
UNIVERSIDAD OF OVIEDO

Computer Science Department

Stochastic Analysis of the Steady-State
Backlog in Periodic Real-Time Systems

Jose Luis D́ıaz, Jose Maŕıa López,
Daniel F. Garćıa

Technical Report
May, 2003

Abstract

Classical analysis of real-time systems focuses in the study of the “worst-case”
scenario, by assuming that all task will require their worst-case execution time, and
a critical instant in which the response time will be the longest. Recently, some
authors modelled the execution time as a random variable, and developed several
techniques in order to obtain the distribution of the response time, from which the
probability of deadline misses can be derived.

We introduced in Díaz et al. [2002] one of these techniques, which can be ap-
plied when the maximum system utilization is not greater than 1. In this report, we
show that these techniques can also be applied to systems with maximum utiliza-
tion greater than 1, whenever the average system utilization is not greater than 1.
For this case, we prove the existence of a steady-state regime, in which the response
time of all jobs follow a stationary probability function. The response time distri-
butions for that steady-state regime can be derived from the steady-state backlog
distribution, using the techniques presented in Díaz et al. [2002], so in this report
we concentrate solely in the obtention of this steady-state backlog distribution. We
provide a methodology for the computation of the exact distribution, and investi-
gate some approximations which have less computational cost than the exact solu-
tion.

2

Contents

Notation 5

1. Introduction 7

2. System model and definitions 8
2.1. System parameters . 8
2.2. Problem statement . 10
2.3. Other concepts and definitions . 11

3. Steady-state backlog computation. Markovian analysis 16
3.1. Preliminary concepts . 16
3.2. Trivial case: Umax ≤ 1 . 17
3.3. General case . 19

3.3.1. The initial backlog is a Markov chain 19
3.3.2. Markov matrix computation . 20
3.3.3. Stationarity and convergence . 22
3.3.4. Computation of the steady-state distribution 30

4. Approximated methods for obtaining the steady-state distribution 40
4.1. Problems with the analytical solution . 40
4.2. Truncation of the Markov matrix method 41
4.3. Iterative method . 41

A. Appendix 42
A.1. Number of roots with modulus greater than 1 in the characteristic poly-

nomial of matrix A . 42

References 46

List of Figures

1. Illustration of the concept of hyperperiod 12
2. Evolution of the backlog distribution in the example systems 15
3. Example of irregularity in the first hyperperiods 16
4. Graphical proof for theorem 1 . 18
5. A simple example of a non-irreducible system 26
6. Inter-state communication, starting from state zero, for the non-irreducible

example . 27
7. Inter-state communication, starting from any state, for the non-irreducible

example . 27
8. Activation pattern for the example . 31
9. Decrease of the error in each iteration . 43
10. f + g < g at abcise inmediately to the left of 1 46

3

List of Tables

1. Three example systems, with identical release patterns but different uti-
lization factors . 14

2. Example system for computing the backlog steady-state distribution . . . 30
3. Normalized steady-state distribution . 39
4. Evolution of the backlog probability function, using the iterative method 43

4

Notation

Model and analysis notation

A Matrix derived from P, which express the recurrence relation existent among
the components of πππ. (See pag. 33)

bi(j) Element of the Markov matrix P, located at column i, row j. (See pag. 21)

C Execution time (random variable), equal to the time required by the task if
no other tasks were active in the system. Ci denotes the execution time of
the i-th task in a periodic tasks system, while Cj denotes the execution time
of the j-th job activation from the time origin. (See pag. 8)

Cmax Maximum execution time of a task (WCET). (See pag. 9)

C̄ Average execution time of a task. (See pag. 13)

Cmin Minimum execution time of a task. (See pag. 9)

Di Relative deadline of i-th task in the periodic tasks system. (See pag. 8)

fX(·) Probability function (PF) of the random variable X. Also called “probability
mass function” (PMF). (See pag. 9)

Γ Job. Task instance. Sometimes it carries two subindexes (e.g. Γi,j), to indicate
the j-th activation of the i-th task. Other times it carries a single subindex
(e.g. Γj), when the task to which it belongs is not important, to denote the
j-th job in the sequence of jobs activations from the time origin. (See pag. 9)

i Index commonly used to refer to the parameters of a task, like in Ci, Di, etc.
(See pag. 10)

j Index commonly used to refer to the parameters of the job which makes the
j-th place in the job sequence, when the task to which it belongs does not
matter. (See pag. 10)

λi,j Activation instant of the j-th instance of task τi. (See pag. 10)

λj Activation instant of the j-th job from the time origin. (See pag. 10)

λi Eigenvalues of matrix A. (See pag. 33)

mr Row index of the last non-null element in the r-th column of the Markov
matrix P. (See pag. 21)

N Total number of tasks in the periodic tasks system. (See pag. 8)

P Markov matrix governing the backlog process {W(k)}. (See pag. 21)

5

πππ Column vector, solution of equation πππ = Pπππ. If its sum is 1, it is the proba-
bility function of the steady state backlog. (See pag. 22)

Φi Phase or offset of i-th task in the periodic tasks system. (See pag. 8)

Pi Priority of task τi, for task-level priority assignment policies such as RM or
DM. (See pag. 8)

Pj Priority of the j-th job’s activation, from the time origin, for job-level priority
assignment policies, such as EDF. (See pag. 8)

P{x } Probability of event x. (See pag. 9)

Ri Response time of task τi. It is a random variable. (See pag. 9)

Ri,j Response time of the j-th instance of task τi. (See pag. 10)

r Maximum spare time. It is the time in which the system is idle during the
first complete hyperperiod (defined in 5), for the case in which all the tasks
require their minimum execution time. Markov matrix P shows a regular
structure after its r-th column. (See pag. 21)

S System, set of periodic tasks. (See pag. 8)

s Minimum spare time. It is the time in which the system is idle during the
first complete hyperperiod (defined in 5), for the case in which all the tasks
require their maximum execution time. (See pag. 17)

τi i-th task in the periodic tasks system. (See pag. 8)

Ti Period of i-th task in the periodic tasks system. (See pag. 8)

Umin Minimum system utilization factor. (See pag. 13)

Ū Average system utilization factor. (See pag. 13)

Umax Maximum system utilization factor. It coincides with the total system uti-
lization used in the clasical “worst-case” analysis. (See pag. 13)

vi Eigenvectors of matrix A. (See pag. 33)

Wk Backlog observed at the beginning of the k-th hyperperiod, i.e. at instant kT.
It is a random variable. The sequence {Wk} is an stochastic process, called
the “backlog process”. (See pag. 17)

Wmax Backlog at the end of the first complete hyperperiod (defined in 5), when all
the tasks require their maximum execution time. (See pag. 17)

Wmin Backlog at the end of the first complete hyperperiod (defined in 5), when all
the tasks require their minimum execution time. (See pag. 21)

6

1. Introduction

Classical analysis of real-time systems [Liu and Layland, 1973; Lehoczky, 1990; Tindell
et al., 1994] focuses on guaranteeing the schedulability of the system when all jobs use
their worst computation time.

This approach is very restrictive, as the worst computation time assumed for each
task may be too pessimistic, and the situation under which each task would suffer the
maximum interference from other tasks may be very unlikely, especially if we allow
for variable computation times in the tasks. Both these factors lead to very high calcu-
lated response times, which could occur in theory, but with little probability in practice.
There are many soft real-time applications whose tasks have highly variable computa-
tion requirements and deadlines are not hard. For these applications, the probability of
missing a deadline could serve as a measurement of its Quality of Service (QoS). More-
over, knowledge of these probabilities can still be useful for the design of hard real-time
systems, as long as the application allows for a given failure rate (for example, the prob-
ability of missing a deadline could be as small as the probability of hardware failure).

In [Díaz et al., 2002] we have introduced a model in which the execution time of
each job is considered an stochastic variable of known probability function. Thus, we
consider not only the worst-case computation time, but all the possible computation
times and their probabilities. We have presented an algorithm to calculate the statisti-
cal distribution of the response time for each job. This approach was already proposed
by other authors [Tia et al., 1995; Gardner, 1999; Abeni and Buttazzo, 1999; Atlas and
Bestavros, 1998], but in all these works some aditional assumptions were made in or-
der to simplify the problem (as for example, to restrict the deadlines of the tasks to be
less than their periods, to analyze only the response time in a critical instant, or to re-
quire a special scheduler in order to guarantee isolation among tasks. The reader is
refered to [Díaz et al., 2002] to find more details about the motivation of our work, and
their differences with the previous related work.

We will not repeat in this report the methods already explained in [Díaz et al., 2002],
in order to save space. Using these methods it is possible to obtain the probability func-
tion of the execution time of any job, given the probatility function of the backlog at the
release instant of the first job in the sequence, and the release instants and execution
time distributions of these jobs. This framework allows, at least in theory, for obtaining
the probability function of the response time for any job. However, the total number
of jobs is infinite, so it is not possible to numerically find the probability function re-
sponse time for all of them. It is necessary to complete the method in order to avoid
this “infinite” problem.

It is concevaible that, since the release instants of the job follow a repetitive pattern,
their response times also follow a repetitive pattern. For example, perhaps the first job
of each hyperperiod always presents the same response time distribution. If this were
the case, the complete sequence of infinite jobs could be analyzed from a finite number
of them.

In this report we will focus on the obtention of the backlog probability function at any
instant. It will be shown that, in general, this probability function depends on time, and
that under certain circunstances, it “converges” towards a steady-state distribution. We

7

will prove that the condition Ū < 1 ensures this convergence, and provide methods for
obtaninig the steady-state distribution. This way we can compute the probability func-
tion of the backlog at the beginning of a hypothetical “steady-state hyperperiod”. Using
this backlog as “initial backlog” and by applying the techniques in [Díaz et al., 2002],
it would be possible to obtain the response time distributions of all jobs in this hyper-
period. These represents the “steady-state” response time distributions, and thus the
long-term behaviour of the system. From these distributions the probability of dead-
line misses for each task can be accurately computed.

In section 2 we present the system model, state the problem we want to solve, and
define some important concepts. In section 3 we attack the problem of the convergence
of the backlog distribution, with mathematical proofs of the conditions which ensure
this convergence and the description of a methodology for numerically computing the
exact distribution. In section 4 we show some ways of obtaining an approximation of
that distribution, which are less computationally expensive.

2. System model and definitions

The system is composed of a single processor, wo which several jobs arrive at determin-
istic instants, known beforehand. The execution time of the jobs are random variables,
and its probability function is also known. Each job has a priority associated to it, Pj
(this can be a fixed-priority, set at design time, or it can be dinamically set when the job
arrives to the system). The priority assignement policy does not concern us. A sched-
uler is running in the processor, which guarantees that the job with maximum priority
among all ready jobs is the one which receives the processor. The scheduler is preemp-
tive, that is, if a new job arrives with priority greater than the one of the job currently
executing, this one will be suspended, in order to let the new one to take the processor.
A suspended job is resumed as soon as it becomes the job with greater priority among
all ready jobs.

Each job is a task instance. All jobs corresponding to the same task have the same
execution time probability function, and the same deadline, (and in the case of fixed
priorities, the same priority Pi). The only difference among the jobs corresponding to
the same task is their release instant (and its priority for the case of dynamic priori-
ties). The release instants of the jobs belonging to a task are deterministic, and they are
separated in time by a constant interval. We assume that jobs do not access to shared
resources, and they do not have critical sections which may cause blocking to them.

2.1. System parameters

The system can be modelled as a set of independent periodic tasks S = {τi}, with
i = 1, . . . , N, being each task defined by the following parameters τi = {Ti, Φi, Di, Ci}:

• Period Ti. Is the time elapsed between two successive releases of the task.

8

• Offset Φi. Is the instant of the first release of the task (the release instant of its first
job).

• Deadline. It is the deadline, relative to the release instant, in which the job must
finalize.

• Execution time Ci. It is the amount of “processor resource” which is required by
the job. It can be seen as the time that the job would require to complete, if its
execution would start inmediately, and no preemption could occur1.

