
An Exact Stochastic Analysis of Priority-Driven

Periodic Real-Time Systems *

Kanghee Kim José Luis Dı́az Lucia Lo Bello José Maŕıa López
Chang-Gun Lee Daniel F. Garćıa Sang Lyul Min Orazio Mirabella

*The contents of this technical report were edited in 2005 in order to fix some minor errors.

Abstract

This paper describes a stochastic analysis framework for general priority-driven
periodic real-time systems. The proposed framework accurately computes the response
time distribution of each task in the system, thus making it possible to determine
the deadline miss probability of individual tasks, even for systems with a maximum
utilization factor greater than 1. The framework is uniformly applied to general priority-
driven systems, including fixed-priority systems (such as Rate Monotonic) and dynamic-
priority systems (such as Earliest Deadline First), and can handle tasks with arbitrary
relative deadlines and execution time distributions. In the framework, both an exact
method and approximation methods to compute the response time distributions are
presented and compared in terms of analysis accuracy and complexity. We prove that
the complexity of the exact method is polynomial in terms of the number of jobs in a
hyperperiod of the task set and the maximum length of the execution time distributions,
and show that the approximation methods can significantly reduce the complexity
without loss of accuracy.

An Exact Stochastic Analysis of

Priority-Driven Periodic Real-Time Systems

Kanghee Kim† José Luis Dı́az‡ Lucia Lo Bello§ José Maŕıa López‡

Chang-Gun Lee¶ Daniel F. Garćıa‡ Sang Lyul Min† Orazio Mirabella§

I. Introduction

Most recent research on hard real-time systems has used the periodic task model [1]
in analyzing the schedulability of a given task set where tasks are released periodi-
cally. Based on this periodic task model, various schedulability analysis methods for
priority-driven systems have been developed to provide a deterministic guarantee
that all the instances, called jobs, of every task in the system meet their deadlines,
assuming that every job in a task requires its worst case execution time [1], [2], [3].

Although this deterministic timing guarantee is needed in hard real-time systems,
it is too stringent for soft real-time applications that only require a probabilistic
guarantee that the deadline miss ratio of a task is below a given threshold. For soft
real-time applications, we need to relax the assumption that every instance of a task
requires the worst case execution time in order to improve the system utilization.
This is also needed for probabilistic hard real-time systems [4] where a probabilistic
guarantee close to 0% suffices, i.e. the overall deadline miss ratio of the system
should be below a hardware failure ratio.

Progress has recently been made in the analysis of real-time systems under the
stochastic assumption that jobs from a task require variable execution times. Re-
search in this area can be categorized into two groups depending on the approach
used to facilitate the analysis. The methods in the first group introduce a worst-
case assumption to simplify the analysis (e.g., the critical instant assumption in
Probabilistic Time Demand Analysis [5] and Stochastic Time Demand Analysis [6],
[7]) or a restrictive assumption (e.g., the heavy traffic condition in the Real-Time
Queueing Theory [8], [9]). Those in the second group, on the other hand, assume a
special scheduling model that provides isolation between tasks so that each task can
be analyzed independently of the other tasks in the system (e.g., the reservation-
based system addressed in [10] and Statistical Rate Monotonic Scheduling [11]).

*† Kanghee Kim (khkim@archi.snu.ac.kr) and Sang Lyul Min (symin@dandelion.snu.ac.kr), School

of Computer Science and Engineering, Seoul National University (Seoul, 151-742 Korea). This work was
supported in part by the Ministry of Science and Technology under the National Research Laboratory
program and by the Ministry of Education under the BK21 program. Also, for this work, the ICT at Seoul
National University provided research facilities.

‡ José Luis D́ıaz, José Maŕıa López and Daniel F. Garćıa ({jdiaz,chechu,daniel}@atc.uniovi.es),
Departamento de Informática, Universidad de Oviedo (33204, Gijón, Spain)

§ Lucia Lo Bello and Orazio Mirabella ({llobello,omirabel}@diit.unict.it), Dipartimento di Ingeg-

neria Informatica e delle Telecomunicazioni, Facoltà di Ingegneria, Università di Catania (Viale A. Doria
6, 95125 Catania, Italy)

¶ Chang-Gun Lee (cglee@ee.eng.ohio-state.edu), Department of Electrical Engineering, Ohio State

University (2015 Neil Avenue, Columbus, OH 43210, U.S.A.)

1

In this paper, we describe a stochastic analysis framework that does not introduce
any worst-case or restrictive assumptions into the analysis, and is applicable to
general priority-driven real-time systems. The proposed framework builds upon
Stochastic Time Demand Analysis (STDA) in that the techniques used in the
framework to compute the response time distributions of tasks are largely borrowed
from the STDA. However, unlike the STDA, which focuses on particular execution
scenarios starting at a critical instant, the proposed framework considers all possible
execution scenarios in order to obtain the exact response time distributions of the
tasks. Moreover, while the STDA addresses only fixed-priority systems such as Rate
Monotonic [1] and Deadline Monotonic [12], our framework extends to dynamic-
priority systems such as Earliest Deadline First [1]. The contributions of the paper
can be summarized as follows:

• The framework gives the exact response time distributions of the tasks. It
assumes neither a particular execution scenario of the tasks such as critical
instants, nor a particular system condition such as heavy traffic, in order to
obtain accurate analysis results considering all possible execution scenarios for
a wide range of system conditions.

• The framework provides a unified approach to addressing general priority-driven
systems, including both fixed-priority systems such as Rate Monotonic and
Deadline Monotonic, and dynamic-priority systems such as Earliest Deadline
First. We neither modify the conventional rules of priority-driven scheduling,
nor introduce other additional scheduling rules such as reservation scheduling,
in order to analyze the priority-driven system as it is.

In our framework, in order to consider all possible execution scenarios in the
system, we analyze a whole hyperperiod of the given task set (which is defined as a
period whose length is equal to the least common multiple of the periods of all the
tasks). In particular, to handle even cases where one hyperperiod affects the next
hyperperiod, which occurs when the maximum utilization of the system is greater
than 1, we take the approach of modelling the system as a Markov process over an
infinite sequence of hyperperiods. This modelling leads us to solve an infinite number
of linear equations, so we present three different methods to solve it: one method
gives the exact solution, and the others give approximated solutions. We compare all
these methods in terms of analysis complexity and accuracy through experiments.
It should be noted that our framework subsumes the conventional deterministic
analysis in the sense that, by modelling the worst case execution times as single-
valued distributions, it always produces the same result as the deterministic analysis
on whether a task set is schedulable or not.

The rest of the paper is organized as follows. In Section II, the related work is
described in detail. In Section III, the system model is explained. Sections IV and
V describe the stochastic analysis framework including the exact and the approxi-
mation methods. In Section VI, the complexity of the methods is analyzed, and in
Section VII, a comparison between the solutions obtained by the methods is given,
together with other analysis methods proposed in literature. Finally, in Section VIII,
we conclude the paper with directions for future research.

2

II. Related work

Several studies have addressed the variability of task execution times in analyzing
the schedulability of a given task set. Research in this area can be categorized into
two groups depending on the approach taken to make the analysis possible. The
methods in the first group [5], [6], [7], [8], [9], [13], [14] introduce a worst-case or
restrictive assumption to simplify the analysis. Those in the second group [10], [11]
assume a special scheduling model that provides isolation between tasks so that
each task can be analyzed independently of other tasks in the system.

Examples of analysis methods in the first group include Probabilistic Time De-
mand Analysis (PTDA) [5] and Stochastic Time Demand Analysis (STDA) [6], [7],
both of which target fixed-priority systems with tasks having arbitrary execution
time distributions. PTDA is a stochastic extension of the Time Demand Analysis [2]
and can only deal with tasks with relative deadlines smaller than or equal to the
periods. STDA, on the other hand, which is a stochastic extension of General Time
Demand Analysis [3], can handle tasks with relative deadlines greater than the
periods. Like the original time demand analysis, both methods assume the critical
instant where the task being analyzed and all the higher priority tasks are released
or arrive at the same time. Although this worst-case assumption simplifies the
analysis, it only results in an upper bound on the deadline miss probability, the
conservativeness of which depends on the number of tasks and the average utilization
of the system. Moreover, both analyses are valid only when the maximum utilization
of the system does not exceed 1.

Other examples of analysis methods in the first group are the method proposed
by Manolache et al. [13], which addresses only uniprocessor systems, and the one
proposed by Leulseged and Nissanke [14], which extends to multiprocessor systems.
These methods, like the one presented in this paper, cover general priority-driven
systems including both fixed-priority and dynamic-priority systems. However, to
limit the scope of the analysis to a single hyperperiod, both methods assume that
the relative deadlines of tasks are shorter than or equal to their periods and that
all the jobs that miss the deadlines are dropped. Moreover, in [13], all the tasks are
assumed to be non-preemptable to simplify the analysis.

The first group also includes the Real-Time Queueing Theory [8], [9], which
extends the classical queueing theory to real-time systems. This analysis method
is flexible, in that it is not limited to a particular scheduling algorithm and can be
extended to real-time queueing networks. However, it is only applicable to systems
where the heavy traffic assumption (i.e., the average system utilization is close to
1) holds. Moreover, it only considers one class of tasks such that the interarrival
times and execution times are identically distributed.

Stochastic analysis methods in the second group include the one proposed by
Abeni and Buttazzo [10], and the method with Statistical Rate Monotonic Schedul-
ing (SRMS) [11]. Both assume reservation-based scheduling algorithms so that the
analysis can be performed as if each task had a dedicated (virtual) processor. That is,
each task is provided with a guaranteed budget of processor time in every period [10]
or super-period (the period of the next low priority task, which is assumed to be
an integer multiple of the period of the task in SRMS) [11]. So, the deadline miss
probability of a task can be analyzed independently of the other tasks, assuming the

3

guaranteed budget. However, these stochastic analysis methods are not applicable
to general priority-driven systems due to the modification of the original priority-
driven scheduling rules or the use of reservation-based scheduling algorithms.

III. System model

We assume a uniprocessor system that consists of n independent periodic tasks
S = {τ1, . . . ,τn}, each task τi (1≤ i ≤ n) being modeled by the tuple (Ti,Φi,Ci,Di),
where Ti is the period of the task, Φi its initial phase, Ci its execution time, and
Di its relative deadline. The execution time is a discrete random variable* with a
given probability mass function (PMF), denoted by fCi(·), where fCi(c) = P{Ci =c}.
The execution time PMF can be given by a measurement-based analysis such as
automatic tracing analysis [15], and stored as a finite vector, whose indices are
possible values of the execution time and the stored values are their probabilities.
The indices range from a minimum execution time Cmin

i to a maximum execution
time Cmax

i . Without loss of generality, the phase Φi of each task τi is assumed to be
smaller than Ti. The relative deadline Di can be smaller than, equal to, or greater
than Ti.

Associated with the task set, the system utilization is defined as the sum of
the utilizations of all the tasks. Due to the variability of task execution times, the
minimum Umin, maximum Umax, and the average system utilization Ū are defined as
∑n

i=1Cmin
i /Ti, ∑n

i=1 Cmax
i /Ti, and ∑n

i=1 C̄i/Ti, respectively. In addition, a hyperperiod
of the task set is defined as a period of length TH , which is equal to the least common
multiple of the task periods, i.e, TH = lcm1≤i≤n{Ti}.

