:

P{R+=r}=
∞

∑
k=−∞

ghj−1
Γi

(k) · fC′j (r−k)

=
(
ghj−1

Γi
⊗ fC′j

)
(r) for r > λ ′j

Adding gl j−1
Γi

(r) to the second member of this equation does not alter it, becausegl j−1
Γi

(r)
is zero for allr > λ ′j . This way we obtain the same expression as in eq. (7). On the other hand,

by definition,G j
Γi

(r) is the probability of the response timeRi taking the valuer, when the

interference of jobΓ′j is taken into account, that is,P{R+=r}. Thus:

G j
Γi

(r) = P{R+=r}
= gl j−1

Γi
(r)+

(
ghj−1

Γi
⊗ fC′j

)
(r) r > λ ′j

This theorem provides an iterative method for findingP{Ri =r} for any givenr. Starting

from G0
Γi

, the functionG1
Γi

is calculated, and thenG2
Γi

, and so on, until reaching aj such that

λ ′j+1 > r. The functionG j
Γi

obtained this way, gives the wanted probabilities for anyr < λ ′j+1.

It is worth noting some facts of practical interest:

• Under some circumstances, it is not necessary to iteratej times to obtainG j
Γi

. If at some

iteration,k, we find thatghk
Γi

is zero in all its points, then all successive iterations will

14

give the same functionGk
Γi

. In this case, the complete PDF ofRi has been found, since:

fRi
(r) = Gk

Γi
(r) for all r

• Given a deadlinedi for the jobΓi , the probability of the response time exceeding this

deadline can also be obtained from functionG j
Γi

, with di ≤ λ ′j+1, using the formula:

P{Ri >di}= 1−P{Ri ≤di}

= 1−
di

∑
r=0

G j
Γi

(r) for di ≤ λ ′j+1 (8)

This observation is of practical interest, since it means that, to obtain the probability of

deadline misses, is not necessary to know the complete PDF ofRi . It is enough to know

its first di points, which can be obtained afterj (or less) iterations of Theorem 1,j being

the smallest integer such thatdi ≤ λ ′j+1.

3.3 Computational complexity

At first glance it might seem that the calculation of the response time PDF should take all the

possible interactions between all jobs into account, thus leading to a combinatorial explosion.

However this is not the case; the algorithm has polynomial complexity, as will be shown in this

subsection. The reason for this is that at any instant, the whole past of the system is summarized

in the PDF of the pending workload for each priority level.

Let mbe the number of jobs in the system, andn be the maximum number of points defining

the PDF of their computation times. Let us consider the number of operations required to

calculate the PDF of the response time of a jobΓi , assuming that all other jobs in the system

have a priority greater thanPi , and that their computation times are such that all of them can

interfere with (preempt) the jobΓi . This is the case which requires the maximum number of

calculations, since it is necessary to performm convolutions.

Each convolution required by the algorithm is performed between two functions: one is the

PDF resulting from the previous iteration, the other is always the computation time PDF of a

job, which hasn points. This means that each new convolution performed will increase the size

of the result inn points. In general, the result of thej-th convolution will have a size ofjn

points, causing the next convolution to requireO(jn2) operations (see appendix). To do all the

15

mconvolutions, the number of operations required is:

m

∑
j=1

jn2 = O(m2n2)

Since these operations have to be performed for each job in the system, and there arem jobs,

the total number of operations for obtaining the response time PDF for all jobs will beO(m3n2).
Note that this is a pessimistic bound, as in practice the number of convolutions to perform for

each job will be less thanm. Moreover, the complexity of the convolution calculation can be

reduced using the Fast Fourier Transform.

3.3.1 Experimental results

We have implemented a preliminary, non-optimized version of our algorithm in a simple tool.

We have fed the tool with several synthetic, randomly generated, system models. Each synthetic

system was composed ofm jobs, whose PDF were defined byn points at maximum,m and

n being the parameters for the experiment. The release instants of these jobs were selected

randomly, but ensuring that the system had a high load. On average, the sum of the maximum

computation time required by all the jobs was around 120% of the release instant of the last job.