The first three parameters are deteriminstic, but the last parameter (the execution
time Ci) is a random variable. In order to clearly differenciate random variables from
deterministic variables, we will use a callygraphic typeface for the first ones.

Then, an aditional system parameter is the statistical distribution of the execution
time Ci of each task. We do not impose any particular distribution (such as gaussian,
exponential or others). So, in order to complete the system specification, it is necessary
to give the probability function of the execution times. Assuming some resolution in the
time measure, the execution times can only take integer values, and then the probabil-
ity function will be a discrete one. This probability function assigns one probability to
each possible execution time.

We will denote by fCi(·) the probability function of the random variable Ci. Denoting
by P{x} the probability of event x, we have, by definition:

fCi(c) , P{Ci = c} (1)

Although the probability function is theoretically infinite, in practice the execution
time of a task τi is comprised in a finite interval [Cmin

i , Cmax
i], so the probability func-

tion fCi(·) can be completely described by a finite number of points. An obvious data
structure for storing this kind of functions is the one-dimensional array. Each possible
execution time will be an index to the array, and the stored value at that index will be
its probability.

We will call the “response time” of task τi, to the time elapsed between the instant
in which the task is released until the instant in which it finishes its execution. We
will denote it by Ri. This quantity is a random variable. If the task is running alone
in the system (or if it is the highest priority task), its response time will coincide with
its execution time. That is, the PF of Ri will be equal to the PF of Ci. However, in the
general case, other tasks executing in the system will cause interference on it, and this
will produce a different PF for Ri.

The task concept is an abstraction. What are running in the system are jobs, which
are task instances. Each task τi gives rise to an infinite sequence of jobs Γi,j, all of them
with the same execution time PF, and the same relative deadline, but with different

1 Not to be confused with the response time, which is the elapsed time from the release of the job until it
finishes, taking into account that the remaining jobs in the system can delay its execution, or preempt
it.

9

release instants. We will denote by λi,j, the release instant of job Γi,j. This instant is
deterministic, and is given by:

λi,j = Φi + jTi (2)

Frequently, we will need to refer to any generic job, without specifying the task to
which it belongs. In these cases we will use the notation Γj, with a single subindex. This
simply means the j-th job released since the system starting. We will mainly use the
subindex j for this purpose, reserving the subindex i for the tasks.

2.2. Problem statement

Given a system S, defined as explained above, obtain the response time prob-
ability function for all its tasks.

From these probability functions, it is possible to derive the probability of metting
any given deadline, and the probability of missing it. It is also posible to derive other
useful information, such as the most probable response time, the average response
time, the standard deviation, etc.

So, the final objective of the analysis is to provide the probability functions of the
response time of each task. However, we must recall that the task concept is an ab-
straction, because what really gets executed in the system are jobs. The response time
of each job can have a different probability function. The response time of a task can
be obtained by averaging the probability functions of the jobs belonging to it. How-
ever, the number of jobs belonging to a task is infinite, so the problem is to obtain the
response time distribution for a task without needing to compute the distributions for
the infinite number of jobs. We will see that this is possible, thanks to the periodicity in
the release instants of the jobs.

The response time of a job depends on three factors:

1. The backlog existent at the instant in which the job is released, due to previous
jobs with greater or equal priority which are still active.

2. The execution time of the job under consideration

3. The execution time of all future jobs which could preempt the job under consid-
eration

In [Díaz et al., 2002] these three factors are analyzed, and different algorithms are
presented in order to take into account each factor an compute the final response time
distribution. In particular, given the probability function of the backlog at the release
instant of the job, it suffices to perform a discrete convolution between this probability
function and that of the execution time of the job, in order to obtain a first approxima-
tion of the response time distribution of the job. In fact, this approximation will be the
exact distribution if no preemption were allowed. In order to take into account the ef-
fect of the possible preemptions, the algorithm “split, convolve and merge” is presented
in [Díaz et al., 2002]. The result of this algorithm is the exact probability function of the
response time of the job.

10

It remains the problem of computing the probability function of the backlog at the
release instant of the job. In [Díaz et al., 2002] an algorithm called “convolve and shrink”
is presented, which allows to obtain this probability function, assuming that the proba-
bility function of the backlog at a previous instant is known. Since the initial backlog of
the system (when the system starts) is zero, we always can to apply the “convolve and
shrink” method from that initial backlog, until arriving to any desired instant.

However a more efficient approach could be possible. Let us suppose that all hyper-
periods have the same initial backlog (that is, the probability function is the same). In
this case, in order to compute the probability function at any instant, it is not necces-
sary to rewind to the system start, but only to the beginning of the hyperperiod. The
influence of the whole past of the system is summarized in the probability function of
the backlog at the beginning of the hyperperiod.

We will formalize these ideas, and show under which circunstances the backlog dis-
tribution at the beginning of all hyperperiods remains the same.

2.3. Other concepts and definitions

Once all tasks are released at least once (that is, at any instant after the length of the
longest offset), the jobs activations will follow a repetitive pattern.

This is a fundamental idea, because if a repetitive pattern exists in the release in-
stants of the jobs, it is reasonable to expect some kind of repetitive behaviour in the
system. Even if the execution times are random, it can be expected that the stochastic
behaviour of the system becomes periodic, i.e. follows a repetitive pattern of statistical
distributions.

Definition 1. A hyperperiod is a time interval which encompass a sequence of tasks re-
leases, such that the relative sequence of releases will repeat identically in the future.

The hyperperiod length, which we will denote by T, is the least common multiple of
the periods of the tasks.

T = mcm
i

Ti (3)

Figure 1 shows an example with three tasks, with offsets 4, 7 and 11, and periods 6, 8
and 12. For each task a time axis is represented in horizontal. Vertical arrows denote re-
lease instants. According with the above equation, the hyperperiod length is 24 for this
example. In fact, this can be seen in the figure, because from instant t = 11 onwards,
there exists a release pattern with length 24, which repeats time after time.

The concept of hyperperiod provides a starting point for the stochastic analysis of the
system, which avoids the computation of the response time for an infinite number of
jobs. Although the jobs sequence is infinite, the number of jobs within one hyperperiod
is finite. If all hyperperiods had the same stochastic behaviour, in the sense that the
response time distributions are the same than those in the previous hyperperiod, it
would suffice to obtain these distributions for a single hyperperiod.

However, it is not sufficient to have a repetitive pattern in the release instants of the
jobs in order to guarantee a repetitive stochastic behaviour. In addition, the initial

11

t

τ1

t

τ2

t

τ3

0 10 20 30 40 50 60 70 80

Φ3

Φ2

Φ1

T3

T2

T1
T T T

Figure 1: Illustration of the concept of hyperperiod

backlog in each hyperperiod has to be the same. On the contrary, the initial condi-
tions will be different in each hyperperiod, and this would affect the response time of
the jobs released in it.

In our problem, the backlog is a random variable, so we cannot ask its value to be
the same at the beginning of each hyperperiod. Instead, we will ask its statistical dis-
tribution to be the same. That is, if the probability of the backlog being equal to i at
the beginning of a given hyperperiod is pi, then we will ask the same probability for
the backlog at the beginning of the next hyperperiods. This way, all hyperperiods will
have the same “initial conditions” (in a stochastic sense), and thus the jobs will have
the same response time distributions.

We will show that the above exigence is met for some systems, in which the backlog
distribution repeats identically at the beginning of all hyperperiods, while in other sys-
tems the exigence is not met and the initial backlog distribution is different for each
hyperperiod. Among this second class, there are systems in which, although the back-
log distribution is not the same from one hyperperiod to other, the difference among
them decreases, approaching to zero as time goes on, so it is possible to talk about
a “steady-state”, which is reached after a sufficient number of hyperperiods. Finally,
there exist systems in which the difference among the backlog distributions increases
as time goes on.

We will show that the above classification depends on a simple parameter, which is
the “utilization factor”. In the classical analysis, the utilization factor is defined as the
fraction of time in which the system is busy, assuming that all tasks are demanding their
“worst case” execution time. This factor is easily obtained by summing up the quotient
among the worst execution time and the period of each task.

In the stochastic case, however, each task is allowed to demand a random amount
of execution time, so it is obvius that each hyperperiod can have a different utilization
factor. In fact, the utilization is also a random variable, so we can define its maximum,
minimum and average values, as follows:

12

Definition 2. The maximum utilization, denoted by Umax is defined as:

Umax =
N

∑
i=1

Cmax
i
Ti

(4)

being Cmax
i the worst execution time of task τi. The maximum utilization represents the

fraction of the hyperperiod in which the system is busy, for the worst case scenario.

Definition 3. The minimum utilization, denoted by Umin is defined as:

Umin =
N

∑
i=1

Cmin
i
Ti

(5)

being Cmin
i the best execution time of task τi. The minimum utilization represents the

fraction of the hyperperiodo in which the system is busy, for the best case scenario.

Definition 4. The average utilization, denotaded by Ū is defined as:

Ū =
N

∑
i=1

C̄i

Ti
(6)

being C̄i the average execution time of task τi. The average utilization represents the
fraction of the hyperperiod in which the system will be busy, in the average case.

Note that our definition of maximum utilization coincides with the classical concept
of total utilization factor.

We will say that the system has reached a “steady-state”, when the statistical distribu-
tion of the backlog is the same at the beginning of two consecutive hyperperiods (and
thus, of all following hyperperiods). It is easy to tell if a system will reach a steady state
or not, by only computing the values of Umax and Ū. We will mathematically prove this
assert, but it can be interesting to advance the result.

A system can be classified in three different classes, according to the values of the
parameters Umax and Ū as follows:

1. If Umax ≤ 1, the steady state is reached “almost inmediately”. To be precise, at
the end of the first hyperperiod in which all task were released at least once.

This kind of systems are very interesting from a practical point of view. In fact, all
systems which can be analyzed with classical methods are of this kind.

2. If Umax > 1 and Ū ≤ 1, the difference among the distribution of the backlog in
two successive hyperperiods goes to zero as time goes on. The system “converges”
towards a steady state, which is reached after an infinite number of hyperperiods.
However, in practice, the difference among distributions can be negligible in a few
hyperperiods.

This kind of system is also interesting from a practical point of view, because it
is usual that the maximum utilization (worst case utilization) is higher than 1,

13

Parameters Utilization
System Task Φi Ti Di Ci Umin Ū Umax

τ1 4 6 6 U[1,2]
S1 τ2 7 8 8 U[1,2] 0.3750 0.6042 0.8333

τ3 11 12 12 U[1,3]

τ1 4 6 6 U[2,3]
S2 τ2 7 8 8 U[2,3] 0.7500 0.9792 1.2083

τ3 11 12 12 U[2,4]

τ1 4 6 6 U[2,4]
S3 τ2 7 8 8 U[2,4] 0.7500 1.125 1.5000

τ3 11 12 12 U[2,4]

Table 1: Three example systems, with identical release patterns but different utilization
factors

which would be make impossible to analyze the system with classical methods,
and however the average utilization is less than 1, which could produce low prob-
abilities of deadline misses.

3. If Ū > 1, the steady state cannot be reached, and thus this kind of system cannot
be analyzed.

Note, however, that this kind of system is unrealistic, because, in average, they are
demanding to the system more time than the phisically available.

Let us see an example of a system of each type. Table 1 shows the parameters of
three different systems, all of them composed of three tasks with the same periods,
deadlines and offsets. The only difference among the examples are the execution time
of the tasks. Note that the three systems have the same release pattern (coincident with
the one shown in figure1).

The tasks execution times are random variables which follow, in this example, a uni-
form discrete distribution. For example, U[3,6] denotes that this random variable can
take the values 3, 4, 5 or 6, all with the same probability (1/4 in this case). In the table, the
values of Umax, Umin y Ū are shown. They were computed according to equation (4),
(5) and (6), respectively.