Each task gives rise to an infinite sequence of jobs, whose release times are
deterministic. If we denote the j-th job of task τi by Ji, j, its release time λi, j is
equal to Φi +(j−1)Ti. Each job Ji, j requires an execution time, which is described
by a random variable following the given PMF fCi(·) of the task τi, and is assumed
to be independent of other jobs of the same task and those of other tasks. However,
throughout the paper we use a single index j for the job subscript, since the task
that the job belongs to is not important in describing our analysis framework. On
the other hand, we sometimes additionally use a superscript for the job notation,
to express the hyperperiod that the job belongs to. That is, we use J(k)

j to refer to
the j-th job in the k-th hyperperiod.

The scheduling model we assume is a general priority-driven preemptive one that
covers both fixed-priority systems such as Rate Monotonic (RM) and Deadline
Monotonic (DM), and dynamic-priority systems such as Earliest Deadline First
(EDF). The only limitation is that once a priority is assigned to a job, it never
changes, which is called a job-level fixed-priority model [16]. According to the
priority, all the jobs are scheduled in such a way that, at any time, the job with the
highest priority is always served first. If two or more jobs with the same priority are
ready at the same time, the one that arrived first is scheduled first. We denote the
priority of job J j by a priority value p j. Note that a higher priority value means a
lower priority.

*Throughout this paper, we use a calligraphic typeface to denote random variables, e.g., C, W, and R,
and a non-calligraphic typeface to denote deterministic variables, e.g., C, W , and R.

4

The response time for each job J j is represented by R j and its PMF by fR j(r) =
P{R j =r}. From the job response time PMFs, we can obtain the response time PMF
for any task by averaging those of all the jobs belonging to the task. The task
response time PMFs provide the analyst with significant information about the
stochastic behavior of the system. In particular, the PMFs can be used to compute
the probability of deadline misses for the tasks. The deadline miss probability DMPi
of task τi can be computed as follows:

DMPi = P{Ri >Di}= 1−P{Ri≤Di} (1)

IV. Stochastic Analysis Framework

A. Overview

The goal of the proposed analysis framework is to accurately compute the sta-
tionary response time distributions of all the jobs, when the system is in the steady
state. The stationary response time distribution of job J j can defined as follows:

lim
k→∞

f
R

(k)
j

= f
R

(∞)
j

where f
R

(k)
j

is the response time PMF of J(k)
j , the j-th job in the k-th hyperperiod.

In this section, we will describe how to compute the response time distributions of
all the jobs in an arbitrary hyperperiod k, and then, in the following section, explain
how to compute the stationary distributions, which are obtained when k→ ∞. We
start our discussion by explaining how the response time R j of a job J j is determined.

The response time of a job J j is determined by two factors. One is the pending
workload that delays the execution of J j, which is observed immediate prior to its
release time λ j. We call this pending workload backlog. The other is the workload
of jobs that may preempt J j, which are released after J j. We call this workload
interference. Since both the backlog and the interference for J j consist of jobs with
a priority higher than that of J j (i.e., with a priority value smaller than the priority
value p j of J j), we can elaborate the two terms to p j-backlog and p j-interference,
respectively. Thus, the response time of J j can be expressed by the following equation

R j = Wp j(λ j)+C j + Ip j (2)

where Wp j(λ j) is the p j-backlog observed at time λ j, C j is the execution time of J j,
and Ip j is the p j-interference occurring after time λ j.

In our framework, we compute the distribution of the response time R j in two
steps: backlog analysis and interference analysis. In the backlog analysis, the station-
ary p j-backlog distributions fWp j (λ j)(·) of all the jobs in a hyperperiod are computed.

Then, in the interference analysis, the stationary response time distributions fR j(·)
of the jobs are determined by introducing the associated execution time distribution
fC j(·) and the p j-interference effect Ip j into each stationary p j-backlog distribution
fWp j (λ j)(·).

B. Backlog analysis algorithm

For the backlog analysis, we assume a job sequence {J1, . . . ,J j} in which all the
jobs have a priority value smaller than or equal to p j. It is also assumed that the

5

w

fW(λk)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
—
18

4
—
18

6
—
18

1
—
18

3
—
18

1
—
18

1
—
18

tλk

Jk

λk+1

Jk+1

w

fW(λk) ⊗ fCk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
—
54

6
—
54

12
—
54

11
—
54

10
—
54 5

—
54

4
—
54 1

—
54

1
—
54

1
—
54

1
—
54

w
−3 −2 −1 0 1 2 3 4 5 6 7 8 9

2
—
54

6
—
54

12
—
54

11
—
54

10
—
54 5

—
54

4
—
54 1

—
54

1
—
54

1
—
54

1
—
54

w

fW(λk+1)

0 1 2 3 4 5 6 7 8 9

20
—
54

11
—
54

10
—
54 5

—
54

4
—
54 1

—
54

1
—
54

1
—
54

1
—
54

1: Convolve

2: Shift by (λk+1 − λk)

3: Sum up all the probability
values in the non-positive
range

c

fCk

0 1 2 3 4 5 6 7

1
—
3

1
—
3

1
—
3

Fig. 1. An example of backlog analysis using the convolve-shrink procedure

stationary p j-backlog distribution observed immediate prior to the release time of
the first job J1, i.e., fWp j (λ1)(·), is given. In Section V, it will be explained how

the assumed stationary backlog distribution can be computed. Then the p j-backlog
distribution fWp j (λ j)(·) immediate prior to the release time of J j can be computed

from fWp j (λ1)(·) by the algorithm described in this subsection. For the sake of brevity,

we will simplify the notation Wp j(λ j) to W(λ j), i.e., without the subscript denoting
the priority level p j.

Let us first consider how to compute the backlog when the execution times of all
the jobs are given as deterministic values. In this deterministic scenario, the backlog
W (λk) immediate prior to the release time of each job Jk (1≤ k < j) can be expressed
as follows:

W (λk+1) = max{W (λk)+Ck− (λk+1−λk),0} (3)

So, once the backlog W (λ1) for the first job J1 is given, the series of the backlog
{W(λ2),W(λ3), . . . ,W(λ j)} can be calculated by repeatedly applying Equation (3)
along the job sequence.

Then we can explain our backlog analysis algorithm as a stochastic extension
of Equation (3). Deterministic variables W (λk) and Ck are translated into random
variables W(λk) and Ck, and Equation (3) is translated into a numerical procedure
on the associated PMFs. This procedure can be summarized in the following three
steps:

1) The expression “W(λk)+Ck” is translated into convolution between the two
PMFs of the random variables W(λk) and Ck, respectively.

fW(λk)+Ck(·) =
(

fW(λk)⊗ fCk

)

(·)

6

In Figure 1, for example, the arrow annotated with “Convolve” shows such a
convolution operation.

2) The expression “W(λk)+Ck− (λk+1−λk)” is translated into shifting the PMF
fW(λk)+Ck(·) obtained above by (λk+1−λk) units to the left. In the example
shown in Figure 1, the amount of the shift is 6 time units.

3) The expression “max{W(λk)+Ck− (λk+1−λk),0}” is translated into summing
up all the probability values in the negative range of the PMF obtained above
and adding the sum to the probability of the backlog equal to zero. In the
above example, the probability sum is 20/54.

These three steps exactly describe how to obtain the backlog PMF fW(λk+1)(·)
from the preceding backlog PMF fW(λk)(·). So, starting from the first job in the
given sequence, for which the stationary backlog PMF fW(λ1)(·) is assumed to be
known, we can compute the stationary backlog PMF of the last job J j by repeatedly
applying the above procedure along the sequence. We refer to this procedure as
“convolve-shrink”.

C. Interference analysis algorithm

Once the p j-backlog PMF is computed for each job J j at its release time by the
backlog analysis algorithm described above, we can easily obtain the response time
PMF of the job J j by convolving the p j-backlog PMF fWp j (λ j)(·) and the execution

time PMF fC j(·). This response time PMF is correct if the job J j is non-preemptable.
However, if J j is preemptable, and there exist higher priority jobs following J j, we
have to further analyze the p j-interference for J j, caused by all the higher priority
jobs, to obtain the complete response time PMF.

For the interference analysis, we have to identify all the higher priority jobs
following J j. These higher priority jobs can easily be found by searching for all the
jobs released later than J j and comparing their priorities with that of J j. For the
sake of brevity, we represent these jobs with {J j+1,J j+2, ...,J j+k, ...}, while slightly
changing the meaning of the notation λ j+k from the absolute release time to the
release time relative to λ j, i.e., λ j+k← (λ j+k−λ j).

As in the case of the backlog analysis algorithm, let us first consider how to
compute the response time R j of J j when the execution times of all the jobs are
given as deterministic values. In this deterministic scenario, the response time R j of
J j can be computed by the following algorithm:

R j = Wp j(λ j)+C j ; k = 1
while R j > λ j+k

R j = R j +C j+k ; k = k +1
(4)

The total number k of iterations of the “while” loop is determined by the final
response time that does not reach the release time of the next higher priority job
J j+k+1. For an arbitrary value k, the final response time R j is given as Wp j(λ j)+

C j +∑k
l=1C j+l.

We can explain our interference analysis algorithm as a stochastic extension of
Algorithm (4). We treat deterministic variables R j and C j as random variables R j

7

w

fW

0 1 2 3 4 5 6 7 8 9 10

1
—
4

1
—
2

1
—
4

r

fW ⊗ fCj

0 1 2 3 4 5 6 7 8 9 10

1
—
8

3
—
8

3
—
8

1
—
8 Response time without interference

r
0 1 2 3 4 5 6 7 8 9 10

3
—
16

4
—
16

1
—
16

r
0 1 2 3 4 5 6 7 8 9 10

4
—
32

5
—
32

1
—
32

r

fRj

0 1 2 3 4 5 6 7 8 9 10

1
—
8

3
—
8

3
—
16 4

—
32

5
—
32

1
—
32

Response time with interference

⊗fCj

⊗fCj+1

⊗fCj+2

tλj

Jj

λj+1

Jj+1

λj+2

Jj+2

c

fC

0 1 2 3

1
—
2

1
—
2

fCj
= fCj+1

= fCj+2

Fig. 2. An example of interference analysis using the split-convolve-merge procedure

and C j, and translate Algorithm (4) into a numerical procedure on the associated
PMFs as follows:

1) The expression “R j = Wp j(λ j) + C j” is translated into fR j(·) =
(

fWp j (λ j) ⊗

fC j

)

(·). This response time PMF is valid in the interval (0,λ j+1]. For example,
in Figure 2, the first convolution ⊗ shows the corresponding operation.

2) While P{R j >λ j+k} > 0, the expression “R j = R j + C j+k” is translated into
convolution between the partial PMF defined in the range (λ j+k,∞) of the re-
sponse time PMF fR j(·) calculated in the previous iteration and the execution
time PMF fC j+k(·). The resulting PMF is valid in the range (λ j+k,λ j+k+1].
When P{R j >λ j+k} = 0, the loop is terminated. In the example shown in
Figure 2, this procedure is described by the two successive convolutions, where
only two higher priority jobs J j+1 and J j+2 are assumed (In this case, all three
jobs are assumed to have the same execution time distribution).

