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RESUMEN (en español) 
 

 
La conducción es una actividad que requiere un alto grado de concentración por parte 
de la persona que la realiza, ya que el más pequeño descuido es suficiente para sufrir un 
accidente con las consiguientes pérdidas materiales y/o humanas. De acuerdo con el 
estudio más reciente publicado por la Organización Mundial de la Salud (OMS) en 2013, 
se estimó que 1.25 millones de personas mueren como resultado de accidentes de 
tráfico y entre 20 y 50 millones más sufren accidentes sin perder la vida pero pudiendo 
derivar en dolencias crónicas. Todas estas muertes y accidentes no sólo afectan de 
manera directa a los familiares de las víctimas sino que, además, tienen un alto coste 
sobre los presupuestos de los gobiernos, que se estima entre un 3 y un 5% del producto 
interior bruto. 
De todos estos accidentes, muchos son provocados por lo que se conoce como 
inatención. Este término engloba diferentes estados del conductor, como pueden ser la 
distracción y la somnolencia, siendo precisamente éstos los que más fatalidades 
ocasionan. Existen muchas publicaciones e investigaciones que intentan poner cifras 
que indiquen las consecuencias producidas por la inatención (y sus subtipos), pero no 
existe una figura exacta sobre los accidentes causados por la inatención puesto que 
todos estos estudios están realizados en diferentes lugares, diferentes marcos 
temporales, y por tanto, en diferentes condiciones. En líneas generales, se calcula que la 
inatención ocasiona entre el 25% y el 75% de los accidentes y casi-accidentes. 
En un estudio realizado en 10 países europeos acerca de somnolencia y conducción se 
determinó que dicha conjunción incrementa el tiempo de reacción en un 86% y es la 
cuarta causa de muerte en las carreteras españolas. Además, cabe destacar que el 75% 
de los conductores españoles han sufrido episodios de somnolencia mientras 
conducían, porcentaje muy superior a la media del 47% que han admitido este hecho. 
Además, otro factor importante a tener en cuenta es que, aunque los accidentes 
producidos por la somnolencia suelen ser muy graves (vistas las estadísticas anteriores 
de mortalidad), muchos conductores infravaloran esta situación y conducen aunque 
noten la presencia de sus síntomas. Bostezos frecuentes, cabeceos, visión borrosa, 
caída de párpados y esfuerzos por mantener tanto la atención como los ojos abiertos 
son signos habituales de somnolencia. Respecto a la distracción, éste es uno de los 
factores que más fatalidades ocasiona en España. De acuerdo con la Dirección General 
de Tráfico (DGT), la distracción es la primera causa detectada en los accidentes con 
víctimas, un 13.15% de los casos. Los últimos datos y estadísticas arrojados por 
inatención en los conductores españoles son dramáticos, siendo la causa que más 
víctimas mortales ocasiona (36%), muy por encima de la velocidad inadecuada (21%) o el 
nivel de alcoholemia (11%). 
A causa de estas cifras y sus consecuencias, la inatención se ha convertido en un 
campo ampliamente estudiado por la comunidad investigadora, donde los estudios y 



                                                                

 
 

 