In system S1, Umax is less than 1, so the system will reach its steady-state right at
the end of the first hyperperiod. Figure 2(a) shows the backlog probability function at
different instants, separated by 24 time units (the hyperperiod lenght). The first instant
shown in the figure is t = 11, which is the instant in which all tasks were released at
least once, c.f. Fig. 1). It can be observed that the probability function is the same at
the beginning of each new hyperperiod.

In system S2, however, the value of Umax is greater than 1, but since the average
utilization Ū is less than 1, this system has to have a steady state, which is reached
after a sufficient number of hyperperiods. In Fig. 2(b) it can be seen that the backlog

14

0 10 20

0.5 Instant t = 11

0 10 20

0.5 Instant t = 25

0 10 20

0.5 Instant t = 49

0 10 20

0.5 Instant t = 83

0 10 20

0.5 Instant t = 107

(a) System S1 (maximum
utilization less than 1)

0 10 20

0.5 Instant t = 11

0 10 20

0.317

Instant t = 25

0 10 20

0.261

Instant t = 49

0 10 20

0.235

Instant t = 83

0 10 20

0.22

Instant t = 107

(b) System S2 (average uti-
lization less than 1)

0 10 20

0.333 Instant t = 11

0 10 20

0.167

Instant t = 25

0 10 20

0.118

Instant t = 49

0 10 20

0.0962

Instant t = 83

0 10 20

0.0831

Instant t = 107

(c) System S3 (average uti-
lization greater than 1)

Figure 2: Evolution of the backlog distribution in the example systems

15

probability function is not exactly the same in different hyperperiods, but they are more
and more closer. We will prove the existence of al limiting probability function, and we
will give a method for obtaining it.

Finally, in system S3 the value of Ū is greater than 1, so this system will never reach a
steady-state. In Fig 2(c) it can be seen that in this case the probability function “stretches”,
“flattens” and “drifts” far from the origin. This means that the backlog accumulated at
the end of each hyperperiod increases without limit. Any given value of the backlog is
exceeded with high probability, after a sufficient number of hyperperiods has elapsed.

3. Steady-state backlog computation. Markovian analysis

3.1. Preliminary concepts

Let T be the length of the hyperperiod, defined as seen in eq. (3). We can divide the
time-line in “zones”, of length T, starting at t = 0; this way the instants kT, with
k = 0, 1, 2, . . . are marked as hyperperiod beginnings (see fig. 3). However, as it can
be seen in the figure, since each task has a different offset, in the first or firsts hyperpe-
riods the activations pattern could be different to the one which appears in subsequent
hyperperiods.

t

τ1

t

τ2

t

τ3

0 10 20 30 40 50 60 70 80

Φ3

Φ2

Φ1

T3

T2

T1

T T T

Figure 3: Example of irregularity in the first hyperperiods

Due to this situation, it results convenient the following definition:

Definition 5. We call complete hyperperiod to a time interval of the form [kT, (k + 1)T)
such that, inside that interval, each task τi is activated T/Ti times, being T the hyperpe-
riod length and Ti the task period.

We call first complete hyperperiod to the complete hyperperiod with minimum k. We
will denote this minimum k by k0. This way, the first complete hyperperiod is the time
interval [k0T, (k0 + 1)T].

In the example of fig. 3, the first complete hyperperiod begins at t = 24 and thus, in
this case, k0 = 1.

16

It is clear that, before the first complete hyperperiod we will have a kind of “tran-
sient regime”, in which the activation pattern is not periodical. From the first complete
hyperperiod on, the system enters into a “steady-state of activations”, in which all sub-
sequent hyperperiod will be complete, and the activation pattern will be the same for
all of them.

However, even if the activation pattern is the same, this does not guarantee the same
stochastic behavior (i.e: the same response time distributions), because this depends
in general on the whole past of the system. This past can be summarized in the back-
log distribution, and this one varies with time. Only if this distribution also presents a
repetitive pattern the stochastic behavior of the system would be also repetitive.

So we are interested in the observation of the random variable W(t) at instants t =
kT, k = 0, 1, 2, In order to simplify the notation, we will introduce a new definition.

Definition 6. We denote the backlog existent at instant kT by Wk and we call it “initial
backlog of the k-th hyperperiod”. I.e: Wk = W(kT).

3.2. Trivial case: Umax ≤ 1

In the following theorem, we will prove that, if the maximum utilization is less than 1,
the backlog distribution will repeat identically at the beginning of each hyperperiod. In
this case, thus, the analysis can be restricted to a single hyperperiod (as was done in the
example in [Díaz et al., 2002]).

Theorem 1. If the initial backlog is zero at t = 0, and the system fulfills Umax ≤ 1, then
the backlog distribution at the end of the first complete hyperperiod (t = (k0 + 1)T), will
repeat at the end of all subsequent hyperperiods

Proof. Let us imagine the scenario in which all jobs require their maximum execution
time. Let Wmax be the backlog observed at the end of the first complete hyperperiod
under these circumstances, and s the number of time units in which the system is idle
during this first complete hyperperiod (we will refer to s as the “minimum spare time”).
It is clear that this spare time, plus the workload generated in this hyperperiod is equal
to the hyperperiod length plus the final backlog, as shown in fig. 4. In addition, the
workload generated in the hyperperiod for this worst-case scenario is equal to TUmax,
so we have:

s + TUmax = T + Wmax

By hypothesis Umax ≤ 1, so TUmax ≤ T. Using this fact in the previous equation we
obtain Wmax ≤ s.

If Wmax were zero, the proof will be trivial, since in this case the next hyperperiod will
start with zero backlog and all the generated workload, even for the worst case, would
be less than T, so all subsequent hyperperiods will start with zero backlog too.

Let us assume that Wmax is positive. This only can happen if all the spare time s
occurred before the last busy period 2, as is easily understood looking at fig. 3. So,
the next hyperperiod will “absorb” the backlog Wmax before arriving to the last busy

2 A busy period is a contiguous interval of time in which the backlog is positive

17

k0T (k0 + 1)T

W(t)

t

T Wmax

s

Wmax

For any instant t, the sum of the workload until that instant (vertical strokes) plus
the sum of the idle time until that instant (horizontal strokes), is equal to t plus
the backlog at that instant. For simplicity, the figure do not show the jobs arriving
in the next hyperperiod.

Figure 4: Graphical proof for theorem 1

period (because Wmax ≤ s, as seen). This way, the backlog distribution at the end of
the hyperperiod is not affected by the backlog distribution at the beginning, so it will
be the same than in the previous hyperperiod, and it will repeat identically at the end
of all the subsequent hyperperiods.

The above theorem gives us the justification for restricting the analysis to a single
hyperperiod. Since the initial backlog of a hyperperiod is equal to the final backlog of
the preceding one, all hyperperiods from the second complete hyperperiod on present
the same statistical distribution of the initial backlog. The stochastic analysis of the
response time will produce the same results in all these hyperperiods. The first non-
complete hyperperiods are non representative with respect of the steady state, so it is
not necessary to analyze them.

Then, the general algorithm for analyzing this kind of systems would be:

1. Compute the instant in which the first complete hyperperiod begins, i.e., the value
of k0. This value exclusively depends on the offsets of the tasks. Note that if the
offset is zero for all the tasks, the first complete hyperperiod begins at t = 0, so
k0 = 0 in this case.

2. Compute the backlog distribution at instant (k0 + 1)T, using the method “con-
volve and shrink”. Note that for the case in which all offsets are zero, the result will
be zero, so this step can be skipped.

3. Perform the stochastic analysis of the response time over a single hyperperiod,
using as initial workload the distribution obtained in the previous step

18

3.3. General case

For the general case, we will assume Umax > 1, since if Umax ≤ 1 the solution can be
obtained in a simpler way, by using the method explained in section 3.2.

When Umax > 1, there exists a non null probability of the workload generated in a
hyperperiod being greater than the hyperperiod length. This means that there exists
a non null probability of the next hyperperiod starting with an initial backlog greater
than the initial backlog of the previous hyperperiod. As a consequence, the backlog
distribution is different among hyperperiods.

We will prove in this section that the backlog observed at intervals of length T, i.e., the
sequence of random variables {Wi}, is a Markov chain. We will find that, in order to this
chain being stable, the average utilization Ū has to be less than one. If this condition
is met, the distribution of each Wi converges towards a steady-state distribution as i
increases. We will find the general form of this distribution and provide methods for
numerically computing it.

3.3.1. The initial backlog is a Markov chain

A Markov chain is defined as a sequence of random variables, such that the PF of each
one only depends on the PF of the immediately previous one, and not on the PF of the
others. This property is often called the “memoryless” property of the Markov chain.

The probability function of a discrete random variable X can be stored as a vector,
x, with an infinite number of components, such that the i-th component of this vector
is the probability of X being equal to i. This notation allows for writing the Markovian
property as a matrix equation. If the sequence of random variables {Xk} is a Markov
chain, then:

xk+1 = Pxk

Where xk is the PF of Xk, stored in a vector as explained, and P is the so called “tran-
sition matrix”, or “Markov matrix”. Given the PF of one of the random variables in the
sequence, it is possible to obtain the PF of the next one, by multiplying by P matrix, and
from this, the next one can be computed, an so on. The key fact for which the sequence
is a Markov chain is that P is always the same matrix and do not depends on k. We will
see now that this is the case for the random variable Wk, i.e, the initial backlog in the
k-th hyperperiod.

Definition 7. We will call backlog process of a system S to the sequence of random vari-
ables {Wk}, for k = k0, k0 + 1, k0 + 2, . . .

Theorem 2. The backlog process of any system S is a Markov chain.

Proof. The probability of Wk being equal to any given value i can always be expressed
in function of the probabilities of Wk−1, by using conditional probabilities as follows:

P{Wk = i} = ∑
j

P{Wk−1 = j} ·P{Wk = i|Wk−1 = j} (7)

19

The above expression is always true, with independence of Wk being or not a Markov
chain. Now then, the term P{Wk = i|Wk−1 = j} represents the probability of having a
backlog of i units at the end of the hyperperiod k − 1, for the case in which the back-
log was j units at the beginning of that hyperperiod. This probability is obtained from
the activation sequence of the jobs, and the PFs of their execution times. Since, from
the first complete hyperperiod on, the sequence of job activations is the same for all
hyperperiods, and also it is the same their execution time PFs, the conditional proba-
bilities are the same in all hyperperiods, and thus equal to those on the first complete
hyperperiod. That is:

P{Wk = i|Wk−1 = j} = P{Wk0+1 = i|Wk0
= j} for k > k0

If we represent this probability by bj(i), eq. (7) gives:

P{Wk = i} = ∑
j

P{Wk−1 = j} · bj(i) for k > k0 (8)

In this equation it can be observed that the probabilities of Wk only depend on the
probabilities of Wk−1, and not on those of the previous one. Coefficients bj(i) are al-
ways the same, and do not depend on k (they only depend on the system parameters).
Then, the sequence Wk is a Markov chain.

3.3.2. Markov matrix computation

Equation (8) can also be written in matrix form:

bk = Pbk−1 (9)

Where bk is the probability function of Wk, expressed as a column vector (the i-th
row in this vector contains the probability of Wk being equal to i), and P is the transition
matrix, defined as:

P(i, j) = bj(i)

That is, each column P(·, j) in matrix P contains the PF of the backlog at the end of
the first complete hyperperiod, for the case in which the initial backlog was j units for
that hyperperiod.

The definition of P gives us a mechanism for computing the components of P. In fact,
to obtain the components of the j-th column, it suffices to apply the algorithm “con-
volve and shrink” among the first complete hyperperiod, assuming an initial workload
of j units. When the end of the hyperperiod is reached, the obtained PF will be the j-th
column of P. Note that this implies that each column in P has a sum equal to 1, since
each column is a probability function.

This way, each column has a finite number of non-null elements, because it is the
result of a finite sequence of “convolutions and shrinkages”, and the PFs involved in
the convolutions have a finite number of points. However, the very matrix P is infinite,
because it requires an infinite number of columns to be fully specified. This poses an
apparent impossibility for completely writing this matrix. However, it happens that

20

the columns present a regularity, and this will allow to write the general form of the
matrix. Using this form, the complete matrix will be specified from a finite number of
numerical values.