Note that in the above procedure the number of higher priority jobs we have to
consider in a real system can be arbitrarily large. However, in practice, since we
are often interested only in the probability of job J j missing the deadline D j, the
set of interfering jobs we have to consider can be limited to the jobs released in
the time interval

(

λ j,λ j +D j
)

. This is because we can compute the deadline miss
probability, i.e., P{R j >D j}, from the partial response time distribution defined in

8

the range
[

0,D j
]

, i.e., P{R j >D j} = 1− P{R j≤D j}. Thus, we can terminate the
“while” loop of Algorithm (4) when λ j+k is greater than D j. For the example in
Figure 2, if the relative deadline D j of J j is 7, the deadline miss probability will be
P{R j >D j}= 1−11/16 = 5/16.

We will refer to the above procedure as “split-convolve-merge”, since at each step
the response time PMF being computed is split, the resulting tail is convolved with
the associated execution time distribution, and this newly made tail and the original
head are merged.

D. Backlog dependency tree

In the backlog analysis algorithm, for a given job J j, we assumed that a sequence
of preceding jobs with a priority higher than or equal to that of J j and the stationary
backlog distribution of the first job in the sequence were given. In this subsection,
we will explain how to derive such a job sequence for each job in a hyperperiod. As
a result, we give a backlog dependency tree where the p j-backlog distributions of all
the jobs in the hyperperiod can be computed by traversing the tree while applying
the convolve-shrink procedure. This backlog dependency tree greatly simplifies the
steady-state backlog analysis for the jobs, since it reduces the problem to computing
only the stationary backlog distribution of the root job of the tree. In Section V, we
will address how to compute the stationary backlog distribution for the root job.

To show that there exist dependencies between the p j-backlog’s, we first classify
all the jobs in a hyperperiod into ground jobs and non-ground jobs. A ground job
is defined as a job that has a lower priority than those of all the jobs previously
released. That is, J j is a ground job if and only if pk ≤ p j for all jobs Jk such
that λk < λ j. A non-ground job is a job that is not a ground job. One important
implication from the ground job definition is that the p j-backlog of a ground job is
always equal to the total backlog in the system observed at its release time. We call
the total backlog system backlog and denote it by W(t), i.e., without the subscript
p j denoting the priority level. So, for a ground job J j, Wp j(λ j) = W(λ j).

Let us consider the task set example shown in Figure 3(a). This task set consists
of two tasks τ1 and τ2 with the relative deadlines equal to the periods 20 and 70,
respectively. The phases Φi of both tasks are zero. We assume that these tasks are
scheduled by EDF.

In this example, there are five ground jobs J1, J2, J5, J6, and J9, and four non-
ground jobs J3, J4, J7, and J8, as shown in Figure 3(b). That is, regardless of the
actual execution times of the jobs, Wp1(λ1) = W(λ1), Wp2(λ2) = W(λ2) (which is
under the assumption that W(λ2) includes the execution time of J1 while W(λ1) does
not), Wp5(λ5) = W(λ5), Wp6(λ6) = W(λ6), and Wp9(λ9) = W(λ9). On the contrary,
for any of the non-ground jobs J j, Wp j(λ j) 6= W(λ j). For example, Wp4(λ4) 6= W(λ4)
if J2 is still running until J4 is released, since the system backlog W(λ4) includes
the backlog left by J2 while the p4-backlog Wp4(λ4) does not.

We can capture backlog dependencies between the ground and non-ground jobs.
For each non-ground job J j, we search for the last ground job that is released before
J j and has a priority higher than or equal to that of J j. Such a ground job is called
the base job for the non-ground job. From this relation, we can observe that the
p j-backlog of the non-ground job J j directly depends on that of the base job. For

9

0 70 140

0 20 40 60 80 100 120 140

PSfrag replacements

τ1

τ2

J1

J1

J3

J3

J4

J4

J5

J5

J7

J7

J8

J8

J9

J9

J2

J2

J6

J6

J10 J11

W(λ1)W(λ3)
W(λ4)

W(λ5) W(λ7)
W(λ8)

W(λ9)
W(λ2) W(λ6)

W(λ10)
W(λ11)

hyperperiod

Wp1 (λ1)

Wp3 (λ3)

Wp4 (λ4)

Wp5 (λ5)

Wp7 (λ7)

Wp8 (λ8)

Wp9 (λ9)

Wp2 (λ2)

Wp6 (λ6)

{J1}

{J2,J3 ,J4}

{J5}

{J6,J7 ,J8}

{J1,J3}

{J1}

{J5,J7}

{J5}

(a) Task set

(b) Ground jobs and non-ground jobs (c) Backlog dependency tree

Fig. 3. An example of backlog dependency tree generation

example, for the task set shown above, the base job of J3 and J4 is J1, and that of
J7 and J8 is J5. We can see that, for the non-ground job J3, the p3-backlog can be
directly computed from that of the ground job J1 by considering only the execution
time of J1. In this computation, the existence of J2 is ignored because J2 has a lower
priority than J3. Likewise, for the non-ground job J4, the p4-backlog can also be
directly computed from that of the ground job J1 in the same manner, except for
the fact that, in this case, we have to take into account the arrival of J3 in between
λ1 and λ4 (since J3 has a higher priority than J4).

Note that such backlog dependencies exist even between ground jobs, and can
still be captured under the concept of the base job. The base job of J2 is J1, that of
J5 is J2, and so on. As a result, all the backlog dependencies among the jobs can be
depicted with a tree, as shown in Figure 3(c). In this figure, each node represents the
p j-backlog Wp j(λ j) of J j, each link Wpk(λk)→Wp j(λ j) represents the dependency
between Wpk(λk) and Wp j(λ j), and the label on each link represents the set of jobs
that should be taken into account to compute Wp j(λ j) from Wpk(λk).

It is important to understand that this backlog dependency tree completely en-
capsulates all the job sequences required in computing the p j-backlog’s Wp j(λ j) of
all the jobs in the hyperperiod. For example, let us consider the path from Wp1(λ1)
to Wp8(λ8). We can see that the set of labels found in the path represents the exact
sequence of jobs that should be considered in computing Wp8(λ8) from Wp1(λ1).
That is, the job sequence {J1,J2,J3,J4,J5,J7} includes all the jobs with a priority
higher than or equal to that of J8, among all the jobs preceding J8. This property
is applied for every node in the tree. Therefore, given the stationary root backlog
distribution, i.e., fWp1 (λ1)(·), we can compute the stationary p j-backlog distributions
of all the other jobs in the hyperperiod by traversing the tree while applying the
convolve-shrink procedure.

Finally, note that there is one optimization issue in the dependency tree. In the
cases of computing Wp3(λ3) and computing Wp4(λ4), the associated job sequences
are {J1} and {J1,J3}, and the former is a subsequence of the latter. In this case,

10

since we can obtain Wp3(λ3) while computing Wp4(λ4) with the sequence {J1,J3},
i.e., Wp3(λ3) = Wp4(λ3), the redundant computation for Wp3(λ3) with the sequence
{J1} can be avoided. This observation is also applied to the case of non-ground jobs
J7 and J8. It suffices to note that such redundancies can easily be removed by certain
steps of tree manipulation. For more information, refer to Appendix.

E. Extension to dynamic-priority and fixed-priority systems

In this subsection, we will prove the existence of ground jobs for the job-level
fixed-priority scheduling model [16]. We will also prove the existence of base jobs
while distinguishing between fixed-priority systems and dynamic-priority systems.

Theorem 1. Let S = {τ1, . . . ,τn} be a periodic task set, in which each task generates
a sequence of jobs with a deterministic period Ti and phase Φi. Also, let TH =
lcm1≤i≤n{Ti}, i.e., the length of a hyperperiod. Consider a sequence of hyperperiods
the first of which starts at time t (0≤ t < TH). Then, for any t, if the relative priorities
of all jobs in a hyperperiod [t + kTH , t +(k +1)TH) coincide with those of all jobs in
the next hyperperiod [t +(k +1)TH, t +(k +2)TH) (k = 0,1, . . .), it follows that

(a) at least one ground job exists in any hyperperiod.
(b) the same set of ground jobs are found for all the hyperperiods.*

Proof. (a) Assume that all the jobs have distinct priority values. If there exist jobs
with the same priority value, they can always be reassigned distinct priority values
while respecting the FCFS (First Come First Serve) principle or a user-defined
principle. Then for any hyperperiod k, i.e., [t + kTH , t +(k +1)TH), we can find a
job J j with the maximum priority value pmax in the hyperperiod. This guarantees
that J j has a higher priority value (or a lower priority) than all the preceding jobs
released in [t + kTH ,λ j). Then, since the previous instance of J j released at time
λ j−TH has a lower priority value than J j, and any job released in [λ j−TH , t + kTH)
has a lower priority value than the previous instance, it follows that J j even has a
higher priority value than all the jobs released in [λ j−TH ,λ j). Likewise, it can be
shown that J j has a higher priority value than all the jobs released in [λ j−2TH ,λ j),
[λ j−3TH ,λ j), and so on. Therefore, J j is a ground job, and for any hyperperiod,
there exists at least one ground job.

(b) This is straightforward from the proof of (a).

The key point of the proof is that, in any hyperperiod, a job with the maximum
priority value always has a lower priority than any preceding jobs. From this, it
is easy to devise an algorithm to find all the ground jobs in a hyperperiod. First,
we take an arbitrary hyperperiod and simply find the job J j with the maximum
priority value. This job is a ground one. After that, we find all the other ground
jobs by searching the single hyperperiod starting at the release time of the ground
job, i.e., [λ j,λ j +TH). In this search, we simply have to check whether a job Jl in
the hyperperiod has a greater priority value than all the preceding jobs released in
the hyperperiod, i.e., {J j, . . . ,Jl−1}.

*To be precise, the set of jobs that are ground ones agree in all hyperperiods. This does not mean that
a task one job of which is classified into a ground job always produces ground jobs. A task may produce
both ground jobs and non-ground jobs.

11

In the following, we will address the existence of the base jobs for dynamic-priority
systems such as EDF.

Theorem 2. For a system defined in Theorem 1, if the priority value p(k)
j of every

job J(k)
j in the hyperperiod k (≥ 2) can be expressed as p(k)

j = p(k−1)
j +∆, where ∆ is

an arbitrary positive constant, any job in a hyperperiod can always find its base job
among the preceding ground jobs in the same hyperperiod or a preceding hyperperiod.

Proof. Since it is trivial to show that the base job of a ground job can always be
found among the preceding ground jobs (actually the base job is the immediately
preceding ground job), we focus only on the base job for a non-ground job.

Let us assume a case where the base job for a non-ground job J(k)
j is not found in

the same hyperperiod k, and let J(k)
i be a ground job in the hyperperiod that has a

higher priority value than the job J(k)
j . That is, J(k)

i is not the base job of J(k)
j . Then

we can always find a previous instance J(h)
i of J(k)

i in a preceding hyperperiod h(< k)
such that p(h)

i ≤ p(k)
j , by choosing an appropriate value h that satisfies the inequality

k− h ≥ (p(k)
i − p(k)

j)/∆. Since p(k)
i = p(h)

i +(k− h)∆, such a value h always satisfies

p(h)
i ≤ p(k)

j . Then, since J(h)
i is also a ground job (Recall Theorem 1(b)), it can be

taken as the base job of J(k)
j if no other eligible ground job is found. Therefore, for

any non-ground job J j, we can always find the base job among the preceding ground
jobs.

For EDF, ∆ = TH , since the priority value assigned to each job is the absolute
deadline.