soluciones para luchar contra la distracción y la somnolencia, en particular, y la 
inatención, en general, se pueden clasificar en tres grandes grupos: 1) métodos basados 
en el análisis del comportamiento del vehículo, 2) métodos basados en el análisis de 
variables fisiológicas del conductor capturadas por diferentes sensores y 3) métodos 
basados en el análisis de características visuales del conductor mediante la captura de 
imágenes aplicando métodos de visión por computador, los cuales, por sus 
características, se han posicionado como una forma no intrusiva y eficaz para la 
detección tanto de la distracción como de la somnolencia. 
La motivación de la presente tesis doctoral es consecuencia directa de las cifras 
anteriores y radica en ofrecer mecanismos para detectar y reducir los efectos 
ocasionados por la inatención en los conductores. Es por ello que el objetivo principal 
del presente trabajo sea alcanzar un mayor grado de conocimiento en todo lo 
relacionado con la inatención en los conductores, teniendo como fin último la reducción 
del número de accidentes y víctimas mortales ocasionados por esta causa haciendo uso 
de herramientas de la información y la comunicación (TIC). 
A tal efecto, la investigación se ha centrado en el reconocimiento de atributos faciales, 
que puedan ser empleados a posteriori para una detección robusta de indicadores, que 
permitan una clasificación de episodios de distracción y somnolencia en conductores. 
En segundo lugar, la investigación ha intentado establecer un marco de referencia para 
caracterizar la distracción en los conductores con lo que futuras investigaciones tengan 
un punto de partida como referente. En tercer lugar, se ha propuesto, construido y 
validado una arquitectura basada en el análisis de características visuales mediante el 
empleo de técnicas de visión por computador y aprendizaje automático para la detección 
tanto de la distracción como de la somnolencia. En concreto, se propone una 
arquitectura de procesamiento especialmente diseñada para operar en entornos 
vehiculares, con una carga computacional muy baja y fácilmente integrable en 
dispositivos con reducidas capacidades de cómputo, capaz de lidiar con imágenes en 
distintas condiciones muy presentes en este tipo de entornos. El sistema de control 
propuesto integra varios elementos innovadores permitiendo que pueda operar de forma 
completamente autónoma para la detección robusta de los principales indicadores 
visuales, caracterizando tanto la distracción como la somnolencia del conductor. La 
arquitectura se ha validado, en primer lugar, con bases de datos de referencia validando 
los diferentes módulos que la componen y, en segundo lugar, con usuarios en entornos 
reales obteniendo, en ambos casos, unos resultados prometedores con una carga 
computacional adecuada para los dispositivos embebidos habituales en entornos 
vehiculares. 

 
RESUMEN (en Inglés) 

 

 
Driving is an activity that requires a high degree of concentration on the part of the 
person who performs it since the slightest negligence is sufficient to provoke an 
accident with the consequent material and/or human losses. According to the most 
recent study published by the World Health Organization (WHO) in 2013, it was estimated 
that 1.25 million people die as a result of traffic accidents, whereas between 20 and 50 
million do not die but consequences may result in chronic conditions. All these deaths 
and accidents not only have a direct impact on victims and families, but they also mean a 
high cost for government budgets, estimated at between 3% and 5% of their Gross 
Domestic Product (GDP). 
Many of these accidents are caused by what is known as inattention. This term encloses 
a driver's different conditions such as distraction and drowsiness, which are, precisely, 
the ones that cause more fatalities. Many publications and research have tried to set 
figures that indicate the consequences of inattention (and its subtypes), but there is no 
exact number of the accidents caused by inattention since all these studies have been 
carried out in different places, different time frames  and, therefore, under different 
conditions. Overall, it has been estimated that inattention causes between 25% and 75% 
of accidents and near-accidents. A study on drowsiness while driving in ten European 



                                                                

 
 

 