The general form of P, as we will prove in short, follows this schema:r

P =



b0(0) b1(0) b2(0) . . . br(0) 0 0 0

b0(1) b1(1) b2(1) . . . br(1) br(0) 0
...

b0(2) b1(2) b2(2) . . . br(2) br(1) br(0)
...

...
...

... . . .
... br(2) br(1)

. . .
...

...
... . . .

...
... br(2)

. . .

b0(mr) b1(mr) b2(mr) . . . br(mr)
...

...
. . .

0 0 0 . . . 0 br(mr)
...

. . .

0 0 0 . . . 0 0 br(mr)
. . .

0 0 0 . . . 0 0 0
. . .

...
...

... . . .
...

...
...

. . .



(10)

We see that the matrix can be divided in two parts. The left part, shaded in dark gray
and composed of the first r columns from P(·, 0) to P(·, r− 1) has not structure. That is,
the coefficients are in general different, although all these columns have at maximum
mr non null elements3. The right part, starting in column P(·, r) presents a regularity:
the same coefficients are repeated in each column, copied from the previous column
and shifted one position down. This regularity has been shaded with pale gray. In the
next theorem we will show that this structure appears always in P, for any given system.

Theorem 3. There exist two integers r y mr such that:

P(i, j) =


bj(i) j < r, i ≤ mr
P(i − 1, j− 1) j ≥ r, i ∈ [j− r, j− r + mr]
0 for any other i, j

(11)

Proof. First of all, it has to be noted that expression (11) is only a different way of math-
ematically enunciating the regular structure of P already shown in eq. (10).

Let r be the maximum amount of time in which the system can be idle, in any hyper-
period after the first complete hyperperiod. We will call r the “maximum spare time”.
This quantity can be computed with the formula:

r = T + Wmin −∑
i

T
Ti

Cmin
i (12)

where T is the hyperperiod length, Wmin is the backlog at the end of the first complete
hyperperiod for the case in which all jobs require their minimum execution time, and
Cmin

i is the minimum execution time of task τi.

3 Of course, in these columns any of the elements bj(i) can also be zero

21

The r-th column in P represents the backlog probability function at the end of a com-
plete hyperperiod, for the case in which the initial backlog was r units. But in this case,
the initial backlog is equal to the maximum spare time, so it is guaranteed that there
are not idle periods in this hyperperiod. That is, the whole hyperperiod will be a busy
period. This is also true for any initial backlog greater than r. In these cases, there is
no instant in the hyperperiod in which the backlog reaches zero, so the final backlog is
simply the sum of the initial backlog, plus all the workload generated in the hyperpe-
riod, minus the hyperperiod length. That is, if W(k0T) = r, then W((k0 + 1)T) can be
computed simply as:

W((k0 + 1)T) = r − T + ∑
i

T
Ti

Ci (13)

Now then, since the sum is composed of random variables, the final backlog is also a
random variable. Its PF can be obtained by convolution of all the execution time PFs,
for all the jobs activated in the hyperperiod. Note that the term r − T is not random,
but deterministic, so it represents a shift to the right of the resulting PF.

To summarize, the r-th column in matrix P is computed by convolving the execution
time PFs of all the jobs in the hyperperiod, and shifting to the right the result by r − T
units. The (r + 1)-th column is computed the same way, with the only difference that
the final shifting has to be r + 1− T. And so on for all columns from the r-th onwards.
This proves that all these columns have the same coefficients, but shifted one position
down.

In addition, the r-th column has a finite number of non-null coefficients. If we call mr
to the index of the last one, then mr represents the backlog at the end of a hyperperiod
such that all the jobs require their worst execution time, and the initial backlog is equal
to r (the maximum spare time). It is self evident that, if the initial backlog were less
than r, the final backlog will be less than or equal to mr. This proves that all columns
previous to the r-th column have zeros from the row mr onwards.

From the two remarks above, the theorem follows.

Then, the complete matrix P can be specified from a finite number, (r + 1)× (mr +
1), of coefficients. These coefficients can be obtained by the “convolve and shrink”
method, by computing the backlog at the end of the hyperperiod, assuming an initial
backlog deterministically equal to i = 0, 1, 2, . . . , r.

3.3.3. Stationarity and convergence

A Markov chain, defined by a matrix P, can be of the recurrent type if P fulfills some
properties (to be stated later). If it does, it has been proven that there exist a vector πππ,
unique except for multiplicative factors, such that:

πππ = Pπππ (14)

If, in addition, the chain is of positive type, then πππ is summable, so it can be normal-
ized (divided by it sum), and can be considered this way as a probability function. If

22

the chain is not positive, the sum of πππ would be infinite, and this case would not have
practical interest.

Moreover, the stochastic processes theory not only proves the existence of πππ, but
also that, for positive recurrent chains, the probability function of the Markov chain
“converges” towards this vector. That is, if the Markov chain {Xi} is positive recurrent,
then fXi(·) → πππ, when i → ∞.

This is very interesting for our analysis, because it means that, if our matrix P fulfill
certain properties, then the chain would be positive recurrent. Then it would exist a
stationary backlog distribution, i.e., a statistical distribution of the backlog such that, if
the initial backlog follows that distribution, the backlog at the end of the hyperperiod
would also follow that distribution. Moreover, if this stationary backlog distribution ex-
ists, the system tends towards it; after a sufficient number of hyperperiods, the backlog
PF at the beginning of each hyperperiod would be practically the same, and equal to
the stationary distribution.

Existence and uniqueness of the stationary distribution In this section we will prove
with rigor that, if Ū < 1, the Markov chain is positive recurrent. This is why these kind
of systems shows a tendency towards a stable distribution. We will give the general
form of this distribution, and provide methods for computing it numerically.

The condition Ū < 1 is easily understandable for the analyst, and it its easy to verify
from the system parameters. However, in order to prove the recurrence and positivity
of the Markov chain, it would be preferable to have a condition over the coefficients of
P. Next proposition will show that condition Ū < 1 is equivalent to say that the distri-
bution given by the r-th column in P has a mean less than r. This condition, although
looks more strange, is more convenient for the proof of the recurrence and positivity of
the Markov chain.

Proposition 1. If P(i, j) = bj(i) is the transition matrix of the Markov chain {Wk},
which represents the backlog at the beginning of each hyperperiod for a system S with
average utilization Ū, the following equivalences are true:

• Ū < 1 ⇐⇒ ∑i ibr(i) < r

• Ū = 1 ⇐⇒ ∑i ibr(i) = r

• Ū > 1 ⇐⇒ ∑i ibr(i) > r

Proof. Let B̄r denote the expected value for the random variable whose PF is given in
the r-th column of P. This value can be computed from the coefficients of the r-th
column of P, using the statistical definition of the expected value:

B̄r = ∑
i

iP(i, r) = ∑
i

ibr(i) (15)

In addition, the r-th column is special, because r is the “maximum spare time” in the
system. If one hyperperiod begins with a backlog of r units, it will be busy the whole
hyperperiod, even in the best case scenario. So in this case the final backlog will be

23

equal to the sum of all the execution times, plus the initial backlog, minus the elapsed
time T, as already seen in eq. (13). The expected value of the final backlog is then equal
to the sum of the expected values of the terms composing it. Then, the expected value
can also be computed by the following equation:

B̄r = r − T + ∑
i

T
Ti

C̄i

If T is drawn from the sum (since it is constant), what remains in the sum is the sys-
tem average utilization, as was defined in (6), so:

B̄r = r − T + TŪ = r + T(Ū − 1)

From this equation, the equivalences stated in the proposition can be trivially proven.

Next theorem shows that the Markov matrix is positive recurrent if Ū < 1. However,
for this proof it is necessary to add the additional hypothesis of the chain being irre-
ducible. We will explain later (page 26) the meaning of this additional hypothesis, and
we will show that it is possible imagine systems for which this condition is not met, and
even that this kind of systems is very common. However, we will also show that, even
if the irreducibility hypothesis does not hold, we can still use the condition Ū < 1 in
order to classify the chain as positive recurrent.

Theorem 4. Let S be a system composed by a set of periodic tasks {τi}, and let {Wk} be
the backlog process for that system, which is a Markov chain. If this chain is irreducible,
and the system S fulfills Ū < 1, then the chain is positive recurrent.

Proof. Recent advances in the field of the Markov chains theory [Meyn and Tweedie,
1993; Tweedie, 2000] allows us to say that, in order to prove that an irreducible Markov
chain is positive recurrent, it suffices to prove that the coefficients in the Markov matrix
fulfill certain drift conditions.

In particular, an irreducible Markov chain is recurrent if and only if it exists a non-
negative function V(x), x ∈ Z+, V(x) → ∞ when x → ∞, and a number N ≥ 0 such
that

∑
j

P(j, x)V(j) ≤ V(x) x > N (16)

In addition to being recurrent, the irreducible chain would be also positive if and only
if there exists a non-negative function V(x), x ∈ Z+ and a pair of numbers N ≥ 0, ε >
0 such that:

∑
j

P(j, x)V(j) ≤ V(x)− ε, x > N; (17)

y ∑
j

P(j, x)V(j) < b < ∞, x ≤ N. (18)

24

We will show next that condition ∑i ibr(i) ≤ r implies recurrence, and furthermore,
condition ∑i ibr(i) < r, implies positive recurrence. Since these conditions are respec-
tively equivalent to Ū ≤ 1 and Ū < 1, this would complete the proof of the theorem.

In order to prove that condition (16) holds, it suffices to take V(x) = x and N = r.
In fact, thanks to the repetitive structure of P, from column r onwards the coefficients
repeat, so we can write

P(j, x) = br(j + r − x) x > r

If this fact is put in the drift condition (16), along with the function V(x) = x and the
integer N = r, we obtain

∑
j

br(j + r − x) · j ≤ x x > r

By operating in this inequality, moving x to the first member and adding r to both:

(r − x) + ∑
j

jbr(j + r − x) ≤ r x > r

In addition, since br(·) is a probability function, its sum is 1, so

(r − x) ∑
j

br(j + r − x) + ∑
j

jbr(j + r − x) ≤ r x > r

And taking out the common factor

∑
j
(j + r − x)br(j− x + r) ≤ r x > r

Through a variable change it is easy to see that the inequality to which we have ar-
rived is equivalent to ∑i ibr(i) ≤ r, so if this inequality holds, the chain is recurrent,
q.e.d.

In order to prove that the chain is also positive, we have to check if conditions (17)
and (18) are met. On one hand, it is trivial to show, following the same steps than above,
that condition (17) is equivalent to ∑i ibr(i) < r. On the other hand, condition (18) is
equivalent to ∑i ibx(i) < b < ∞ for all x ≤ r. This condition is demanding that the
expected value for any of the first r columns has to be bounded by a finite number b.
This condition is met due to the special structure of our matrix P, because it has zeros
from row mr onwards in all the first r columns, as it was seen in (10).

Therefore, when ∑i ibr(i) < r both conditions are met, and thus the chain is positive
recurrent. In addition, proposition 1 showed this condition equivalent to Ū < 1, so the
proof of the theorem is complete.

25

The problem of irreducibility In Markovian theory terminology, the expression “state
i communicates with state j” means that, from state i it is possible to reach state j in
a finite number of transitions. Translating this to the language of our domain, an ini-
tial backlog i “communicates” with a different initial backlog j when, given an initial
backlog of i units for one hyperperiod, there exist a non-null probability of finding a
hyperperiod in the future whose initial backlog is j units.

A Markov chain is said irreducible when all states communicate with each other.
In the language of our problem, this hypothesis implies that any value of the initial
backlog should be possible among the different hyperperiods, no matter how the initial
backlog was at the time origin.

We will show some counter-examples, in which it can be seen that it is easy to envi-
sion systems for which this hypothesis do not hold, and that they are not rare, indeed.