Note that in our analysis framework it does not matter whether the base job Ji
is found in the same hyperperiod (say k) the non-ground job J j belongs to, or a
preceding hyperperiod (say h), since the case where the base job Ji is found in a
preceding hyperperiod simply means that the corresponding job sequence from Ji to
J j spans over the multiple hyperperiods from the hyperperiod h to k. Even in this
case, since it is possible to compute the stationary backlog distribution for the root
of the backlog dependency tree that originates from the hyperperiod h, through the
steady-state analysis in Section V, the backlog distribution of such a non-ground
job J j can be computed along the derived job sequence.

The next possible question will be whether there exists a bound on the search
range for the base jobs. Theorem 3 addresses this problem for EDF.

Theorem 3. For EDF, it is always possible to find the base job of any non-ground
job J j in the time window [λ j− (Dmax +TH),λ j], where Dmax = max1≤i≤n Di. That is,
the search range for the base job is bounded by Dmax +TH .

Proof. Let τi be the task with Di = Dmax, and Jk an instance of τi. Then Jk is a
ground job, since the priority value pk is λk +Dmax, and all the previously released
jobs have lower priority values. Let J j be a non-ground job arriving at the beginning
of the hyperperiod [λk +Dmax,λk +Dmax +TH]. Then Jk can be taken as the base job
of J j in the worst case, since Jk is a preceding ground job that has a lower priority
value than J j. Even if we assume that the non-ground job J j arrives at the end of
the hyperperiod, i.e., at time λk + Dmax + TH , Jk can still be taken as the base job

12

of J j in the worst case. Therefore, the maximum distance between any non-ground
job Jk and its base job cannot be greater than Dmax +TH .

Note that if we consider a case where Dmax < TH (since the opposite case is rare
in practice), Theorem 3 means that it is sufficient to search at most one preceding
hyperperiod to find the base jobs of all the non-ground jobs in a hyperperiod.

On the contrary, in fixed-priority systems such as RM and DM, the base jobs
of the non-ground jobs do not exist among the ground jobs (Recall that, for such
systems, Theorem 2 does not hold, since ∆ = 0). In such systems, all jobs from the
lowest priority task τn are classified as ground jobs while all jobs from the other
tasks are non-ground jobs. In this case, since any ground job always has a lower
priority than any non-ground job, we cannot find the base job for any non-ground
job (even if all the preceding hyperperiods are searched).

Note, however, that this special case does not compromise our analysis framework.
It is still possible to compute the backlog distributions of all the jobs by considering
each possible priority level. That is, we can consider a subset of tasks {τ1, . . . ,τi} for
each priority level i = 1, . . . ,n, and compute the backlog distributions of all the jobs
from task τi, since the jobs from τi are all ground jobs in the subset of the tasks,
and there always exist backlog dependencies between the ground jobs.

Therefore, the only difference between dynamic-priority systems and fixed-priority
systems is that for the former the backlog distributions of all the jobs are computed
at once with the single backlog dependency tree, while for the latter they are
computed by iterative analysis over the n priority levels, which results in n backlog
dependency lists.

V. Steady-state Backlog Analysis

In this section, we will explain how to analyze the steady-state backlog of a ground
job, which is used as the root of the backlog dependency tree or the head of the
backlog dependency list. In this analysis, for the ground job J j, we have to consider
an infinite sequence of all the jobs released before J j, i.e., {. . . ,J j−3,J j−2,J j−1}, since
all the preceding jobs contribute to the “system backlog” observed by J j.

In Section V-A, we will prove the existence of the stationary system backlog
distribution, and in Sections V-B and V-C, explain the exact and the approximation
methods to compute the stationary distribution. Finally, in Section V-D, it will be
discussed how to safely truncate the exact solution, which is infinite, in order to use
it as the root of the backlog dependency tree.

A. Existence of the stationary backlog distribution

The following theorem states that there exists a stationary (or limiting) system
backlog distribution, as long as the average system utilization Ū is less than 1.

Theorem 4. Let us assume an infinite sequence of hyperperiods, the first of which
starts at the release time λ j of the considered ground job J j. Let fBk(·) be the
distribution of the system backlog Bk observed immediate prior to the release time
of the ground job J(k)

j , i.e., at the beginning of hyperperiod k. Then, if the average
system utilization Ū is less than 1, there exists a stationary (or limiting) distribution
fB∞(·) of the system backlog Bk such that

13

lim
k→∞

fBk = fB∞ .

Proof. The proof can be found in [17].

For the special case where Umax ≤ 1, the system backlog distributions fBk(·) of
all the hyperperiods are identical. That is, fB1 = · · ·= fBk = · · ·= fB∞ . In this case,
the stationary backlog distribution fB∞(·) can easily be computed by considering
only the finite sequence of the jobs released before the release time of the ground
job J j. That is, we simply have to apply the convolve-shrink procedure along the
finite sequence of jobs released in [0,λ j), assuming that the system backlog at time
0 is 0 (i.e., P{W(0)=0} = 1). Therefore, for the special case where Umax ≤ 1, the
following steady-state backlog analysis is not needed.

B. Exact solution

For a general case where Umax > 1, in order to compute the exact solution for the
stationary backlog distribution fB∞(·), we show that the stochastic process defined
with the sequence of random variables {B0,B1, . . . ,Bk, . . .} is a Markov chain. To do
this, let us express the PMF of Bk in terms of the PMF of Bk−1 using the concept
of conditional probabilities.

P{Bk =x}= ∑
y

P{Bk−1 =y}P{Bk =x |Bk−1 =y} (5)

Then we can see that the conditional probabilities P{Bk =x | Bk−1 =y} do not
depend on k, since all hyperperiods receive the same sequence of jobs with the same
execution time distributions. That is, P{Bk =x | Bk−1 =y} = P{B1 =x | B0 =y}. This
leads us to the fact that the PMF of Bk depends only on that of Bk−1, and not on
those of {Bk−2,Bk−3, . . .}. Thus, the stochastic process is a Markov chain. We can
rewrite Equation (5) in matrix form as follows

bk = Pbk−1 (6)

where bk is a column vector
[

P{Bk =0},P{Bk =1}, . . .
]

ᵀ
, i.e., the PMF of Bk, and P

is the Markov matrix, which consists of the transition probabilities P(x,y) defined
as

P(x,y) = by(x) = P{Bk =x |Bk−1 =y}= P{B1 =x |B0 =y}.

Thus, the problem of computing the exact solution πππ for the stationary backlog
distribution, i.e.,

[

P{B∞ =0},P{B∞ =1}, . . .
]

ᵀ
, is equivalent to solving the equilibrium

equation πππ = Pπππ.
However, the equilibrium equation πππ = Pπππ cannot be directly solved, since the

number of linear equations obtained from it is infinite. Theoretically, when k→ ∞,
the system backlog can be arbitrarily long, since Umax > 1. This means that the
exact solution πππ has an infinite length, and the Markov matrix is therefore also of
infinite size. We address this problem by deriving a finite set of linear equations
that is equivalent to the original infinite set of linear equations. This is possible due
to the regular structure of the Markov matrix proven below.

14

P =

b0(0) b1(0) b2(0) . . . br(0) 0 0 0
b0(1) b1(1) b2(1) . . . br(1) br(0) 0 0
b0(2) b1(2) b2(2) . . . br(2) br(1) br(0) 0

...
...

... . . .
... br(2) br(1)

. . .

...
...

... . . .
...

... br(2)
. . .

b0(mr) b1(mr) b2(mr) . . . br(mr)
...

...
. . .

0 0 0 . . . 0 br(mr)
...

. . .

0 0 0 . . . 0 0 br(mr)
. . .

0 0 0 . . . 0 0 0
. . .

..

.
..
.

..

. . . .
..
.

..

.
..
.

. . .

Each column y in the Markov matrix P is the backlog PMF observed at the
end of a hyperperiod when the amount of the backlog at the beginning of the
hyperperiod is y. The backlog PMF of the column y can be calculated by applying
the convolve-shrink procedure (in Section IV-B) along the whole sequence of jobs
in the hyperperiod, assuming that the initial backlog is equal to y. So, the regular
structure found in the Markov matrix, i.e., the columns r, r +1, r +2, ..., with the
same backlog PMF only shifted down by one position, means that there exists a
value r for the initial backlog from which onwards the backlog PMF observed at the
end of the hyperperiod is always the same, only shifted one position to the right in
the system. The value r is the maximum sum of all the possible idle times occurring
in a hyperperiod. It is equal to

r = TH(1−Umin)+Wmin (7)

where Wmin is the system backlog observed at the end of the hyperperiod when
the initial system backlog is zero and all the jobs have minimum execution times
(Wmin is usually zero unless most of the workload is concentrated at the end of the
hyperperiod). If the initial backlog is r, the whole hyperperiod is busy, and thus
the backlog PMF observed at the end of the hyperperiod is simply the result of
convolving the execution time distributions of all the jobs, shifted (TH− r) units to
the left. The length of the backlog PMF is (mr + 1), where mr is the index of the
last non-zero element in column r. This observation is analogously applied to all
cases where the initial backlog is larger than r.

Using the above regularity, we can derive the equivalent finite set of linear equa-
tions as follows. First, we take the first (mr + 1) linear equations from πππ = Pπππ,
which correspond to rows 0 to mr in the Markov matrix. The number of unknowns
appearing in the (mr + 1) linear equations is (r + mr + 1), i.e., {π0,π1, . . . ,πr+mr}.
Next, we derive r additional equations from the fact that πx→ 0 when x→ ∞, in
order to complete the finite set of linear equations, i.e., (r+mr +1) linear equations
with the (r+mr +1) unknowns. For this derivation, from rows (mr +1), (mr +2), ...
in the Markov matrix, we extract the following equation:

Qx+1 = AQx x≥ mr +1 (8)

15

where

Qx = [πx−d,πx−d+1, . . . ,πx−1,πx,πx+1, . . . ,πx−d+mr−1]
ᵀ, (d = mr− r)

A =

0 1 0 0 0 0 0 0

0 0
.
.
. 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0
.
.
. 0

0 0 0 0 0 0 0 1
−br(mr)/br(0) −br(mr −1)/br(0) . . . −br(d +1)/br(0) 1−br(d)/br(0) −br(d−1)/br(0) . . . −br(1)/br (0)

Then, by diagonalizing the companion-form matrix A, it can be shown that the
general form of πx is expressed as follows:

πx =
mr

∑
k=1

akλ x−mr−1
k (9)

where {λ1,λ2, . . . ,λmr} are the eigenvalues obtained by the matrix diagonalization,
and the associated coefficients ak are a linear combination of {πr+1,πr+2, . . . ,πr+mr}.
Since it has already been proved in [17] that in Equation (9) there exist (r + 1)
eigenvalues λk such that |λk| ≥ 1, the associated coefficients ak are equated to 0
because the condition that πx→ 0 when x→∞ is met only in this case. As a result,
(r + 1) additional linear equations are obtained, but since one linear equation is
always degenerate, r linear equations remain*.

Therefore, the complete set of linear equations is composed of the first (mr +
1) linear equations taken from πππ = Pπππ, and the r linear equations obtained by
equating to 0 all the coefficients ak such that |λk| ≥ 1. Then the set of (r +mr +1)
linear equations with the (r + mr + 1) unknowns can be solved with a numerical
method, and as a result the solution for {π0,π1, . . . ,πr+mr} is obtained. Once the
solution is given, we can complete the general form of πx, since all the other unknown
coefficients ak, such that |λk| < 1, are calculated from the solution. Therefore, we
can finally generate the infinite stationary backlog distribution with the completed
general form. For more information about the above process, the reader is referred
to [17], [18].