The time required by the tool to solve these systems on a personal computer is shown in

Figure 7. For each point in the graph several simulations were performed, and the average time

was plotted. The linearity of the logarithmic plot is to be noted, as this corroborates the polyno-

mial complexity of the algorithm, with the exception of systems with a small number of jobs,

in which the aspects of initialization and input/output of the tool prevail over the computational

aspects.

0.001

0.01

0.1

1

10

10 100 1000

T
im

e
(in

se
co

nd
s)

Numberof jobs(m)

n = 5

n = 45

Figure 7: Time required to run the algorithm (experimental)

16

4 Application to the periodic tasks model

In the classic analysis, the system is modelled as a finite set of tasksS= {τ j}. A task is a

process in the system, which periodically executes at a given priority, does its job, and finishes

until the next activation. Each taskτi can be modelled with three parameters: its periodTi , its

priority Pi , and its computation timeCi , which traditionally was a fixed amount, but will be

replaced in this report by a random variable of known PDF.

Our model can be considered a particular case of the periodic task model if we consider each

instance of a task as a new job. This way, the original systemS, composed of a finite number

of tasksS= {τi} can be transformed in another systemS′ composed of an infinite number of

jobs S′ = {Γi}. Each taskτi in S gives rise to an infinite number of jobsΓi1,Γi2, . . . all with

the same priorityPi and the same computation time PDF,fCi
. The arrival instants of these jobs

will be λi1,λi2, . . . with (λi j
−λi j−1

) = Ti . Once systemShas been transformed intoS′, it can be

analysed by the methods presented in previous sections. However, since the sequence of jobs

generated this way is infinite, we have to investigate how to obtain valid and useful predictions

by using only a finite subset of them.

The arrival instants of the jobs, and the PDF of their computation times follow a regular

pattern, whose period is equal to the hyperperiod of the system. This is the least common

multiple (LCM) of the task periods. This regularity in the arrival of the jobs points towards a

possible repetitive behaviour of the response times.

When the maximum total utilization of the system is less than one, the amount of workload

generated by the jobs does not exceed the hyperperiod lenght, even in the worst-case scenario.

So an hyperperiod cannot affect to the following hyperperiod, and the analysis can be restricted

to a single hyperperiod.

However, if the maximum total utilization is greater than one, there exists a probability of

having pending workload at the end of each hyperperiod. This modifies the initial conditions

for the next hyperperiod, and thus the PDF of the response times of the jobs are different over

time. We have found experimentally that, even when the maxmimum utilization factor is greater

than one, if the averege utilization factor is less than one, the PDF of the pending workload at

the end of each hyperperiod “converges” towards a stationary distribution. The formal proof of

this behaviour, and the finding of a method for obtaining the “steady state” PDF is still an open

issue.

17

Task Ti Pi fCi

τ1 70 2 U[25,26]
τ2 100 1 U[61,62]

Table 3: A simple periodic system

4.1 Example with total utilization less than 1

We present a simple example with two periodic tasks. This example is based on the one pre-

sented by Lehoczky in [7] to illustrate the busy-period concept. The original example had two

tasks, of periods 70 and 100, and fixed computation times of 26 and 62, respectively. The

rate-monotonic policy assigns a higher priority to the first task. These settings give rise to a

worst-case response time of 118 for the second task, as was calculated in [7]. Because the dead-

line of the task was greater than its period, its worst response time did not necessarily have to

occur in its first activation. Indeed, it occurred in the fifth one.

We use the same set of tasks, with the same periods, but we now assume that the computation

times are not deterministic, but random. The computation time for the first task can take two

values, 25 or 26 with equal probability, and the computation time for the second task can be 61

or 62, also with equal probability. This information is summarized in Table 3.

The maximum utilization factorUmax is 0.991429. SinceUmax < 1, the analysis can be

restricted to the first hyperperiod, which is of 700 time units. The analysis forτ1 is trivial, since

it cannot suffer interference from other tasks.