A trivial case of non-irreducible system is one with Umin > 1. In this system, the
backlog at the end of each hyperperiod is always increasing. Then, if we start with an
initial backlog of 1 unit, for example, the system will never reach in the future a backlog
of 0 units. Then, state 1 does not communicate with state 0, and thus the chain is not
irreducible. However, this case has not practical value, because a system with Umin > 1
is clearly unrealistic.

A more interesting and less trivial example is the following. Consider a system com-
posed of a single task, whose parameters are:

• Offset, Φ1 = 3,

• Period, T1 = 4,

• Execution time, C1 can only take the values 2 or 6, both with equal probability (but
any value between 3 and 5 has zero probability)

• Deadline and priority are not relevant for the example.

Figure 5 shows the activation pattern for this “system”. The hyperperiod length, ob-
viously, coincides with the period of the single task in the system. The first complete
hyperperiod appears for k0 = 0.

t
τ1

0 4 8 12 16

T T T T

Figure 5: A simple example of a non-irreducible system

It can be seen that, assuming an initial backlog of zero, at the end of the first hyper-
period (i.e., at t = 4), the backlog can only take the values 1 or 5 (because the task
activated at t = 3 can only take the execution times 2 or 6). Then, from state 0, we can
only reach states 1 and 5.

26

If the initial backlog is 1, the situation is the same, because 1 unit of initial backlog is
suck on the 3 units gap existent before the task activation. So, from state 1 we can reach
again states 1 and 5.

If the initial backlog is 5, when the task arrives there are still 2 units of backlog, which
will be added to the execution time of the task, so the final backlog can be 3 or 7 units.
So, from state 5 we can only reach states 3 or 7.

Finally, if the initial backlog is 3, it will be suck on before the task arrival, so this is the
same case than the zero initial backlog. So, from state 3 we can only reach states 1 or 5.

0 1 2 3 4 5 6 7 8 9 . . .

Figure 6: Inter-state communication, starting from state zero, for the non-irreducible
example

In figure 6 the general transition pattern starting from state zero is shown. From zero,
only states 1 and 5 can be reached, and from an odd state, only another odd state can
be reached. Any even state is unreachable from zero, so the chain is non-irreducible. It
can be seen also that, starting from an odd value for the initial backlog, it is impossible
to reach an even or zero backlog. Another additional reason of non-irreducibility.

This situation is not as artificial as it may seem. It may appear if the execution times
of the tasks have “forbidden values”, i.e., values with zero probability. This may cause
the appearing of forbidden values also for the backlog, and in this case the backlog can
only evolve taking values in a certain subset of the integers (as in the previous example,
in which the subset was the odd integers).

What if the initial backlog were 4, for example? It can be seen that, in this case, the
final backlog can only take the values 2 or 6. Apparently, from an even state it is possible
to reach other even states. However, note that, once the state 2 is reached (and it will
be reached certainly, because the backlog has a non-null probability of decreasing),
the chain will get “trapped” in the subset of the odd states. In fact, if the backlog ever
reaches the value 2, these 2 units will be suck on in the 3 units of spare time existent
at the beginning of the next hyperperiod, and then the situation is the same than that
with zero initial backlog. From state 2, only states 1 and 5 are reachable. Figure 7 shows
the complete state transition diagram.

0 1 2 3 4 5 6 7 8 9 . . .

Figure 7: Inter-state communication, starting from any state, for the non-irreducible
example

27

It is appropriate to insist on the fact that, starting from an even state greater than 2,
the chain will “move” for a while among the even states, but eventually it will “fall” into
state 2, and then it will be unable to leave the sequence of odd states. If the system is
running for an infinite amount of time, the fraction of time spent in the even states is
negligible in front of the total time. The long term behavior of the system is dominated
by the chain evolving only among odd states. This is a crucial idea.

In general, we will show that for any system with Ū < 1, it is possible to find a integer
set, C, such that for any pair of integers i, j in C, state i communicates with state j. In
the above example, C is the set of the odd numbers. If a new Markov chain is built, re-
stricted to C, this new chain will be irreducible, so theorem 4 would apply. In addition,
we will show that set C is “absorbent”, which means that if the initial state of the system
is not in C, it is guaranteed anyway (with probability 1) that after a sufficient number
of transitions (hyperperiods) the state of the system will be in C. If the restricted chain
was recurrent positive, the original unrestricted chain will also adopt a stationary dis-
tribution, once entering in the state set C.

We will show now how to build the set C. It has to be stressed that the interest of this
section is purely academic, because later on we will give a method for computing the
stationary distribution πππ which does not require knowledge of the irreducibility of the
system, and far less to obtain beforehand the set C. This section is only aimed to con-
vince the reader that the fact of the original chain being irreducible or not has not prac-
tical importance, because the existence of C and its “absorbency” property guarantee
that the steady state regime will be reached anyway, also for non-irreducible systems,
provided that Ū < 1.

Let Wmin be the minimum value that the backlog can reach at the end of any hyper-
period. We can compute this value by studying the final backlog in a complete hyper-
period in which all jobs take their minimum computation time, and the initial backlog
is zero. For example, for the system of fig. 5, the value of Wmin would be 1, which is
obtained for the case in which the task demands its minimum execution time (2), and
the initial backlog is zero.

The value of Wmin represents an state which is reachable from any other state. This
is because, under the hypothesis Umin < 1, there exist a non-null probability of the
backlog to decrease in one hyperperiod, and therefore there exist a non-null probability
of the backlog decreasing during n consecutive hyperperiods, until the value Wmin is
reached from whatever initial backlog. We define C as the set of all states which are
reachable from the state Wmin. In the above example, this would be the set of all odd
integers. It is clear that all states in C communicate mutually (any state is reachable
from any other going through state Wmin).

Now, a new Markov chain can be built evolving only in the state space defined by C.
In order to define this new chain, a new matrix PC can be written, from the original
matrix P, by taking from P only the elements whose subindexes (column and row) are
in C. Let us call g(·) to the function which maps the indexes of PC onto the indexes of
P. In other words, element PC(i, j) is a copy of element P(g(i), g(j)).

In the example shown in fig. 5, we will have the following situation: C is the set of all
odd integers; matrix PC is built by taking the odd rows and columns from matrix P; and

28

function g(·) is defined as g(x) = 2x + 1.
The Markov chain defined by matrix PC is irreducible, because all states in C com-

municate mutually. In addition, it is easy to show that, if the original system defined by
P fulfilled the condition Ū < 1, then the matrix PC will fulfill the drift conditions given
in (17) and (18). It suffices to use V(x) = g(x) as drift function, and taking N equal to
the first integer such that g(N) ≥ r.

From the above, we can conclude that, if the system has Ū < 1, then the Markov
matrix restricted to C is irreducible, recurrent and positive. Therefore, the restricted
chain will have a stationary distribution, πππC such that πππC = PCπππC. From this vector
πππC a stationary distribution πππ can be built for the original unrestricted matrix P, in the
following way:

πππ(x) =

{
πππC(g−1(x)) ∀x ∈ C,
0 ∀x /∈ C.

(19)

In fact, this function πππ(·) is a probability function, since its sum is 1 (because the sum
of πππC was 1). In addition, when Ū < 1, the backlog has a tendency to decrease, and the
probability of the backlog eventually reaching the value Wmin is 1. Since this value is i
nC, it is guaranteed that, waiting enough, the Markov chain will enter in C, and then it
will not be able to leave C. Therefore, in the long run, the probability of the chain being
out of C is zero, because this kind of states will be visited only a finite number of times,
before entering forever in C (which will be visited an infinite number of times). This
is why we define πππ(x) as zero, for any x out of C. However, if x ∈ C, the probability
of being in state x will be given by πππC(·), after “undoing” the index transformation
through function g(·).

Applying these ideas to the example in fig. 5, the stationary backlog for that system
could be found in the following way:

1. Build the matrix PC, by taking from P only the elements with both indexes odd.

2. Obtain the stationary distribution πππC of matrix PC (in the next section we will
attack this problem)

3. Build the stationary distribution πππ(x) from πππC(·), by assigning zero to all the
points with even x, and assigning πππC((x − 1)/2) to all the points with odd x.

Fortunately, all the above is not necessary in practice. The above method was pre-
sented from a purely academic point of view. If, instead, we use the method which will
be presented in the next section to directly compute the stationary distribution of P,
forgetting about the irreducibility of the Markov chain, we will obtain a distribution πππ
which automatically will have zero in the right places (those corresponding to indexes
out of C). The only condition Ū < 1 guarantees that there exist a unique stationary
distribution, so we can compute it directly, without needing to restrict the chain to the
set C. This is very convenient, because in general the determination of the set C can be
an extremely difficult task.

29

Task Offset Period Priority Execution time (Ci)

τ1 0 4 High {1, 2} equi-probable
τ2 0 6 Low {2, 3, 4} with prob. 0.2, 0.3 and 0.5, respect.

Table 2: Example system for computing the backlog steady-state distribution

3.3.4. Computation of the steady-state distribution

In the precedent section we have show that, if the system has Ū < 1, then there exist a
unique vector πππ, whose sum is 1, and such that

πππ = Pπππ

Now the question is, would it be possible to know the values of the components of
this vector? The above equation suggests that πππ would be an eigenvector of matrix P,
corresponding to the eigenvalue 1. If P were a finite matrix, say of dimension N × N,
then, the above matrix equation will give rise to a set of N equations and N unknowns
(the N components of πππ), and solving this system the desired answer would be ob-
tained.

Unfortunately, matrix P is infinite, so if we try to develop the above matrix equation,
we will obtain a system with infinite equations and infinite unknowns, which cannot
be solved.

In this section we will present a general method which allows for the obtaining of
the infinite coefficients of πππ. This method, will provide in numerical form the first few
elements, along with a closed form expression which allows to compute any of the re-
maining elements. The interest of this equation resides in that it shows the general
form of πππ, for any given system. Additionally, if the system is small, this method can
be applied to compute as many elements of πππ as desired. However, for big systems, the
method complexity can be too high (due to the high number of equations to solve), and
it could be preferable to apply some of the approximated methods shown in section 4.

Instead of providing a formal description of the method, which would be too in-
volved, we will give an example which will be solved step by step. At appropriate places,
it will be explained how the example could be generalized to any other system. The ex-
ample system is shown in table 2.

The hyperperiod length for this system is 12, and the activation pattern is shown in
figure 8.

Since all the task have zero offset, the first complete hyperperiod starts at t = 0. The
Umax of the system is 16/12, which is greater than one, so the backlog at the end of the
first hyperperiod will have different distribution than the initial backlog. Therefore, we
cannot simply analyze the first hyperperiod and assume that the same results apply
to any other hyperperiod. Instead we have to find the steady-state distribution of the
backlog. The average utilization, Ū, of this system is 0.925, not greater than1, so ac-
cording with theorem 4 the system will have a unique steady-state distribution such
that πππ = Pπππ.

30

t
τ1

t
τ2

0 5 10 15 20 25

T T

Figure 8: Activation pattern for the example

The first step is to compute the matrix P. To this end, it suffices to apply the method
“convolve and shrink” along the first hyperperiod, starting at k = 0, and stopping at
t = 12, and using as initial backlog a deterministic workload of k units. This way, the
PF of the backlog obtained for t = 12 will be the k-th column of matrix P. According
with theorem 3, matrix P has a regular structure, and we need only to compute r + 1
columns. The value of r was defined in eq. (12) which is repeated here for the reader
convenience:

r = T + Wmin −∑
i

T
Ti

Cmin
i

In the example we are solving, r = 12 + 0 − (3 × 1 + 2 × 2) = 5, so in order to
completely describe P we need to compute only the columns with indexes 0 to 5. The
result is the following (dashes represent zeros):

r

P =



0.8375 0.595 0.3275 0.13125 0.035 0.005 − . . .

0.13125 0.2425 0.2675 0.19625 0.09625 0.03 0.005
. . .

0.03125 0.13125 0.2425 0.2675 0.19625 0.09625 0.03
. . .