C. Approximated solutions

Markov matrix truncation method : One possible approximation of the exact so-
lution is to truncate the Markov matrix P to a finite square matrix P′. That is, we
approximate the problem of πππ = Pπππ to πππ ′= P′πππ ′, where πππ ′= [π ′0,π

′
1,π
′
2, . . . ,π

′
p] and P′

is a square matrix of size (p+1), which consists of the elements P(x,y) (0≤ x,y≤ p)
of the Markov matrix P. The resulting equation is an eigenvector problem, from
which we can calculate the approximated solution πππ ′ with a numerical method.
Among the calculated eigenvectors, we can choose as the solution an eigenvector
whose eigenvalue is the closest to 1. In order to obtain a good approximation of the
exact solution πππ, the truncation point p should be increased as much as possible,
which makes the eigenvalue converge to 1.

*The uniqueness of the solution is guaranteed by the ergodicity of the underlying Markov chain. In [17]
we proved that the Markov chain is positive recurrent and ergodic

16

Iterative method : Another approximation method, which does not require the
Markov matrix derivation, is simple iteration of the backlog analysis algorithm for
the system backlog Bk over a sufficient number of hyperperiods. Since Theorem 4
guarantees that fBk(·) converges towards fB∞(·), we can compute fB1 , fB2, ..., fBk ,
in turn, until convergence occurs. That is, while monitoring the quadratic difference
|| fBk − fBk−1 || (def. ||x−y|| = 2

√

∑i(xi− yi)2), we can continue the computation of
fBk(·)’s until the difference falls below a given threshold ε.

For both approximation methods, it is important to choose the associated control
parameters appropriately, i.e., the truncation point and the number of iterations,
respectively. In general, as Ū approaches 1, a larger value should be used for the
control parameters, since the probability values of the stationary backlog distri-
bution spread more widely. Note that, by choosing an appropriate value for the
control parameters, we can achieve a trade-off between analysis accuracy and the
computational overheads required to obtain the approximated solution. We will
address this issue in Section VII-A.

D. Safe truncation of the exact solution

As mentioned earlier, the stationary backlog distribution has an infinite length
when Umax > 1. So, in practice, to use the infinite solution obtained by the exact
method as the root of the backlog dependency tree, we have to truncate the solution
at a certain point. In this subsection, we show that the use of such a truncated
solution is safe in that it is “more pessimistic” than the original infinite solution,
thus giving an upper bound on the deadline miss probability for each task.

Let f ′
B∞

(·) be the solution obtained by truncating the original infinite solution at
point M. That is, the truncated solution f ′

B∞
(·) is expressed as follows:

f ′B∞
(w) =

{

fB∞(w) w≤M
0 w > M

The truncated solution is not a complete distribution, since the total sum of the
nonzero probabilities is less than 1. In other words, the truncated solution has a
“deficit”of ∑w>M fB∞(w). However, it is possible to say that f ′

B∞
(·) is more pessimistic

than fB∞(·) in the sense that

t

∑
w=0

f ′B∞
(w)≤

t

∑
w=0

fB∞(w) for any t.

This means that the use of the truncated distribution f ′
B∞

(·) always produces results
which are more pessimistic than that of the original distribution fB∞(·). Thus, it
leads to a higher deadline miss probability for each task than the original one.

VI. Computational complexity

In this section, we investigate the computational complexity of our analysis frame-
work, dividing it into two parts: (1) the complexity of the backlog and interference
analysis, and (2) the complexity of the steady-state backlog analysis. In this com-
plexity analysis, to make the analysis simple and safe, we introduce two assump-
tions. One assumption is that we regard the deterministic releases of jobs in the

17

hyperperiod as random releases which follow an interarrival time distribution. So, if
the total number of jobs in the hyperperiod is n, the interarrival time distribution
is understood as a random distribution with a mean value T̄ = TH/n. The other
assumption is that all the jobs in the hyperperiod have execution time distributions
of the same length m. This simplification is safe, since we can make execution
time distributions of different lengths have the same length by zero-padding all
the distributions other than the longest one.

A. Complexity of the backlog and interference analysis

To safely analyze the complexity of the backlog analysis, we assume that, for
any job J j in the hyperperiod, all the preceding jobs {J1, . . . ,J j−1} are involved in
computing the p j-backlog distribution. That is, it is assumed that the p j-backlog
distribution can only be computed by applying the convolve-shrink procedure to
the stationary backlog distribution of J1 along the whole sequence of preceding
jobs. This scenario is the worst case that can happen in computing the p j-backlog
distribution, since the set of jobs required to compute the p j-backlog distribution
does not necessarily cover all the preceding jobs. So, by assuming the worst case
scenario for every job J j in the hyperperiod, we can safely ignore the complex backlog
dependencies among the jobs.

Without loss of generality, assuming that the truncated length M of the sta-
tionary backlog distribution of J1 is expressed as a multiple of the execution time
distribution length m, i.e. s×m, let us consider the process of applying the convolve-
shrink procedure to each job in the sequence {J1, . . . ,J j}. Each convolution operation
increases the length of the backlog distribution by (m−1) points, and each shrink
operation reduces the length by T̄ points on average. Note that, if T̄ ≈ (m− 1),
the backlog distribution length remains constant on average, and thus the convolve-
shrink procedure has the same cost for all the jobs in the sequence. However, if
T̄ → 0, which implies that Umax becomes significantly high, the backlog distribution
length always increases approximately by m points for each iteration. Assuming this
pessimistic case for T̄ , the complexity of the j-th iteration of the convolve-shrink
procedure is O((s+ j−1)m2), since the j-th iteration is accompanied by convolution
between the backlog distribution of length (s+ j−1)m and the associated execution
time distribution of length m. So, the complexity of computing the single p j-backlog
distribution from the stationary backlog distribution is sm2 +(s + 1)m2 + · · ·+(s +
j−1)m2, i.e., O(j2m2). Therefore, the total complexity* of computing the p j-backlog
distributions of all the jobs {J1, . . . ,Jn} in the hyperperiod is O(n3m2).

Likewise, the complexity of the interference analysis can be analyzed as follows.
First, let us consider the complexity for a single job J j. As explained above, the
length of the p j-backlog distribution of J j for which the interference analysis is to
be applied is (s + j− 1)m, so the initial response time distribution (without any
interference) will have a length of (s + j)m. We can assume that there exists a
constant value k (called interference degree) that represents the maximum number of

*In this analysis, we have assumed that the associated backlog dependency tree is completely built by
considering only all the jobs in a single hyperperiod. However, if more than one hyperperiod were to be
considered for the complete construction of the backlog dependency tree, the term n in O(n3m2) should be
replaced with the total number of jobs in the multiple hyperperiods.

18

interfering jobs, within the deadlines, for any job in the hyperperiod. Then the split-
convolve-merge procedure is applied k times to the initial response time distribution
of J j. We can see that the convolution at the i-th iteration of the technique has a
complexity of O((li− iT̄)m), where li is the length of the response time distribution
produced by the (i− 1)-th iteration. That iteration increases the response time
distribution by (m− 1) points. So, assuming that T̄ → 0, we can say that the i-
th iteration has a complexity of O((s + j + i)m2), since li = (s + j + i− 1)m. Thus,
the complexity of applying the split-convolve-merge procedure k times to the initial
response time distribution is (s + j)m2 +(s + j + 1)m2 + · · ·+(s + j + k− 1)m2, i.e.
O(k2m2). Therefore, if we consider all the n jobs in the hyperperiod, the total
complexity of the interference analysis is O(nk2m2). In particular, by assuming that
k < n, this complexity can be expressed as O(n3m2). This assumption is reasonable,
since the fact that k ≥ n means that every job in the hyperperiod has a relative
deadline greater than or equal to the length of the hyperperiod, which is unrealistic
in practice.

B. Complexity of the steady-state backlog analysis

The complexity of the steady-state backlog analysis is different, depending on
the solution method used to compute the stationary backlog distribution. First, let
us investigate the complexity of the exact method. The exact method consists of
three steps: Markov matrix P derivation, companion-form matrix A diagonalization,
and solving a system of linear equations. The complexity of the Markov matrix
derivation is equivalent to that of computing r times the system backlog distribu-
tion observed at the end of a hyperperiod from that assumed at the beginning
of the hyperperiod, by applying the convolve-shrink procedure along the whole
sequence of jobs {J1, . . . ,Jn}. So, the complexity is O(rn2m2), since O(n2m2) is the
complexity of computing once the system backlog distribution observed at the end
of the hyperperiod with n jobs. The complexity of the companion-form matrix A
diagonalization is O(m3

r), since the diagonalization of a matrix with size l can be
solved in time O(l3) [19]. However, note that mr is smaller than nm, since (mr +1)
denotes the length of the backlog distribution obtained by convolving n execution
time distributions of length m. So, the complexity of diagonalizing the companion-
form matrix A can be expressed as O(n3m3). Finally, the complexity of solving the
system of linear equations is O((mr + r)3), since a system of l linear equations can
be solved in time O(l3) [20]. This complexity can also be expressed as O((nm+ r)3),
since mr < nm. Therefore, the total complexity of the exact method is O(rn2m2) +
O(n3m3) + O((nm + r)3). This complexity expression can be further simplified to
O(n3m3) by assuming that r < nm. This assumption is reasonable, since r < TH = nT̄
and we can assume that T̄ < m when T̄ → 0.

Next, let us consider the complexity of the Markov matrix truncation method.
In this case, since the complexity also depends on the chosen truncation point p,
let us assume that the value p is given. Then we can see that the complexity* of
deriving the truncated Markov matrix P is O(pn2m2), and the complexity of solving

*Note that, when the truncation point p is larger than r, the complexity is reduced to O(rn2m2), since
the last (p− r) columns in the Markov matrix can be replicated from the r-th column.

19

the system of p linear equations through matrix diagonalization is O(p3). Thus, the
total complexity is O(pn2m2) + O(p3).

Finally, let us consider the complexity of the iterative method. In this case, the
complexity depends on the number of hyperperiods over which the backlog analysis
is iterated for convergence. If the number of the hyperperiods is I, the complexity
is O(I2n2m2), since the convolve-shrink procedure should be applied to a sequence
of In jobs.

However, we cannot directly compare the complexities of all the methods, since
we do not know in advance the appropriate values for the control parameters p and I
that can give solutions of the same accuracy. In order to obtain insight as to how the
control parameters should be chosen, we have to investigate system parameters that
can affect the accuracy of the approximation methods. This issue will be addressed
in the following section.

VII. Experimental results

In this section, we will give experimental results obtained using our analysis
framework. First, we compare all the proposed solution methods to compute the
stationary system backlog distribution, in terms of analysis complexity and accu-
racy. In this comparison, we vary the system utilization to see its effect on each
solution method, and also compare the results with those obtained by Stochastic
Time Demand Analysis (STDA) [6], [7]. Secondly, we evaluate the complexity of
the backlog and interference analysis by experiments, in order to corroborate the
complexity asymptotically analyzed in the previous section. In these experiments,
while varying n (the number of jobs), m (the maximum length of the execution time
distributions), T̄ (the average interarrival time), and k (the interference degree), we
investigate their effects on the backlog and interference analysis.