countries found that fatigue risks increasing reaction time by 86% and it is the fourth 
leading cause of death on Spanish roads. In addition, it is noted that 75% of Spanish 
drivers have suffered episodes of sleepiness while driving, a much higher percentage 
than the average of 47% who admitted this fact. In addition, another important factor to 
consider is that, although accidents caused by drowsiness are usually very serious 
(having regard to the abovementioned fatal statistics), many drivers underestimate this 
situation and drive even if they notice the presence of symptoms. Frequent yawning, 
pitching movements, blurred vision, drooping upper eyelids and efforts to keep both 
attention and eyes open are common signs of drowsiness. With respect to distraction, 
this is a major contributor to fatal accidents in Spain. According to the Directorate 
General of Traffic (DGT), distraction is the first violation found in fatal accidents, 13.15% 
of the cases. The latest statistics on inattentive driving in Spanish drivers are alarming, 
appearing as the leading cause of fatalities (36%), well above excessive speed (21%) or 
alcohol consumption (11%). 
Because of these figures and their consequences, inattention has become a widely 
studied field by the research community, whose studies and solutions to combat 
distraction and sleepiness, in particular, and inattention, in general, can be divided into 
three broad groups: 1) methods based on the analysis of the behavior of the vehicle, 2) 
methods based on the analysis of the driver`s physiological variables captured by 
different sensors and 3) methods based on the analysis of the driver's visual 
characteristics by capturing images using computer vision methods, which, for their 
non-intrusive and effective characteristics, have become a leading way to detect both 
distraction and drowsiness. 
The reason for this PhD thesis is the direct consequences of the abovementioned figures 
and its purpose is to provide mechanisms to help reduce driver inattention effects. That 
is why the main objective is to reach a better knowledge regarding driving inattention in 
order to reduce the number of accidents and fatalities. The main focus is that the 
extraction of facial attributes in a solid way could be used for a robust detection of 
indicators, which enables a classification of distraction and drowsiness episodes in 
drivers. Secondly, research has attempted to establish a frame of reference to 
characterize distraction in drivers in order to provide solid foundations for future 
research. Thirdly, an architecture based on the analysis of visual characteristics has 
been proposed, constructed and validated by using techniques of computer vision and 
automatic learning for the detection of both distraction and drowsiness. In particular, a 
processing architecture specially designed to operate in vehicular environments is 
proposed, with a very low computational load and easily embeddable into devices with 
reduced computational capacities in order to deal with images in the different conditions 
prevailing in this type of environments. The proposed control system integrates several 
innovative elements in order to operate in a completely autonomous way for the robust 
detection of the main visual indicators characterizing the driver`s both distraction and 
drowsiness. The architecture has been validated, firstly, with reference databases testing 
the different modules that compose it, and, secondly, with users in real environments, 
obtaining in both cases, promising results with a suitable computational load for the 
embedded devices in vehicle environments. 
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Resumen
La conducción es una actividad que requiere un alto grado de concentración

por parte de la persona que la realiza, ya que el más pequeño descuido es su-
ficiente para sufrir un accidente con las consiguientes pérdidas materiales y/o
humanas. De acuerdo con el estudio más reciente publicado por la Organización
Mundial de la Salud (OMS) en 2013, se estimó que 1.25 millones de personas
mueren como resultado de accidentes de tráfico y entre 20 y 50 millones más
sufren accidentes sin perder la vida pero pudiendo derivar en dolencias crónicas.
Todas estas muertes y accidentes no sólo afectan de manera directa a los familia-
res de las víctimas sino que, además, tienen un alto coste sobre los presupuestos
de los gobiernos, que se estima entre un 3 y un 5% del producto interior bruto.
De todos estos accidentes, muchos son provocados por lo que se conoce como

inatención. Este término engloba diferentes estados del conductor, como pueden
ser la distracción y la somnolencia, siendo precisamente éstos los que más fata-
lidades ocasionan. Existen muchas publicaciones e investigaciones que intentan
poner cifras que indiquen las consecuencias producidas por la inatención (y sus
subtipos), pero no existe una figura exacta sobre los accidentes causados por la
inatención puesto que todos estos estudios están realizados en diferentes lugares,
diferentes marcos temporales, y por tanto, en diferentes condiciones. En líneas
generales, se calcula que la inatención ocasiona entre el 25% y el 75% de los
accidentes y casi-accidentes.
En un estudio realizado en 10 países europeos acerca de somnolencia y con-

ducción se determinó que dicha conjunción incrementa el tiempo de reacción en
un 86% y es la cuarta causa de muerte en las carreteras españolas. Además,
cabe destacar que el 75% de los conductores españoles han sufrido episodios de
somnolencia mientras conducían, porcentaje muy superior a la media del 47%
que han admitido este hecho. Además, otro factor importante a tener en cuen-
ta es que, aunque los accidentes producidos por la somnolencia suelen ser muy
graves (vistas las estadísticas anteriores de mortalidad), muchos conductores
infravaloran esta situación y conducen aunque noten la presencia de sus sínto-
mas. Bostezos frecuentes, cabeceos, visión borrosa, caída de párpados y esfuerzos
por mantener tanto la atención como los ojos abiertos son signos habituales de
somnolencia. Respecto a la distracción, éste es uno de los factores que más fa-
talidades ocasiona en España. De acuerdo con la Dirección General de Tráfico
(DGT), la distracción es la primera causa detectada en los accidentes con víc-
timas, un 13.15% de los casos. Los últimos datos y estadísticas arrojados por
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inatención en los conductores españoles son dramáticos, siendo la causa que más
víctimas mortales ocasiona (36%), muy por encima de la velocidad inadecuada
(21%) o el nivel de alcoholemia (11%).
A causa de estas cifras y sus consecuencias, la inatención se ha convertido