Taskτ2 will execute 7 times within the hyperperiod, and in general, the PDF of the response

time will be different in each of these activations. For finding these PDFs, it is necessary to

“develop” the task model into a job model. This leads to a system with 17 jobs (10 instances of

τ1 plus 7 instances ofτ2), whose release times will all be the multiples of 70 or 100. This gives

the situation depicted in figure 8.

0

Γ0

Γ1

70

Γ2

100

Γ3

140

Γ4

Γ5

210

Γ6

280

Γ7

Γ8

350

Γ9

400

Γ10

420

Γ11

490

Γ12

Γ13

560

Γ14

600

Γ15

630

Γ16

700

Figure 8: Release instants for the jobs generated by the tasks in the example

Note that the sub-indexes of the jobs are ordered in time, i.e.i < j implies thatλi ≤ λ j , as

required by our model. Also note that jobs 0 and 1 arrive at same instant; soλ0 is equal toλ1.

18

The computation time of jobs 0, 2, 4, 6, 7, 9, 11, 12, 14 and 16 is that of taskτ1, while the

computation time of jobs 1, 3, 5, 8, 10, 13 and 15 is that of taskτ2.

Applying the techniques exposed in this report, we calculate the PDF of the response time

for jobs 1, 3, 5, 8, 10, 13 and 15, which are the activations of taskτ2, within the hyperperiod.

The results are shown in Table 4 (dashes denote a probability of zero). It is worth noting that the

worst case response time (of 118 units) coincides with that calculated with the classic analysis,

occurring in the fifth activation of the task, but our method provides additional information,

showing us that the probability of occurrence of this worst case time is very small.

The table also shows the average probability of each response time, among all the activations

of task 2. This information is shown graphically in Figure 9. From this PDF, we can compute

the probability of the response time being greater than any given value, by simple addition.

For example, if the deadline of the second task were 115, the probability of missing it would

be 0.001179, so we could still consider the system schedulable if we were willing to admit

0.1179% of deadline misses.

P{R=r}

r85 90 95 100 105 110 115

0.05

0.1

Figure 9: Probability distribution of the response time for taskτ2, among all its possible execu-
tions

5 Conclusion and future work

In this report we have introduced stochastic response-time analysis, a model and a conceptual

framework which allows statistical analysis of job response times. The model requiresa priori

knowledge of the probability density function (PDF) of the computation time required by each

job. We have derived formulae for calculating the pending load PDF at any instant, and the

response time PDF of any job. The statistical information given by our method can be combined

with deadlines, thus obtaining the probability of deadline misses for any job in the system,

which can be used as a measurement of Quality of Service. If this probability is zero for a task,

then its deadline is guaranteed. In this sense our analysis subsumes the classic response-time

analysis.

The analysis can be applied to the classic periodic task model, provided that the maximum

19

Activation
r 1 2 3 4 5 6 7 Average

86 — — — — 0.186035 — — 0.031006
87 — — — — 0.418457 — 0.031151 0.074935
88 — — — — 0.293701 — 0.155846 0.074925
89 — — — — 0.078613 — 0.311974 0.065098
90 — — — — 0.020019 — 0.312462 0.055414
91 — — — — — — 0.156746 0.026124
92 — — — — — — 0.031685 0.005281
93 — — — — — — 0.000130 0.000022
94 — — — — — — 0.000008 0.000001
95 — — — — — — — —
96 — — — — — — — —
97 — 0.031250 — 0.025391 — — — 0.009440
98 — 0.156250 — 0.131836 — — — 0.048014
99 — 0.312500 — 0.279297 — — — 0.098633