A. Comparison between the solution methods

To investigate the effect of system utilization on each solution method to compute
the stationary system backlog distribution, we use the task sets shown in Table I.
All the task sets consist of 3 tasks with the same periods, the same deadlines, and
null phases, which result in the same backlog dependency tree for a given scheduling
algorithm.

The only difference in the task sets is the execution time distributions. For task
sets A, B, and C, the minimum and maximum execution times for each task do
not change, while the average execution time is varied. In this case, since the time
needed for the backlog and interference analysis is constant, if a system backlog
distribution of the same length is used as the root of the backlog dependency tree, we
can evaluate the effect of the average system utilization Ū on the stationary system
backlog distribution. On the other hand, for task sets C, C1, and C2, the average
execution time of each task is fixed, while the whole execution time distribution
is gradually stretched. In this case, we can evaluate the effect of the maximum
system utilization Umax on the stationary system backlog distribution, while fixing
the average system utilization Ū .

20

task set Ti Di
execution times utilizations

Cmin
i C̄i Cmax

i Umin Ū Umax

A

τ1 20 20 4 6 10

.58 .82 1.27τ2 60 60 12 16 22
τ3 90 90 16 23 36

B

τ1 20 20 4 6 10

.58 .87 1.27τ2 60 60 12 17 22
τ3 90 90 16 26 36

C

τ1 20 20 4 7 10

.58 .92 1.27τ2 60 60 12 17 22
τ3 90 90 16 26 36

C1

τ1 20 20 3 7 11

.46 .92 1.38τ2 60 60 10 17 24
τ3 90 90 13 26 39

C2

τ1 20 20 2 7 12

.34 .92 1.50τ2 60 60 8 17 26
τ3 90 90 10 26 42

TABLE I

Task sets used in the experiments

task set
RM EDF

simulation STDA exact trunc iterative simulation exact trunc iterative

A

τ1 .0000 ± .0000 .0000 .0000 .0001 ± .0000 .0001 .0001 .0001
τ2 .0000 ± .0000 .0000 .0000 .0000 ± .0000 .0000 .0000 .0000
τ3 .0940 ± .0025 .3931 .0940 .0940 .0940 .0000 ± .0000 .0000 .0000 .0000

B

τ1 .0000 ± .0000 .0000 .0000 .0013 ± .0002 .0013 .0013 .0013
τ2 .0000 ± .0000 .0000 .0000 .0005 ± .0002 .0005 .0005 .0005
τ3 .2173 ± .0033 .6913 .2170 .2170 .2170 .0000 ± .0001 .0000 .0000 .0000

C

τ1 .0000 ± .0000 .0000 .0000 .0223 ± .0013 .0224 .0224 .0224
τ2 .0000 ± .0000 .0000 .0000 .0168 ± .0014 .0169 .0169 .0169
τ3 .3849 ± .0052 .9075 .3852 .3852 .3852 .0081 ± .0011 .0081 .0081 .0081

C1

τ1 .0000 ± .0000 .0000 .0000 .0626 ± .0031 .0630 .0627 .0627
τ2 .0000 ± .0000 .0000 .0000 .0604 ± .0038 .0610 .0607 .0607
τ3 .4332 ± .0065 .9209 .4334 .4334 .4334 .0461 ± .0032 .0466 .0463 .0463

C2

τ1 .0000 ± .0000 .0000 .0000 .1248 ± .0058

N.A.

.1250 .1250
τ2 .0002 ± .0001 .0018 .0002 .0002 .0002 .1293 ± .0064 .1296 .1296
τ3 .4859 ± .0081 .9339 N.A. .4860 .4860 .1136 ± .0063 .1138 .1138

TABLE II

Analysis accuracy comparison between the solution methods (deadline miss probability)

Table II summarizes the results of our stochastic analysis and, for the case of RM,
also the results obtained by STDA. The table shows the deadline miss probability
(DMP) for each task obtained from the stationary system backlog distribution
computed by each solution method (i.e., exact, Markov matrix truncation, iterative),
and the average deadline miss ratio (DMR) and standard deviation obtained from
simulations. For the truncation and iterative methods, the values used for the control
parameters p and I are shown in Table III (This will be explained later). The
average DMR is obtained by averaging the deadline miss ratios measured from 100
simulation runs of each task set, performed during 5000 hyperperiods. To implement
the exact method and the Markov matrix truncation method, we used the Intel linear
algebra package called Math Kernel Library 5.2 [21].

From Table II, we can see that our analysis results are almost identical to the
simulation results, regardless of the solution method used. For the case of RM, the
analysis results obtained by STDA are also given, but we can observe significant

21

task
SSBD computation time (seconds)

set exact
trunc iterative

δ=10−3 δ=10−6 δ=10−9 δ=10−3 δ=10−6 δ=10−9

A .13
.00 .00 .00 .00 .00 .00
p=2 p=15 p=25 I=2 I=2 I=3

B .13
.00 .00 .01 .00 .00 .01
p=8 p=23 p=37 I=2 I=3 I=6

C .15
.01 .03 .07 .00 .01 .03

p=29 p=63 p=96 I=4 I=12 I=20

C1 .31
.02 .10 .25 .01 .05 .21

p=54 p=115 p=173 I=7 I=20 I=35

C2 N.A.
.07 .31 .82 .02 .23 .88

p=86 p=181 p=272 I=10 I=30 I=52
TABLE III

Analysis time comparison between the solution methods

differences between the DMPs given by STDA and those obtained by our analysis.
In the case of task τ3 in task set A, the DMP given by STDA (39.3%) is more than
four times that given by our analysis (9.4%). Moreover, as Ū or Umax increases, the
DMP computed by STDA gets even worse. This results from the critical instant
assumption made in STDA.

On the other hand, our implementation of the exact method could not provide
a numerically valid result for task set C2 (in the case of RM, only for task τ3).
This is because the numerical package we used, which uses the 64-bit floating point
type, may result in an ill-conditioned set of linear equations when a significantly
small probability value br(0) is used as the divisor in making the companion-form
matrix A (Recall from Section V-B that br(0) is the probability that all the jobs
in the hyperperiod have the minimum execution times). In the case of C2, the
probability value br(0) was 5×10−17. This is also the reason why a small difference
is observed between the DMP computed by the exact method and those computed
by the approximation methods for task set C1, scheduled by EDF. However, note
that this precision problem can be overcome simply by using a numerical package
with a higher precision.

Table III shows in the case of EDF the analysis time* required by each solution
method to compute the stationary system backlog distributions used to produce the
results in Table II. The analysis time does not include the time taken by the backlog
dependency tree generation, which is almost 0, and the time required by the backlog
and interference analysis, which is less than 10 ms. The table also shows the values of
the control parameters, p and I, used for the truncation and iterative methods. For
fair comparison between the two approximation methods, we define an accuracy level
δ to be the quadratic difference between the exact solution of the stationary system
backlog distribution SSBDexact and the approximated solution computed by either
of the methods SSBDapprox, i.e., δ = ||SSBDexact−SSBDapprox||. In the evaluation of
δ , however, due to the numerical errors that can be caused by our implementation
of the exact method, we do not refer to the solution given by our implementation as
SSBDexact , but to the solution obtained by infinitely applying the iterative method

*The analysis time was measured with a Unix system call called times() on a personal computer
equipped with a Pentium Processor IV 2.0 GHz and 256 MB main memory.

22

to the corresponding task set until the resulting solution converges.
In Table III, we can see both the SSBD computation time and the associated

control parameters used to obtain solutions with the required accuracy levels δ =
10−3,10−6,10−9 (The DMPs shown in Table II for the truncation and iterative
methods were obtained at an accuracy level of δ = 10−6). From the results shown
for task sets A to C, we can see that, as Ū increases, the analysis time also rapidly
increases for the truncation and iterative methods, while it stays almost constant for
the exact method. The reason for this is that as Ū increases, the probability values
of the stationary backlog distribution spread more widely, so both approximation
methods should compute the solution for a wider range of the backlog. That is, both
methods should use a larger value for the associated control parameters, p and I, in
order to achieve the required accuracy level. For the exact method, on the contrary,
this spread of the stationary probability values does not affect the analysis time,
since the method originally derives a general form solution from which the SSBD
can be completely generated.

The above observation is analogously applied for the results from task sets C
to C2. Due to the increasing Umax, the SSBD spreads even more widely, so the
truncation and iterative methods should increase the associated control parameters
even more in order to achieve the required accuracy level. We can see that the
analysis time taken by the exact method also increases, but this is not because
the stationary backlog distribution spreads, but because the size of the resulting
companion-form matrix A becomes large due to the increasing length of the execu-
tion time distributions.

In summary, if Ū and/or Umax is significantly high, the approximation methods
require a long computation time for high accuracy, possibly larger than that of the
exact method. However, if Ū is not close to 1, e.g., less than 0.8, the methods can
provide highly accurate solutions at a considerably lower complexity.

B. Complexity evaluation of the backlog and interference analysis

To evaluate the complexity of the backlog and interference analysis, we generated
synthetic systems, varying the system parameters n, m, and T̄ , while fixing Ū .
That is, each system generated is composed of n jobs with the same execution time
distribution of length m and mean interarrival time T̄ . The shapes of the execution
time distribution and the interarrival time distribution of the jobs are determined
in such a way that the fixed average system utilization is maintained, even if they
have no influence on the complexity of the backlog and interference analysis (Recall
that the backlog and interference analysis time is not affected by the actual values
of the probabilities composing the distributions; the probability values may only
affect the analysis time of the stationary system backlog distribution by changing
the average system utilization Ū). We do not have to specify the interference degree
k at the synthetic system generation stage, since it can be arbitrarily set prior to
interference analysis of the resulting system.

For each system generated, we perform backlog and inteference analysis, assuming
a null backlog at the beginning of the analysis. For each of the n jobs, we measure
the time taken by backlog analysis and interference analysis separately. In this
measurement, the backlog analysis time for the j-th job is defined as the time

23

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10
4

Ti
m

e
(s

ec
on

ds
)

Job index (j)

m = 2
m = 15
m = 30
m = 45

(a) T̄ = m (Umax ≈ 1)

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10
4

Ti
m

e
(s

ec
on

ds
)

Job index (j)

m = 2
m = 15
m = 30
m = 45

(b) T̄ = m/2 (Umax ≈ 2)

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10
4

Ti
m

e
(s

ec
on

ds
)

Job index (j)

m = 2
m = 15
m = 30
m = 45

(c) T̄ = m/10 (Umax ≈ 10)

Fig. 4. Backlog analysis time

0.001

0.01

0.1

1

10

1 10 100 1000

Ti
m

e
(s

ec
on

ds
)

Interference degree (k)

j = 100

j = 250

j = 500

j = 1000

(a) effect of changes in the interference degree k
(m = 20 and T̄ = 1)

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10
4

Ti
m

e
(s

ec
on

ds
)

Job index (j)

m = 2
m = 15
m = 30
m = 45

(b) effect of changes in the length of the backlog
distribution (k = 10 and T̄ = 2)

Fig. 5. Interference analysis time

taken by applying the convolve-shrink procedure from the first job J1 (with the null
backlog) to job J j.