− 0.03125 0.13125 0.2425 0.2675 0.19625 0.09625
. . .

− − 0.03125 0.13125 0.2425 0.2675 0.19625
. . .

− − − 0.03125 0.13125 0.2425 0.2675
. . .

− − − − 0.03125 0.13125 0.2425
. . .

− − − − − 0.03125 0.13125
. . .

− − − − − − 0.03125
. . .

− − − − − − − . . .
...

...
...

...
...

...
.



(20)

We have computed also column 6, in order to verify that, as expected, it is identical to
column 5, only shifted one row down. Column 5 has 8 non-null elements, so mr = 7 in
this example. In general, mr will be equal to r− T + ∑i(T/Ti)Cmax

i . As expected, none

31

of the first five columns has more than mr + 1 non-null elements.
Let us remark another fundamental fact. Due to the repetition of the columns from r

onwards, it also happens that the rows are repeated and shifted from row mr onwards.
Actually, in this particular example, this pattern at the row level appears before, at row
2 (starting the numbering from zero), but in the general case this kind of regularity can
only be guaranteed after row mr.

The problem, thus, consists on solving the equation πππ = Pπππ, being P the above
matrix. If we develop the matrix equation into a system of equations, we will obtain
an infinite number of equations and unknowns, which we call π0, π1, They are the
components of πππ. However, only the first mr + 1 are “truly different”. Due to the row
level regularity explained above, all equations from the mr-th onwards have the same
coefficients, but affecting different unknowns.

The system of equations can be divided in two parts. First, we have a set of (mr + 1)
equations and (mr + r + 1) unknowns. In our example there are 8 equations and 13
unknowns. They are the following:

π0 = 0.8375π0 + 0.595π1 + 0.3275π2 + 0.13125π3 + 0.035π4 + 0.005π5

π1 = 0.13125π0 + 0.2425π1 + 0.2675π2 + 0.19625π3 + 0.09625π4

+ 0.03π5 + 0.005π6

π2 = 0.03125π0 + 0.13125π1 + 0.2425π2 + 0.2675π3 + 0.19625π4

+ 0.09625π5 + 0.03π6

...

π7 = 0.03125π5 + 0.13125π6 + 0.2425π7 + 0.2675π8 + 0.19625π9 + 0.09625π10

+ 0.03π11 + 0.005π12

(21)

Second, the remaining equations have in common the same general form, because
the coefficients are repeated, only shifted to the right. We can write down all the re-
maining equations in a single expression, valid for j > mr + 1:

πj = 0.03125πj−2 + 0.13125πj−1 + 0.24250πj + +0.26750πj+1 + 0.19625πj+2

+ 0.09625πj+3 + 0.03000πj+4 + 0.00500πj+5

Note that the coefficients in this equation are the same than those in the r-th col-
umn of P. As explained, these coefficients are the result of convolving the PFs of the
execution time of all the jobs released in a complete hyperperiod.

Finding the last term (πj+5) we obtain:

πj+5 = −6.25πj−2 − 26.25πj−1 + 151.5πj − 53.5πj+1

− 39.25πj+2 − 19.25πj+3 − 6πj+4
(22)

This equation is a recurrence relationship, which holds for any j > mr + 1, in our
example, j > 8. For example, for j = 9, this equation would allow us to compute
π14 from π13, π12, . . . π7, if these first components were known. By applying the same

32

equation again for j = 10, we will find π15 from the previous 7 components, and so on.
Therefore, if the first mr + r + 1 components of πππ were known, we could find all the
remaining components, by repeatedly applying eq. (22). Unfortunately we do not have
still enough equations to determine the first components of πππ.

We can exploit a fact about our system. Since Ū < 1, we know for sure that πππ exists
and it is unique. This will allow us to put some additional restrictions on the com-
ponents of πππ, in order to guarantee its summability. This way we will find additional
equations which will allow us to solve the problem.

The first step is to rewrite eq. (22) in matrix form:



πj−1
πj

πj+1
πj+2
πj+3
πj+4
πj+5


=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

−6.25 −26.25 151.5 −53.5 −39.25 −19.25 −6





πj−2
πj−1

πj
πj+1
πj+2
πj+3
πj+4


(23)

Calling Qj to the column vector (πj−2, πj−1, πj, πj+1, πj+2, πj+3, πj+4)ᵀ, and A to
the coefficients matrix, the recurrence can be written concisely as Qj+1 = A Qj, valid
for j > 8. Note that the dimension of matrix A is mr, and that the last row in A can be
trivially found from the coefficients of the r-th column in P.

The matrix form allows us to see that Q9 = AQ8, Q10 = A2Q8, Q11 = A3Q8, etc.
In general:

Qn = An−8Q8 for n > 8 (24)

In order to compute easily An−8, we will diagonalize this matrix. That is, we rewrite A
in the form A = V−1DV, where V−1 is a matrix whose columns v1, v2, . . . , v7 are the
eigenvectors of A; matrix D is a diagonal matrix whose elements are λ1, λ2, . . . , λ7, the
eigenvalues of A; and matrix V is the inverse matrix of V−1. Once the diagonalization
is done, the operation of raising A to any power is simplified, because it suffices to raise
the matrix D to that power, i.e., Ax = V−1DxV. This leads to the following equation:

Qn = V−1Dn−8V Q8

= c1λn−8
1 v1 + c2λn−8

2 v2 + c3λn−8
3 v3 + c4λn−8

4 v4

+ c5λn−8
5 v5 + c6λn−8

6 v6 + c7λn−8
7 v7

(25)

where ci are real numbers given by equation

(c1, c2, c3, c4, c5, c6, c7)ᵀ = V ·Q8 = V · (π6, π7, π8, π9, π10, π11, π12)ᵀ (26)

33

To find the eigenvalues of matrix A, its characteristic polynomial has to be solved.
This polynomial can be written in a very simple way, even without writing matrix A in
advance, but directly using the coefficients of r-th column in P. It can be easily shown
that the general form of the characteristic polynomial is:

f (λ) =
(mr

∑
i=0

br(i)λmr−i)− λmr−r = 0 (27)

Note that this polynomial has degree equal to mr. In our example, after solving it, the
following roots are found:

λ1 = (−3.2976 + 1.825i)
λ2 = (−3.2976− 1.825i)
λ3 = (−0.3099 + 3.0755i)
λ4 = (−0.3099− 3.0755i)
λ5 = 1
λ6 = 0.3476
λ7 = −0.1325

Among these solutions always appears one with value 1, because all rows in A have
sum equal to 1. Among the remaining solutions, some of them will have modulus
greater than 1, and some other will have modulus less than 1. However, looking at
eq. (25), it can be seen that this creates an apparent paradox. In fact, since all λi ap-
pear raised to (n − 8), if some of them are greater than 1, the corresponding terms
will increase without limit as n increases, while those terms with λi < 1 will decrease,
approaching to zero. Therefore, the vector πππ is not summable, i.e., its sum is infinite,
because its components πi tends to infinite as i increases. Then, the stationary distri-
bution does not exist, which is a contradiction because we know for sure that it has to
exist, because Umax < 1 for this system.

This paradox disappears if the terms corresponding to λi ≥ 1 disappear from eq. (25);
that is, if the corresponding coefficients ci are zero. Since ci are still undetermined (they
are unknowns in the problem), we can enforce some of them to be zero. This way we
will obtain additional equations. In our example, the eigenvalues which have modulus
greater than one are λ1, λ2, λ3, λ4 and λ5, so, in order to guarantee the existence of πππ,
coefficients c1, c2, c3, c4 and c5 must be zero.

This will originate 5 new equations. In order to write down these equations, matrix
V is required, so it is necessary to find the eigenvectors of matrix A. In our example the
result is:

34

v1 =



−0.00033 + 0.00004i
+0.00104− 0.00073i
−0.00208 + 0.00430i
−0.00098− 0.01798i
+0.03604 + 0.05751i
−0.22382− 0.12387i
+0.96416 + 0.00000i


v2 =



−0.00033− 0.00004i
+0.00104 + 0.00073i
−0.00208− 0.00430i
−0.00098 + 0.01798i
+0.03604− 0.05751i
−0.22382 + 0.12387i
+0.96416 + 0.00000i



v3 =



+0.00089− 0.00061i
+0.00161 + 0.00294i
−0.00954 + 0.00405i
−0.00951− 0.03059i
+0.09704− 0.01976i
+0.03069 + 0.30457i
−0.94623 + 0.00000i


v4 =



+0.00089 + 0.00061i
+0.00161− 0.00294i
−0.00954− 0.00405i
−0.00951 + 0.03059i
+0.09704 + 0.01976i
+0.03069− 0.30457i
−0.94623 + 0.00000i



v5 =



−0.37796
−0.37796
−0.37796
−0.37796
−0.37796
−0.37796
−0.37796


v6 =



−0.9376558
−0.3258970
−0.1132706
−0.0393690
−0.0136833
−0.0047558
−0.0016530


v7 =



−0.99118
+0.13132
−0.017398
+0.002305
−0.000305
+0.000040
−0.000005


These vectors are the columns of matrix V−1, and by computing the inverse of this

matrix, we obtain matrix V (we have rounded the coefficients to the third decimal, in
order to save space):

V =



0.512 + 0.911i 2.147 + 3.549i −12.443− 23.182i 4.289 + 14.778i 4.116 + 1.739i 0.844 + 1.873i 0.536 + 0.331i
0.512− 0.911i 2.147− 3.549i −12.443 + 23.182i 4.289− 14.778i 4.116− 1.739i 0.844− 1.873i 0.536− 0.331i
0.503− 0.009i 2.094− 0.199i −12.331− 0.453i 4.562 + 3.908i 4.270− 1.651i 0.880− 1.348i 0.021− 0.248i
0.503 + 0.009i 2.094 + 0.199i −12.331 + 0.453i 4.562− 3.908i 4.270 + 1.651i 0.880 + 1.348i 0.021 + 0.248i

+0.092 +0.478 −1.749 −0.963 −0.386 −0.103 −0.015
−0.373 −2.636 +1.445 +0.968 +0.445 +0.131 +0.021
−0.691 +2.314 −0.712 −0.539 −0.271 −0.086 −0.015



Once V has be computed, the matrix equation (26) can be written in form of set of
equations:

c1 = (0.512 + 0.911i)π6 + (2.147 + 3.549i)π7 + (−12.443− 23.182i)π8

+ (4.289 + 14.778i)π9 + (4.116 + 1.739i)π10 + (0.844 + 1.873i)π11

+ (0.536 + 0.331i)π12

c2 = (0.512− 0.911i)π6 + (2.147− 3.549i)π7 + (−12.443 + 23.182i)π8

+ (4.289− 14.778i)π9 + (4.116− 1.739i)π10 + (0.844− 1.873i)π11

+ (0.536− 0.331i)π12

...

c5 = 0.092π6 + 0.478π7 − 1.749π8 − 0.963π9 − 0.386π10 − 0.103π11 − 0.015π12

c6 = −0.373π6 − 2.636π7 + 1.445π8 + 0.968π9 + 0.445π10 + 0.131π11 + 0.021π12

c7 = −0.691π6 + 2.314π7 − 0.712π8 − 0.539π9 − 0.271π10 − 0.086π11 − 0.015π12

(28)

35

As explained before, to guarantee the existence of the solution πππ, coefficients c1, c2,
c3, c4 and c5 must be zero. Using this knowledge in the above equations, the first five
become a set of five additional restriction to be fulfilled by the first components of πππ.
These 5 equations, together with the 8 equations derived from the 8 first rows of the
Markov matrix P, give a total of 13 equations and 13 unknowns (π0, . . . , π12), so appar-
ently the system could be solvable.

However, this is not so, because one of the five equations just obtained is lineally de-
pendent on the other. It relates to equation resulting from the restriction c5 = 0. This
coefficient affects the eigenvalue λ5, which is 1, which is an eigenvalue which always
appears and do not convey additional information. So we actually have only 12 equa-
tions and 13 unknowns.