en un campo ampliamente estudiado por la comunidad investigadora, donde
los estudios y soluciones para luchar contra la distracción y la somnolencia,
en particular, y la inatención, en general, se pueden clasificar en tres grandes
grupos: 1) métodos basados en el análisis del comportamiento del vehículo, 2)
métodos basados en el análisis de variables fisiológicas del conductor capturadas
por diferentes sensores y 3) métodos basados en el análisis de características
visuales del conductor mediante la captura de imágenes aplicando métodos de
visión por computador, los cuales, por sus características, se han posicionado
como una forma no intrusiva y eficaz para la detección tanto de la distracción
como de la somnolencia.
La motivación de la presente tesis doctoral es consecuencia directa de las cifras

anteriores y radica en ofrecer mecanismos para detectar y reducir los efectos
ocasionados por la inatención en los conductores. Es por ello que el objetivo
principal del presente trabajo sea alcanzar un mayor grado de conocimiento
en todo lo relacionado con la inatención en los conductores, teniendo como fin
último la reducción del número de accidentes y víctimas mortales ocasionados
por esta causa haciendo uso de herramientas de la información y la comunicación
(TIC).
A tal efecto, la investigación se ha centrado en el reconocimiento de atributos

faciales, que puedan ser empleados a posteriori para una detección robusta de
indicadores, que permitan una clasificación de episodios de distracción y somno-
lencia en conductores. En segundo lugar, la investigación ha intentado establecer
un marco de referencia para caracterizar la distracción en los conductores con
lo que futuras investigaciones tengan un punto de partida como referente. En
tercer lugar, se ha propuesto, construido y validado una arquitectura basada
en el análisis de características visuales mediante el empleo de técnicas de vi-
sión por computador y aprendizaje automático para la detección tanto de la
distracción como de la somnolencia. En concreto, se propone una arquitectura
de procesamiento especialmente diseñada para operar en entornos vehiculares,
con una carga computacional muy baja y fácilmente integrable en dispositivos
con reducidas capacidades de cómputo, capaz de lidiar con imágenes en distin-
tas condiciones muy presentes en este tipo de entornos. El sistema de control
propuesto integra varios elementos innovadores permitiendo que pueda operar
de forma completamente autónoma para la detección robusta de los principales
indicadores visuales, caracterizando tanto la distracción como la somnolencia del
conductor. La arquitectura se ha validado, en primer lugar, con bases de datos
de referencia validando los diferentes módulos que la componen y, en segundo
lugar, con usuarios en entornos reales obteniendo, en ambos casos, unos resulta-
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dos prometedores con una carga computacional adecuada para los dispositivos
embebidos habituales en entornos vehiculares.
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Abstract
Driving is an activity that requires a high degree of concentration on the part

of the person who performs it since the slightest negligence is sufficient to provoke
an accident with the consequent material and/or human losses. According to the
most recent study published by the World Health Organization (WHO) in 2013,
it was estimated that 1.25 million people die as a result of traffic accidents,
whereas between 20 and 50 million do not die but consequences may result in
chronic conditions. All these deaths and accidents not only have a direct impact
on victims and families, but they also mean a high cost for government budgets,
estimated at between 3% and 5% of their Gross Domestic Product (GDP).
Many of these accidents are caused by what is known as inattention. This