Figure 4 shows the backlog analysis time measured for each job J j in seconds, while
varying m and T̄ . Note that both the x-axis and the y-axis are in logarithmic scale.
From this figure we can see that the backlog analysis time for each job increases
in polynomial order O(j2m2), as analyzed in the previous section. However, note
that, due to the backlog dependencies, the backlog analysis for the j-th job may be
efficiently performed in a real system by reusing the result of the backlog analysis
for some close preceding job Ji (i < j). So, the backlog analysis time for real jobs
may be significantly lower than that expected from the figure. Moreover, also note
that in the case where T̄ = m, the backlog analysis time slowly increases as the value
of j increases, since the backlog distribution length rarely grows due to the large
interarrival times of the jobs.

Figure 5(a) shows the interference analysis times measured for the 100th, 250th,
500th, and 1000th jobs in seconds, while only varying the interference degree k.
Note that both the x-axis and the y-axis are still in logarithmic scale. From this
figure, we can see that the interference analysis time for a single job also increases

24

in polynomial order O(k2m2) as the interference degree increases. Note, however,
that the interference degree considered before the deadline is usually very small
in practice. On the other hand, Figure 5(b) shows the interference analysis times
measured for each job J j while fixing all the other system parameters. In this figure,
we can indirectly see the effect of the length of the p j-backlog distribution for the
j-th job to which the interference analysis is applied. As the p j-backlog distribution
length increases, the interference analysis time also increases, but slowly.

VIII. Conclusions and Future Work

This paper has presented a framework for the stochastic analysis of periodic real-
time systems which relaxes the assumption that all tasks need their worst-case
execution times, assuming instead that the execution time is a random variable
with a known distribution function. For the case in which all the arrival instants
are deterministic, we developed a method for deriving the exact response time
distribution of each task, even for systems with a maximum utilization greater than
1. Experimental results confirmed the accuracy of the proposed analysis, even for
the approximated methods. The computational complexity of the proposed analysis,
polynomial with respect to the number of jobs per hyperperiod and the size of the
execution time distributions, is still affordable, while allowing accurate deadline miss
ratios to be derived in a much shorter time than using simulation and with greater
accuracy. The stochastic analysis is directly applicable to multiprocessor systems
using a partitioning scheme and common allocation algorithms such as First Fit,
Best Fit, etc. In fact, a multiprocessor made up of m processors would behave like
m independent uniprocessors.

When the arrival instants are not deterministic (e.g., sporadic tasks) the analysis
proposed here is no longer directly applicable. This only apparently reduces the
practical applicability of our framework, as in [22] we successfully investigated the
possibility of obtaining “safe” approximations of the response time distributions
instead of the exact distributions. Safe means that the probability of deadline miss
derived from the approximated distribution is greater than the exact probability.
It can be shown that, if each sporadic task in the system is replaced by a periodic
task, with a period equal to the minimum interrelease times, our analysis can be
applied to this new system, obtaining a safe approximation of the exact solution.

Future work will focus on further extensions of the framework, in order to address
jitter and dependencies between the execution times.

References

[1] L. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environ-
ment,” Journal of ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic Scheduling Algorithm: Exact Charac-
terization and Average Case Behavior,” in Proc. of the 10th IEEE Real-Time Systems Symposium,
1989.

[3] J. P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines,” in Proc.

of the 11th IEEE Real-Time Systems Symposium, 1990, pp. 201–209.
[4] G. Bernat, A. Colin, and S. Petters, “WCET Analysis of Probabilistic Hard Real-Time Systems,” in

Proc. of the 23rd IEEE Real-Time Systems Symposium, 2002.

25

[5] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-S. Liu, “Probabilistic Performance
Guarantee for Real-Time Tasks with Varying Computation Times,” in Proc. of the Real-Time

Technology and Applications Symposium, Chicago, Illinois, May 1995, pp. 164–173.
[6] M. K. Gardner and J. W. Liu, “Analyzing Stochastic Fixed-Priority Real-Time Systems,” in Proc.

of the 5th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, Mar. 1999.
[7] M. K. Gardner, “Probabilistic Analysis and Scheduling of Critical Soft Real-Time Systems,” Ph.D.

dissertation, School of Computer Science, University of Illinois, Urbana-Champaign, 1999.
[8] J. P. Lehoczky, “Real-Time Queueing Theory,” in Proc. of the 17th IEEE Real-Time Systems

Symposium, 1996, pp. 186–195.
[9] ——, “Real-Time Queueing Network Theory,” in Proc. of the 18th IEEE Real-Time Systems Sympo-

sium, 1997, pp. 58–67.
[10] L. Abeni and G. Buttazzo, “Stochastic Analysis of a Reservation Based System,” in Proc. of the 9th

International Workshop on Parallel and Distributed Real-Time Systems, Apr. 2001.
[11] A. K. Atlas and A. Bestavros, “Statistical Rate Monotonic Scheduling,” in Proc. of the 19th IEEE

Real-Time Systems Symposium, 1998, pp. 123–132.
[12] J. Leung and J. Whitehead, “On the Complexity of Fixed Priority Scheduling of Periodic Real-Time

Tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237–250, 1982.
[13] S. Manolache, P. Eles, and Z. Peng, “Memory and Time-Efficient Schedulability Analysis of Task Sets

with Stochastic Execution Times,” in Proc. of the 13th Euromicro Conference on Real-Time Systems,
Jun. 2001, pp. 19–26.

[14] A. Leulseged and N. Nissanke, “Probabilistic Analysis of Multi-processor Scheduling of Tasks with
Uncertain Parameter,” in Proc. of the 9th International Conference on Real-Time and Embedded

Computing Systems and Applications, Feb. 2003.
[15] A. Terrasa and G. Bernat, “Extracting Temporal Properties from Real-Time Systems by Automatic

Tracing Analysis,” in Proc. of the 9th International Conference on Real-Time and Embedded Computing

Systems and Applications, Feb. 2003.
[16] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[17] J. L. D́ıaz, J. M. López, and D. F. Garćıa, “Stochastic Analysis of the Steady-State Backlog in

Periodic Real-Time Systems,” Departamento de Informática, University of Oviedo, Tech. Rep., 2003,
also available at http://www.atc.uniovi.es/research/SASS03.pdf.

[18] J. L. D́ıaz, D. F. Garćıa, K. Kim, C.-G. Lee, L. LoBello, J. M. López, S. L. Min, and O. Mirabella,
“Stochastic Analysis of Periodic Real-Time Systems,” in Proc. of the 23rd Real-Time Systems

Symposium, Austin, TX, USA, 2002, pp. 289–300.
[19] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed., ser. Johns Hopkins Studies in the

Mathematical Sciences. Baltimore, MD, USA: The Johns Hopkins University Press, 1996.
[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed.

Cambridge University Press, 1992.
[21] Intel, “Intel Math Kernel Library: Reference Manual,” 2001, http://developer.intel.com/software/

products/mkl.
[22] J. L. D́ıaz, J. M. López, M. Garćıa, A. M. Campos, K. Kim, and L. LoBello, “Pessimism in the

stochastic analysis of real-time systems: Concept and applications,” in Proc. of the 25th Real-Time

Systems Symposium, Lisbon, Portugal, 2004, pp. 197–207.

26

Appendix: Backlog Dependency Tree Optimization

Once the backlog dependency tree is derived for a given task set, the station-
ary p j-backlog distribution for each job can be computed by traversing the tree
while applying the convolve-shrink procedure. However, there may be a number of
redundant computations in computing all the stationary p j-backlog distributions,
since the job sequence considered in the computation of the stationary p j-backlog
distribution of a job can have a common prefix with the job sequence for another job.
If two separate job sequences share a common prefix, the p j-backlog analysis for the
two jobs can be optimized by eliminating the redundant computations occuring due
to the common prefix. In this section, we explain how to remove such redundancies
in the backlog dependency tree.

A. Backlog Dependency Tree Expansion

To optimize a backlog dependency tree, we need transform the tree in such a
form that the redundancies can easily be eliminated. For example, let us consider
the task set shown in Figure 6. This task set consists of three tasks τ1, τ2, and τ3
with the relative deadlines equal to the periods, respectively. The phases φi of all
the tasks are zero. We assume that these tasks are scheduled by EDF.

The backlog dependency tree derived for the task set is shown in Figure 7. This
tree consists of seven ground jobs J1,1, J2,1, J3,1, J2,2, J3,2, J2,3, and J1,9, and seven
non-ground jobs J1,2, J1,3, J1,4, J1,5, J1,6, J1,7, and J1,8. In the tree, each node is
marked by adding a superscript of ’∗’ to the p j-backlog notation, i.e., W ∗pi, j

(λi, j), so
that it can be distinguished from the intermediate nodes that will be introduced in
the following.

We transform the backlog dependency tree so that the job sequence on each
link can include only one job in the resulting tree. To this end, we expand each

link Wpi(λi)
{J1,··· ,Jn}
−→ Wp j(λ j) (assume that Ji = J1) to a sequence of links: Wpi(λi)

{J1}
−→

Wp j(λ2)
{J2}
−→·· ·−→Wp j(λn)

{Jn}
−→Wp j(λ j). Each intermediate node introduced, Wp j(λk)

(k = 1, · · · ,n), is the p j-backlog observed at the release time of Jk, meaning the
backlog observed at λk at priority level p j. Figure 8 shows the result of expanding
all the links of the backlog dependency tree in Figure 7.

0

0 20 60 1408040 100 120

0 90 180

180

180160

60 120

PSfrag replacements

τ1

τ2

τ3

J1,1 J1,2 J1,3 J1,4 J1,5 J1,6 J1,7 J1,8 J1,9

J2,1 J2,2 J2,3

J3,1 J3,2

Fig. 6. A task set example

27

PSfrag replacements

W ∗p1,1
(λ1,1)

W ∗p1,2
(λ1,2)

Wp2,2(λ1,2)

Wp1,5(λ1,2)

Wp1,4(λ1,2)

Wp1,3(λ1,2)

W ∗p1,3
(λ1,3)

Wp2,2(λ1,3)

Wp1,5(λ1,3)

Wp1,4(λ1,3)

W ∗p1,4
(λ1,4)

Wp2,2(λ1,4)

Wp1,5(λ1,4)

W ∗p1,5
(λ1,5)

Wp3,2(λ1,5)

Wp1,8(λ1,5)

Wp1,7(λ1,5)

Wp1,6(λ1,5)

W ∗p1,6
(λ1,6)

Wp2,3(λ1,6)

Wp1,8(λ1,6)

Wp1,7(λ1,6)

W ∗p1,7
(λ1,7)

Wp2,3(λ1,7)

Wp1,8(λ1,7)

W ∗p1,8
(λ1,8)

Wp1,9(λ1,8)

W ∗p1,9
(λ1,9)

W ∗p2,1
(λ2,1)

W ∗p2,2
(λ2,2)

W ∗p2,3
(λ2,3)

W ∗p3,1
(λ3,1)

W ∗p3,2
(λ3,2)

{J1,1}

{J2,1}

{J3,1,J1,2 ,J1,3,J1,4}

{J2,2,J1,5}

{J3,2,J1,6,J1,7}

{J2,3,J1,8}

{J1,1}

{J2,1,J1,2}

{J2,1,J1,2,J1,3}

{J3,1,J1,2 ,J1,3,J1,4}

{J2,2,J1,5}

{J2,2,J1,5,J1,6}

{J2,2,J1,5 ,J1,6,J1,7}

{J1,1}

{J2,1}

{J3,1}

{J1,2}

{J1,3}

{J1,4}

{J2,2}

{J1,5}

{J3,2}

{J1,6}

{J1,7}

{J2,3}

{J1,8}

{J1,1}

{J2,1}

{J2,1}

{J3,1}

{J1,2}

{J1,2}

{J1,2}

{J1,3}

{J1,3}

{J1,4}

{J2,2}

{J2,2}

{J2,2}

{J1,5}

{J1,5}

{J1,5}

{J1,6}

{J1,6}

{J1,7}

Fig. 7. The derived backlog dependency tree

In the expanded tree, we have arranged all the nodes so that the nodes represent-
ing the backlog observed at the same instant but for different priority levels can be
displayed in the same row. For the release time of J1,2, for example, we can see that
there are five different nodes representing the backlog at five different priority levels,
Wp2,2(λ1,2), Wp1,5(λ1,2), Wp1,4(λ1,2), Wp1,3(λ1,2), and W ∗p1,2

(λ1,2). Here, recall that the
first four nodes are newly introduced intermediate ones while only the last is an
original one, inherited from the original backlog dependency tree.