It can be proved that this will always happen for any system. That is, at the end we will
have a set of mr + r + 1 equations, from which one has to be discarded, and mr + r + 1
unknowns. These equations come from two different approaches: the first (mr + 1)
equations come directly from the first rows in P; the remaining r equations come from
the additional restriction of some ci being zero in eq. (26). To obtain this second subset
of equations, matrix A needs to be diagonalized. In order to obtain r equations in this
subset, it is necessary that there always exist r eigenvalues with modulus greater or
equal than one, among the eigenvalues of A. In other words, the polynomial (27) has
to have r roots in the exterior of the unit disc. It can be shown that this always happens,
provided that Ū < 1. The proof of this can be found in appendix A.1.

Anyway, we still need an additional equation in order to solve the set. Without this
equation, all what we can do is to put any component of πππ as a function of its first
component π0. This way we obtain an family of solutions for πππ, as a function of a
single parameter. But there exist a single solution, among this family, for which the
sum of components in πππ is 1. So, the last equation needed for completely determine πππ
is:

∞

∑
i=0

πi = 1

A simple way for finding πππ consist on simply make π0 = 1, and solve the system
of (mr + r) equations, which has now (mr + r) unknowns, obtaining this way the first
(mr + r) components of πππ. Once these components are found, we use them in sys-
tem (28) so we can find the values of the coefficients ci different from zero (in our ex-
ample, we will obtain this way the values of c6 and c7). Finally, using these values of ci
in eq. (25), along with the eigenvalues λi with modulus less than 1, we will obtain the
general form of πn for any n > mr. So we will have found the complete vector πππ.

Let us follow these steps in our example

1. make π0 = 1 and solve the set of 12 equations made of

• The 8 equations shown in (21)

• The 4 equations obtained by enforcing c1 = c2 = c3 = c4 = 0 in (28). Note
that some equations in (28) include complex numbers, as for example the

36

equation related to c1 = 0. Since both the real and the imaginary part of c1
must be zero, each of these equations will give rise to two equations. But, it
can be also seen that, for each equation involving complex numbers, there
exist another one with the same numbers but conjugated. This way, in our
example, the conjugate equation of c1 = 0 is c2 = 0. The equations derived
from the conjugate equation are the same, so at the end the total number of
different equations obtained is 4, and not the double at it may seems at first
sight.

After solving the set of equations we obtain:

π1 = 0.21508 π5 = 0.003661 π9 = 0.000053
π2 = 0.09230 π6 = 0.001278 π10 = 0.000019

π3 = 0.02976 π7 = 0.000443 π11 = 6.4737 10−6

π4 = 0.01065 π8 = 0.000154 π12 = 2.2500 10−6

2. Use these results into the system (28) in order to find c6 y c7 (all the remaining ci
must be zero, and this can be checked at this point). In our case, we obtain:

c6 = −0.00136122 c7 = −1.50568 10−6

3. Use these values of c6 and c7, along with the eigenvalues λ6 = 0.3476 and λ7 =
−0.1325 and the eigenvectors v6 and v7, into eq. (25), to obtain:



πn−2
πn−1
πn

πn+1
πn+2
πn+3
πn+4


= −0.00136



−0.93766
−0.32590
−0.11327
−0.03937
−0.01368
−0.00476
−0.00165


(0.3476)n−8 − 1.5057 10−6



−0.99118
+0.13132
−0.01740
+0.00231
−0.00031
+0.00004
−0.00000


(−0.1325)n−8

This matrix equation is valid for any n > 8, and it gives rise to 7 equations which
describe the general form of πππ. In fact, all the 7 equations describe the same shape, so
we can take any of them. For example, the first one:

πn−2 = (−0.0136)(−0.93766)(0.3476)n−8 − (1.5057 10−6)(−0.99118)(−0.1325)n−8

valid for any n > 8. If we make the variable change n− 2 to n, and operate, we obtain:

πn = 0.0127635(0.3476)n−6 + 1.49242 10−6(−0.1325)n−6 n > 6 (29)

This way we have found an expression which gives all the components of πππ, from
the sixth one onwards (the first six ones were obtained before from the initial set of
equations).

37

However, we assumed π0 = 1 in order to find the remaining components. This as-
sumption is false, because the sum of the obtained πππ is not 1. The last step consist
on computing the sum of πππ, and dividing all its components by this sum. The new πππ
obtained this way would be a probability function, and thus it would be the desired
backlog distribution.

The sum of the components of πππ can be easily found, despite the fact that there are
an infinite number of terms to be summed. This is because from a given component
onwards, all components follow the general form given in eq. (29) which is a sum of
exponentials, and thus is summable. So,

∞

∑
i=0

πi =
6

∑
i=0

πi +
∞

∑
i=7

πi

=
6

∑
i=0

πi +
∞

∑
i=7

0.0127635(0.3476)i−6 + 1.49242 10−6(−0.1325)i−6

=
6

∑
i=0

πi + 0.0127635
∞

∑
i=7

0.3476i−6 + 1.49242 10−6
∞

∑
i=7

(−0.1325)i−6

=
6

∑
i=0

πi + 0.0127635
∞

∑
j=1

0.3476j + 1.49242 10−6
∞

∑
j=1

(−0.1325)j

This is the sum of a geometric series, with ratio less than 1, so it converges and the
sum can be computed by

∞

∑
i=n

ρi =
ρn

1− ρ
ρ < 1

In addition, the sum of the first terms π0, . . . , π6 is also known, because we have their
numerical values. So we can finally compute the sum of πππ as:

∞

∑
i=0

πi = 1.353413768

Therefore, if we divide all the values π0, π1, . . . , π12 and equation (29) by the above
sum, we will obtain the desired answer. The final result is shown in table 3. Note that
some terms (π7, π8, . . . , π12), can be obtained by two different means. On one hand
they can be obtained from the set of 12 equations, and on the other hand they can be
obtained from the closed form of πi, valid for i > 6. However, both methods should
provide the same result.

Conclusions We have developed in detail a simple example, but the method can be
applied to any system with Ū < 1. However, it has to be stressed its high computational
complexity. This complexity is due to several factors:

38

12 first elements

π0 0.738872 π4 0.007869 π8 0.000114
π1 0.158917 π5 0.002705 π9 0.000040
π2 0.068203 π6 0.000944 π10 0.000014
π3 0.021987 π7 0.000328 π11 0.000005

Closed form for the remaining elements

πi = 0.000943062(0.34766568)i−6

+ 1.1027 10−6(−0.1324854)i−6 i > 6

Table 3: Normalized steady-state distribution

• It is necessary to find r columns of the Markov matrix. Each column requires to
“convolve and shrink” over all jobs in one hyperperiod. The more the number of
jobs in one hyperperiod, the more the cost of finding each column in P.

• It is necessary to diagonalize matrix A. This matrix has dimension mr, which is
the length of the r-th column in P. This column is the result of convolving all
the execution time PFs of all the jobs in one hyperperiod so, again, the more the
number of jobs in one hyperperiod, the bigger matrix A will be, and the more the
cost of its diagonalization.

• Finally, it is necessary to solve a set of mr + r equation with mr + r unknowns, and
this again has more cost as the number of jobs per hyperperiod increases.

A more detailed study of the computational complexity is required, but the above
ideas suggest that the computational complexity can be too high for “real world” sys-
tems. This is why we will develop in the next section some approximate methods in
order to find the steady-state distribution more quickly.

Anyway, the analytical solution has a theoretical interest, because it shows the gen-
eral form of the steady-state distribution. It can be seen that, in all cases, it will be made
of two parts: a set of initial values (whose shape is arbitrary, depending on the system
parameters) and a queue which approaches to zero. The general shape of this queue
is a sum of exponentials, being the rates of these exponentials the roots of the polyno-
mial (27) with modulus less than 1. Note that some of these roots can be complex, and
in this case the queue will have a “waving” shape, due to the senoid components, which
will attenuate to the right.

39

4. Approximated methods for obtaining the steady-state
distribution

4.1. Problems with the analytical solution

The analytical solution presented above has two important problems, which can re-
strict its practical application. On one hand, the computational cost can be too high,
as already said, and this restricts its use to systems in which the number of jobs per
hyperperiod is not too high, and the PFs describing the execution time of the jobs have
not too many points.

On the other hand, there is a different problem which can affect even to small sys-
tems, making impossible their solution using a computer. The described method re-
quires solving a set of equation which will be very ill conditioned in most cases (that is,
a little variation in any of its coefficients, can lead to a very different solution).

This is because the set of equations contains both extremely small coefficients (in
the order of 10−10, for example), and extremely big coefficients (in the order of 1010, for
example). This kind of systems is difficult to solve with a computer in which, typically,
the real numbers are stored using a floating-point format. The computer necessarily
introduces some small rounding errors, which can be amplified in this case, causing
the solution provided by the computer to be very different from the “actual” solution.

The origin of this problem can be found in the way in which the set of equations to
solve is built. The reader may recall that the first (mr + 1) first equations are obtained
from matrix P, so the coefficients in these equations are less than 1, and typically very
small, because they are the result of several convolutions. The remaining r equations
are obtained from a recurrence relationship which started in the r-th column of P. This
recurrence relationships uses the coefficient in the r-th column of P, and in order to
find the term with higher subindex, it is necessary to divide by the coefficient affecting
that term. This coefficient is bmr(r), cf. eq. (11), and it represents the probability of the
total workload in one hyperperiod being equal to the maximum possible. Therefore, it
is the product of the probabilities of the worst case for all the jobs in the hyperperiod.
It is evident that its value has to be extremely small in all practical cases. When dividing
by this value, the obtained coefficients will be very big, cf. eq. (22). These values will
appear in the last row of matrix A.

This combination of very small and very big coefficients, makes the set of equations
very difficult to solve numerically by computer.

For these reasons, it is necessary to investigate in methods which allow to obtain an
approximation of the desired solution, and do not have the mentioned inconvenients.
That is, we need methods with fewer computational complexity and fewer sensibility
to numerical errors.

In this section two trivial approximations are presented, but this could be an open
field for a more exhaustive research.

40

4.2. Truncation of the Markov matrix method

Bear in mind that the problem to solve is to find πππ in equation πππ = Pπππ, and that this is
not something immediate, because matrix P is infinite. An obvious approximation con-
sist on truncating matrix P, leaving a finite matrix P′ of M × M dimension, by simply
suppressing all elements beyond row M − 1 and column M − 1.

This way, we can raise a new approximate equation π′ = P′πππ′. This equation can
be solved by finding the eigenvector of P′ which correspond to the eigenvalue 1. This
problem can be solved numerically using any of the methods available in the numerical
algorithms literature (as for example, those in [Press et al., 1992]).

Well now, since P′ 6= P, it is very possible that P′ does not have any eigenvalue equal
to 1. In this case, we will choose the one closer to 1, and πππ′ would be the corresponding
eigenvector.

It is evident that the solution πππ′ is only an approximation of the real solution πππ, in first
term because πππ′ has only M elements, while πππ had an infinite number of elements, and
secondly because πππ′ do not correspond to the eigenvalue 1, but to an approximation.
It is also evident that, the bigger M, the better the approximation.

This approximation reduces the problem complexity, though not much, as neverthe-
less it is necessary to obtain the matrix P′, which requires the application of the “con-
volve and shrink” method M times along a whole hyperperiod, and to solve a set of M
equations with M unknowns, in order to find π′ . Its main advantage over the “analyti-
cal” method is that matrix A is not required, and neither is required its diagonalization.
This saves time, and above all, it is much more robust in relation to the possible numer-
ical rounding errors in the coefficients of P′.

However, it raises a serious problem. The approximated vector πππ′, found by trunca-
tion, does not coincide in any point with the “real” solution πππ. That is, when truncating
P and solving the truncated problem, we do not obtain a “truncated version” of πππ, but
a different solution. The introduced error by truncating P, is shown in all points of πππ′.
The main problem is that it is not possible to predict in which way this error will in-
fluence the subsequent analysis. This means, as a consequence of the truncation, the
following analysis will give us deadline misses probabilities different from the real ones,
but it is not possible to predict if these approximations will be above or below the real
ones.