100 — 0.312500 — 0.307617 — — — 0.103353
101 — 0.156250 — 0.185547 — 0.124603 — 0.077733
102 — 0.031250 — 0.059570 — 0.374176 — 0.077499
103 — — — 0.009766 — 0.374939 — 0.064117
104 — — — 0.000977 — 0.125793 — 0.021128
105 — — — — — 0.000458 — 0.000076
106 — — — — — 0.000031 — 0.000005
107 — — — — — — — —
108 — — — — — — — —
109 — — — — — — — —
110 — — — — — — — —
111 0.125000 — 0.101562 — — — — 0.037760
112 0.375000 — 0.324219 — — — — 0.116537
113 0.375000 — 0.367188 — — — — 0.123698
114 0.125000 — 0.171875 — — — — 0.049479
115 — — 0.031250 — — — — 0.005208
116 — — 0.003906 — 0.001465 — — 0.000895
117 — — — — 0.001587 — — 0.000264
118 — — — — 0.000122 — — 0.000020

Table 4: Probability ofR = r for taskτ2 of the example

total utilization is less than one. In this case, it is sufficient to perform the analysis to the jobs

released within a single hyperperiod. Our current research is focused in the analysis when the

maximum total utilization is greater than one.

However, the model does not allow for uncertainty in the release instants of the jobs, and

assumes all tasks to be independent. Our future work will focus on extending the analysis by

taking into account the releasejitter and the possibility of blocking jobs in the access of shared

resources.

Appendix. Discrete convolution calculation

The convolution of two discrete functionsf andg is defined as

(f ⊗g)(x) =
∞

∑
i=−∞

f (i)g(x− i)

20

Note that, in all the cases presented in this report, functions are zero for negative values of their

arguments, so the lower limit of the summation can be changed toi = 0.

If functions f and g are defined by vectors of sizenf and ng, the number of operations

required to perform the convolution isO(nf ng), and the resulting function will be a vector of

size(nf +ng−1).

References

[1] A. K. Atlas and A. Bestavros. Statistical rate monotonic scheduling. InProceedings of the 19th

IEEE Real-Time Systems Symposium, Madrid, Spain, Dec. 1998.

[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time scheduling: The

deadline monotonic approach. InProceedings 8th IEEE Workshop on Real-Time Operating Sys-

tems and Software, May 1991.

[3] A. Burns. Preemptive priority based scheduling: An appropiate engineering approach. In S. H.

Son, editor,Advances in Real-Time Systems. Prentice Hall, 1994.

[4] G. C. Buttazzo.Hard Real-Time Computing Systems. Predictable Scheduling Algorithms and Ap-

plications. Kluwer Academic Publishers, 1997.

[5] R. I. Davis, K. Tindell, and A. Burns. Scheduling slack time in fixed priority preemptive systems.

In Proceedings of the Real-Time Systems Symposium, pages 222–231. IEEE Computer Society

Press, Dec. 1993.

[6] M. K. Gardner.Probabilistic analysis and scheduling of critical soft real-time systems. PhD thesis,

University of Illinois, Urbana-Champaign, 1999.

[7] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. InProceed-

ings 11th IEEE Real-Time Systems Symposium, pages 201–209, Dec. 1990.

[8] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks in

fixed-priority preemptive systems. InProceedings of the Real-Time Systems Symposium, pages

110–123, Dec. 1992.

[9] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact characteriza-

tion and average case behavior. InProceedings of the IEEE Real-Time Systems Symposium, pages

166–171, Dec. 1989.

[10] J. P. Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic responsiveness in hard real-time

environments. InProceedings of the 8th Real-Time Systems Symposium, pages 261–270, Dec.

1987.

[11] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time envi-

ronment.J. ACM, 20(1):46–71, 1973.

[12] A. K. Mok and D. Chen. A multiframe model for real-time tasks.IEEE Trans. Softw. Eng.,

23(10):635–645, Oct. 1997.

21

[13] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard real-time systems.

Journal of Real-Time Systems, 1(1):27–60, 1989.

[14] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-S. Liu. Probabilistic per-

formance guarantee for real-time tasks with varying computation times. InProceedings of the

Real-Time Technology and Applications Symposium, pages 164–173, Chicago, Illinois, May 1995.

[15] K. Tindell and J. Clark. Holistic schedulability analysis for distributed real-time systems.Micro-

processing and Microprogramming, 50(2–3):117–134, Apr. 1994.

22