B. Redundancy Elimination

We can now optimize the expanded backlog dependency tree finding a common
prefix shared among job sequences. In the expanded tree, let us consider the path
from W ∗p2,1

(λ2,1) to W ∗p1,3
(λ1,3) and the path from W ∗p2,1

(λ2,1) to W ∗p1,4
(λ1,4). These

two paths have a common prefix in the job sequences, i.e., {J2,1,J1,2}. Here, we
can see that there is no need to separately treat the two paths originating from
W ∗p2,1

(λ2,1), since Wp1,4(λ1,2) = Wp1,3(λ1,2), and Wp1,4(λ1,3) = W ∗p1,3
(λ1,3). Thus, we

can merge the two paths into a single one; that is, W ∗p2,1
(λ2,1)

J2,1−→Wp1,3(λ1,2)
J1,2−→

W ∗p1,3
(λ1,3)

J1,3−→W ∗p1,4
(λ1,4) (case of complete match). Likewise, we can merge the

28

PSfrag replacements

W ∗p1,1
(λ1,1)

W ∗p1,2
(λ1,2)Wp2,2(λ1,2) Wp1,5(λ1,2) Wp1,4(λ1,2) Wp1,3(λ1,2)

W ∗p1,3
(λ1,3)Wp2,2(λ1,3) Wp1,5(λ1,3) Wp1,4(λ1,3)

W ∗p1,4
(λ1,4)Wp2,2(λ1,4) Wp1,5(λ1,4)

W ∗p1,5
(λ1,5)Wp3,2(λ1,5) Wp1,8(λ1,5) Wp1,7(λ1,5) Wp1,6(λ1,5)

W ∗p1,6
(λ1,6)Wp2,3(λ1,6) Wp1,8(λ1,6) Wp1,7(λ1,6)

W ∗p1,7
(λ1,7)Wp2,3(λ1,7) Wp1,8(λ1,7)

W ∗p1,8
(λ1,8)Wp1,9(λ1,8)

W ∗p1,9
(λ1,9)

W ∗p2,1
(λ2,1)

W ∗p2,2
(λ2,2)

W ∗p2,3
(λ2,3)

W ∗p3,1
(λ3,1)

W ∗p3,2
(λ3,2)

{J1,1}

{J2,1}

{J3,1,J1,2,J1,3,J1,4}

{J2,2,J1,5}

{J3,2,J1,6,J1,7}

{J2,3,J1,8}

{J1,1}

{J2,1,J1,2}

{J2,1,J1,2,J1,3}

{J3,1,J1,2,J1,3,J1,4}

{J2,2,J1,5}

{J2,2,J1,5,J1,6}

{J2,2,J1,5,J1,6,J1,7}

{J1,1}

{J2,1}

{J3,1}

{J1,2}

{J1,3}

{J1,4}

{J2,2}

{J1,5}

{J3,2}

{J1,6}

{J1,7}

{J2,3}

{J1,8}

{J1,1}

{J2,1}

{J2,1}{J3,1}

{J1,2}{J1,2}{J1,2}

{J1,3}{J1,3}

{J1,4}
{J2,2}

{J2,2}{J2,2}

{J1,5}{J1,5}{J1,5}

{J1,6}{J1,6}

{J1,7}

Fig. 8. The expanded backlog dependency tree

path from W ∗p3,1
(λ3,1) to W ∗p1,5

(λ1,5) into the main stem of the tree, since a common
prefix {J3,1,J1,2,J1,3,J1,4} exists. However, this case is not the case of complete
match, because W ∗p1,5

(λ1,5) 6= W ∗p2,2
(λ2,2) due to the different release times λ1,5 and

λ2,2. Thus, the result of the merging is W ∗p3,1
(λ3,1)

J3,1−→Wp2,2(λ1,2)
J1,2−→Wp2,2(λ1,3)

J1,3−→

Wp2,2(λ1,4)
J1,4−→W ∗p2,2

(λ2,2),W ∗p1,5
(λ1,5) (case of partial match). Figure 9 shows the final

result of merging all the possible paths in the expanded backlog dependency tree.
Figures 10 and 11 show an algorithm to perform the merging process described

above. In this algorithm, the following assumptions are made.

A1 The input to the algorithm is an expanded backlog dependency tree, as shown
in Figure 8.

A2 Each node in the input tree has two types of attributes. One attribute is the
set of its child nodes, and the other attribute is the label attached to the links
originating from the node (Note that the labels of all the links originating from
a node are the same, and thus there is no need to separately deal with nodes
and links). In the case of a leaf node W ∗p j

(λ j), which has no link originating
from it, the label is assumed to be ’{J j}’.

A3 An original node W ∗p j
(λ j), which existed before the tree expansion, is classified

29

PSfrag replacements

W ∗p1,1
(λ1,1)

W ∗p1,2
(λ1,2)Wp2,2(λ1,2)

Wp1,5(λ1,2)

Wp1,4(λ1,2)

Wp1,3(λ1,2)

W ∗p1,3
(λ1,3)Wp2,2(λ1,3)

Wp1,5(λ1,3)

Wp1,4(λ1,3)

W ∗p1,4
(λ1,4)Wp2,2(λ1,4)

Wp1,5(λ1,4)

W ∗p1,5
(λ1,5)Wp3,2(λ1,5)

Wp1,8(λ1,5)

Wp1,7(λ1,5)

Wp1,6(λ1,5)

W ∗p1,6
(λ1,6)Wp2,3(λ1,6)

Wp1,8(λ1,6)

Wp1,7(λ1,6)

W ∗p1,7
(λ1,7)Wp2,3(λ1,7)

Wp1,8(λ1,7)

W ∗p1,8
(λ1,8)Wp1,9(λ1,8)

W ∗p1,9
(λ1,9)

W ∗p2,1
(λ2,1)

W ∗p2,2
(λ2,2)

W ∗p2,3
(λ2,3)

W ∗p3,1
(λ3,1)

W ∗p3,2
(λ3,2)

{J1,1}

{J2,1}

{J3,1,J1,2,J1,3,J1,4}

{J2,2,J1,5}

{J3,2,J1,6,J1,7}

{J2,3,J1,8}

{J1,1}

{J2,1,J1,2}

{J2,1,J1,2,J1,3}

{J3,1,J1,2,J1,3,J1,4}

{J2,2,J1,5}

{J2,2,J1,5,J1,6}

{J2,2,J1,5,J1,6,J1,7}

{J1,1}

{J2,1}

{J3,1}

{J1,2}

{J1,3}

{J1,4}

{J2,2}

{J1,5}

{J3,2}

{J1,6}

{J1,7}

{J2,3}

{J1,8}

{J1,1}

{J2,1}

{J2,1}

{J3,1}

{J1,2}

{J1,2}

{J1,2}

{J1,3}

{J1,3}

{J1,4}

{J2,2}

{J2,2}

{J2,2}

{J1,5}

{J1,5}

{J1,5}

{J1,6}

{J1,6}

{J1,7}

Fig. 9. The optimized backlog dependency tree

as either a ground node or a non-ground node. A ground node is a node that
represents the p j-backlog distribution of a ground job, and a non-ground node
is a node that represents the p j-backlog distribution of a non-ground job.
For the ground node of ground job Ji, the set of child nodes are ordered as
follows:

– The first child node is the node through which we can reach the next
ground node if any.

– All the other child nodes are ordered so that through the k-th child node,
we can reach the non-ground node of the non-ground job that has the k-th
lastest release time among all the non-ground jobs whose base job is Ji.
That is, the non-ground node reachable by the first child node is for the
non-ground job whose release time is the latest among all the non-ground
jobs whose base job is Ji, and the non-ground node reachable by the last
child node is for the non-ground job whose release time is the earliest
among all the non-ground jobs.

The expanded backlog dependency tree shown in Figure 8 satisfies the above
requirements.

30

01 optimize backlog dependency tree(root node)

02 {

03 ground node = root node;

04 while (num of children(ground node) > 0) {

05 for (i = 1; i < num of children(ground node); i++) { // skip ground node→ child[0].

06 [matching node1, matching node2] = find common prefix(ground node, ground node→ child[i]);

07 if (matching node1 6= ground node) { // a common prefix is found.

08 if (num of children(matching node2) == 0) // case of complete match

09 mark matching node1 as equivalent to matching node2;

10 else { // case of partial match

11 child node = matching node2→ child[0];

12 detach child node from the parent node, matching node2;

13 attach child node to matching node1 as a new child node;

14 }

15 child node = ground node→ child[i];

16 detach child node from the parent node, ground node;

17 destroy the entire list starting from child node;

18 }

19 } // end of for loop

20 if (ground node is the last ground node)

21 break;

22 ground node = next ground node of(ground node); // move to the next ground node.

23 } // end of while loop

24 return;

25 }

26

27 [child node] = next ground node of(ground node)

28 {

29 child node = ground node→ child[0];

30 while (child node is not a ground node)

31 child node = child node→ child[0];

32 return child node;

33 }

34

Fig. 10. A backlog dependency tree optimization algorithm (part I)

31

35 [matching node1, matching node2] = find common prefix(root node, target node)

36 {

37 current node1 = root node;

38 current node2 = target node;

39 child node = find child node with common label(current node1, current node2);

40 if (child node == NULL) { // only root node is common

41 matching node1 = root node;

42 matching node2 = root node;

43 return;

44 }

45 current node1 = child node;

46 while (num of children(current node2) > 0) {

47 child node = find child node with common label(current node1, current node2→ child[0]);

48 if (child node == NULL)

49 break;

50 current node1 = child node;

51 current node2 = current node2→ child[0];

52 }

53 matching node1 = current node1;

54 matching node2 = current node2;

55 return;

56 }

57

58 [child f ound] = find child node with common label(parent node, target node)

59 {

60 child f ound == NULL;

61 for (i = 0; i < num of children(parent node); i++) {

62 child node = parent node→ child[i];

63 if (child node == target node) // this may happen only if parent node is a ground node.

64 break;

65 if (child node→ label == target node→ label) {

66 child f ound = child node;

67 break;

68 }

69 }

70 return child f ound;

71 }

72

Fig. 11. A backlog dependency tree optimization algorithm (part II)

32