Therefore, this technique is only useful to obtain an approximated value of the dead-
line miss probability, that can be used as a quality metric in a soft real-time system.
However, it can not be used to obtain an upper bound for this probability, which would
be more useful for strict real-time systems.

4.3. Iterative method

A different approach, which does not require even the obtaining of matrix P, would be
to simply apply the method “convolve and shrink” along N hyperperiods. At the end of
each hyperperiod, a distribution of the backlog is obtained, and is fed as initial backlog
to the next hyperperiod. Since we have proved that, whenever Ū < 1 the backlog will
converge towards πππ, it suffices to compare the PF obtained for the j-th hyperperiod

41

with that of the (j − 1)-th one. When they are close enough (for example, when their
quadratic difference drops below a given ε), we will stop iterating. The last obtained PF
is an approximation of πππ.

This method has two important advantages. First, it does not require to compute the
Markov matrix, so its computational cost will be in general much lower than that of the
exact solution, and even lower than that of the truncation method. Moreover, it is very
robust against roundoff errors.

However, it also has disadvantages. On one hand, the number of required iterations
until convergence is not known beforehand. It is to be expected that, as Ū approaches
to 1, the number of iterations required to converge will increase. Experimental results
have confirmed this. When Ū is high (in the order of 0.995, for example) the required
number of iterations can very high, and it could be more effective to calculate the
Markov matrix. However, for values of Ū below 0.9 this method converges surprisingly
fast.

On the other hand there is an inconvenient similar to the explained for the trunca-
tion method. The obtained approximation is not valid for deriving upper bounds on
the deadline miss probabilities. In fact, using the iterative approximation, the deadline
miss probability obtained from the approximation will be always less than the “true”
probability. The explanation is as follows. Let us imagine that the method converges
after N iterations, and the obtained approximation is πππ′. This approximation has a fi-
nite number of elements, because it is the result of a finite number of convolutions. Let
us say that its number of elements is n. According to this distribution, the probability
of the backlog being greater than (n − 1), is zero, for any hyperperiod. However, the
true solution has an infinite number of terms, so according to it, the probability of the
backlog being greater than n is not-null. Therefore, the “true” response times can be
higher than the response times obtained from the approximation, because they have
worse initial conditions.

The iterative method, thus, is useful to obtain a lower bound on the deadline miss
probability. The bound is very tight, almost equal to the “true” deadline miss probabil-
ity. However, since it is below, from a theoretical point of view it should not be used to
take schedulability decisions for strict real-time systems.

As an example, table 4 shows the result of applying the iterative method to the ex-
ample system given in table 2, whose exact solution was already obtained. Figure 9
shows the evolution of the quadratic error among iterations, in logarithmic scale. It can
be seen that the graph is almost linear, which means an exponential decrease of the
quadratic error (ergodic convergence).

A. Appendix

A.1. Number of roots with modulus greater than 1 in the
characteristic polynomial of matrix A

Using the method described in section 3.3.4, the total number of unknows will always
be mr + r + 1. The first mr + 1 rows of P always provide mr + 1 linearly independent

42

W0 W1 W2 W3 W5 W10 W20 W∞

0 1 0.837500 0.789734 0.768523 0.750897 0.740816 0.738968 0.738872
1 - 0.131250 0.150109 0.155394 0.158160 0.158899 0.158919 0.158917
2 - 0.031250 0.050976 0.059129 0.065050 0.067794 0.068186 0.068203
3 - - 0.008203 0.013632 0.018639 0.021485 0.021964 0.021987
4 - - 0.000977 0.002906 0.005524 0.007464 0.007850 0.007869
5 - - - 0.000385 0.001372 0.002430 0.002690 0.002705
6 - - - 0.000030 0.000299 0.000779 0.000934 0.000944
7 - - - - 0.000053 0.000238 0.000321 0.000328
8 - - - - 0.000007 0.000069 0.000110 0.000114
9 - - - - 0.000000 0.000019 0.000037 0.000040

10 - - - - 0.000000 0.000005 0.000013 0.000014
11 - - - - - 0.000000 0.000004 0.000005
12 - - - - - 0.000000 0.000001 0.000001
...

...
...

...
...

...
...

...
...

Table 4: Evolution of the backlog probability function, using the iterative method

10−16

10−14

10−12

10−10

10−8

10−6

0.0001

0.01

1

0 5 10 15 20 25 30 35 40 45 50

E
rr

o
r

(l
o

ga
ri

th
m

ic
sc

al
e)

Iteration

Figure 9: Decrease of the error in
each iteration

43

equations. In addition, the condition of the sum of all elements in πππ being equal to
1 must hold. So they remain only r − 1 equations to complete the equations set. By
proving that the recurrence relationship always provides r − 1 aditional equations, we
would have the set complete.

We will show in this anppendix that, indeed, r − 1 aditional equations can be ob-
tained from the recurrence relationship, whenever the system has Ū < 1. In fact, the
number of aditional equations is r, but one among them is redundant, because it cor-
responds to the eigenvalue 1 which is always present.

Let us remember the origin of these extra r equations. The recurrence relationship
can be expressed in matrix form, see eq. (24), where matrix A has a regular structure
consisting on all elements being equal to zero, except its superior diagonal, whose ele-
ments are equal to 1, and the last row, whose elements are arbitrary real numbers (see
eq. (23), in page 33). To solve this matrix recurrence equation, it is necessary to diag-
onalize matrix A, and this involves the computation of its eigenvalues. By doing this,
we discovered that some of these eigenvalues were greater or equal than 1, and these
values must disappear from the final solution, in order to guarantee the summability
of πππ. In particular, the number of eigenvalues with modulus greater than or equal to 1,
was r, and this produced the aforementioned r extra equations.

Then, what we want to prove here is that the characteristic polynomail of A has
always r roots with modulus greater or equal to 1, whenever the stability condition,
Ū < 1, is met.

The characteristic polyinomial of A is given by its last row, and, since this row de-
pends only on the coefficients br(·) in the r-th column of P, it can be seen that the
characteristic polynomial depends only on these coefficients. It is easy to show that the
characteristic polynomial has the general form:

f (λ) =
(mr

∑
i=0

br(i)λmr−i)− λmr−r = 0 (30)

In addition, proposition 1 (page 23) proved that condition Ū < 1 is equivalent to
condition ∑i ibr(i) < r. This is a restriction over the characteristic polynomial coeffi-
cients. In the next theorem we will prove that, if this restriction is met, the polynomial
has r roots with modulus greater than or equal to 1.

Theorem 5. A polynomial f (z), of degree mr, with the form

f (z) =
mr

∑
i=0

aizmr−i − zmr−r = 0

with coefficients ai fulfilling the following restrictions:

0 ≤ ai < 1; amr 6= 0;
mr

∑
i=0

ai = 1;
mr

∑
i=0

iai < r

has exactly r roots with modulus greater than or equal to 1.

44

Proof. The proof is based in Rouché’s theorem, which is a classical result of the com-
plex variable analysis [Rudin, 1966]. According with this theorem, if there exist another
function g(z) and a closed path C such that:

| f (z) + g(z)| < |g(z)| ∀z ∈ C (31)

then f (z) and g(z) have the same number of roots in the region enclosed by C.
In order to prove the current theorem, we will take g(z) = zmr−r, and C equal to the

circle with center at the origin, and radius equal to 1− ε, being ε > 0 very small.
Using function g(z) it is easy to see that f (z) + g(z) = ∑mr

i=0 aizm−i. In order to
bound its modulus, we can use the triangular inequality, thanks to the fact that all ai
are positive:

| f (z) + g(z)| ≤
mr

∑
i=0

ai|z|mr−i

In particular, this inequality is true also for all z ∈ C, so then

| f (z) + g(z)| ≤
mr

∑
i=0

ai|1− ε|mr−i z ∈ C

Second member is equal to function f (z) + g(z) evaluated at real number (1 − ε),
so

| f (z) + g(z)| ≤ f (1− ε) + g(1− ε) = (f + g)(1− ε) z ∈ C (32)

In addition, f (1− ε) + g(1− ε) is less than g(1− ε). This is due to two facts:

1. Functions f + g and g are both equal to 1 when evaluated at z = 1. That is (f +
g)(1) = g(1) = 1, as the reader can easily check.

2. The derivative of function f + g at z = 1 is greater than the derivative of function
g. In fact:

(f + g)′(1) =
mr

∑
i=0

(mr − i)ai = mr −
mr

∑
i=0

iai > mr − r

g′(1) = mr − r

Since the slope of f + g(z) is greater than the slope of g(z) at z = 1, the value of f + g
has to be less than the value of g at (1− ε), as is shown in fig. 10.

Therefore (f + g)(1− ε) < g(1− ε). Using this in eq. (32), and taking into account
that g(1− ε) is positive, because its value is close to 1, we finally obtain:

| f (z) + g(z)| < g(1− ε) = |g(1− ε)| z ∈ C

This means that the conditions of Rouché’s theorem hold, so f has the same number
of roots than g in the region enclosed by C. All the mr − r roots of g are zero, so all of
them are in the region enclosed by C, so it follows that f has mr − r roots with modulus
less than 1, and therefore r roots with modulus greater than or equal to 1.

45

z1

1

1− ε

g(z)

f (z) + g(z)

Figure 10: f + g < g at abcise inmediately to the
left of 1

References

L. Abeni and G. Buttazzo (1999). QoS Guarantee Using Probabilistic Deadlines. In Proc.
of the Euromicro Conference on Real-Time Systems. York, UK.

A. K. Atlas and A. Bestavros (1998). Statistical Rate Monotonic Scheduling. In Proc. of
the 19th IEEE Real-Time Systems Symposium, pp. 123–132.

J. L. Díaz, J. M. López and D. F. García (2002). Probabilistic Analysis of the Re-
sponse Time in a Real-Time System. In Proc. of the 1st CARTS Workshop on Ad-
vanced Real-Time Technologies. Aranjuez, Spain. Also available as Technical Report
at http://www.atc.uniovi.es/research/PART01.pdf.

M. K. Gardner (1999). Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems. Ph.D. thesis, University of Illinois, Urbana-Champaign.

J. P. Lehoczky (1990). Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. In Proc. of the 11th IEEE Real-Time Systems Symposium, pp. 201–209.

C. L. Liu and J. Layland (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM, 20(1):pp. 46–71.

S. P. Meyn and R. Tweedie (1993). Markov Chains and Stochastic Stability. Control and
Communication Engineering Series. Springer Verlag, London.

W. H. Press, W. T. Vettering, S. A. Teukolsky and B. P. Flannery (1992). Numerical Recipes
in C. Cambridge University Press, 2nd ed.

W. Rudin (1966). Real and Complex Analysis. McGraw-Hill, New York, NY.

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu and J.-S. Liu (1995). Prob-
abilistic Performance Guarantee for Real-Time Tasks with Varying Computation
Times. In Proc. of the Real-Time Technology and Applications Symposium, pp. 164–
173. Chicago, Illinois.

K. Tindell, A. Burns and A. J. Wellings (1994). An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6:pp. 133–151.

46

R. Tweedie (2000). Markov Chains: Structure and Applications. In D. Shanbhag and
C. Rao, eds., Handbook of Statistics, vol. 19, pp. 817–851. Elsevier Amsterdam.

47

	Notation
	Introduction
	System model and definitions
	System parameters
	Problem statement
	Other concepts and definitions

	Steady-state backlog computation. Markovian analysis
	Preliminary concepts
	Trivial case: Umax1
	General case
	The initial backlog is a Markov chain
	Markov matrix computation
	Stationarity and convergence
	Computation of the steady-state distribution

	Approximated methods for obtaining the steady-state distribution
	Problems with the analytical solution
	Truncation of the Markov matrix method
	Iterative method

	Appendix
	Number of roots with modulus greater than 1 in the characteristic polynomial of matrix A

	References