term encloses a driver’s different conditions such as distraction and drowsiness,
which are, precisely, the ones that cause more fatalities. Many publications and
research have tried to set figures that indicate the consequences of inattention
(and its subtypes), but there is no exact number of the accidents caused by
inattention since all these studies have been carried out in different places, diffe-
rent time frames and, therefore, under different conditions. Overall, it has been
estimated that inattention causes between 25% and 75% of accidents and near-
accidents. A study on drowsiness while driving in ten European countries found
that fatigue risks increasing reaction time by 86% and it is the fourth leading
cause of death on Spanish roads. In addition, it is noted that 75% of Spanish
drivers have suffered episodes of sleepiness while driving, a much higher per-
centage than the average of 47% who admitted this fact. In addition, another
important factor to consider is that, although accidents caused by drowsiness are
usually very serious (having regard to the abovementioned fatal statistics), many
drivers underestimate this situation and drive even if they notice the presence
of symptoms. Frequent yawning, pitching movements, blurred vision, drooping
upper eyelids and efforts to keep both attention and eyes open are common signs
of drowsiness. With respect to distraction, this is a major contributor to fatal
accidents in Spain. According to the Directorate General of Traffic (DGT), dis-
traction is the first violation found in fatal accidents, 13.15% of the cases. The
latest statistics on inattentive driving in Spanish drivers are alarming, appea-
ring as the leading cause of fatalities (36%), well above excessive speed (21%)
or alcohol consumption (11%).
Because of these figures and their consequences, inattention has become a

widely studied field by the research community, whose studies and solutions
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to combat distraction and sleepiness, in particular, and inattention, in general,
can be divided into three broad groups: 1) methods based on the analysis of
the behavior of the vehicle, 2) methods based on the analysis of the driver‘s
physiological variables captured by different sensors and 3) methods based on the
analysis of the driver’s visual characteristics by capturing images using computer
vision methods, which, for their non-intrusive and effective characteristics, have
become a leading way to detect both distraction and drowsiness.
The reason for this PhD thesis is the direct consequences of the abovemen-

tioned figures and its purpose is to provide mechanisms to help reduce driver
inattention effects. That is why the main objective is to reach a better knowled-
ge regarding driving inattention in order to reduce the number of accidents and
fatalities. The main focus is that the extraction of facial attributes in a solid way
could be used for a robust detection of indicators, which enables a classification
of distraction and drowsiness episodes in drivers. Secondly, research has attem-
pted to establish a frame of reference to characterize distraction in drivers in
order to provide solid foundations for future research. Thirdly, an architecture
based on the analysis of visual characteristics has been proposed, constructed
and validated by using techniques of computer vision and automatic learning for
the detection of both distraction and drowsiness. In particular, a processing ar-
chitecture specially designed to operate in vehicular environments is proposed,
with a very low computational load and easily embeddable into devices with
reduced computational capacities in order to deal with images in the different
conditions prevailing in this type of environments. The proposed control system
integrates several innovative elements in order to operate in a completely auto-
nomous way for the robust detection of the main visual indicators characterizing
the driver‘s both distraction and drowsiness. The architecture has been valida-
ted, firstly, with reference databases testing the different modules that compose
it, and, secondly, with users in real environments, obtaining in both cases, pro-
mising results with a suitable computational load for the embedded devices in
vehicle environments.
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Capítulo 1

Introducción
La conducción es una actividad que requiere un alto grado de concentración

por parte de la persona que la realiza, ya que hasta el más pequeño descuido
es suficiente para sufrir un accidente con las consiguientes pérdidas materiales
y/o humanas. De acuerdo con el último estudio publicado por la Organización
Mundial de la Salud (OMS), que data del 2013, se estimó que 1.25 millones
de personas mueren como resultado de accidentes de tráfico y entre 20 y 50
millones sufren accidentes sin perder la vida pero pudiendo derivar en dolencias
crónicas [1]. Todas estas muertes y accidentes no sólo afectan de manera directa
a los familiares de las víctimas, sino que, además, tienen un alto coste sobre los
presupuestos de los gobiernos, que se estima entre un 3 y un 5% del producto
interior bruto [2]. Los accidentes de tráfico representan actualmente la novena
causa de muerte entre todos los grupos de edad a nivel mundial y está previsto
que, en 2030, escale hasta la séptima posición [1].
De todos estos accidentes, muchos son provocados por lo que se conoce como

inatención. Este término engloba diferentes estados del conductor, como pue-
den ser la distracción y la somnolencia, siendo precisamente éstos los que más
fatalidades ocasionan.
Existen muchas publicaciones e investigaciones que intentan poner cifras que

indiquen la cantidad de accidentes y casi-accidentes producida por la inatención
(y sus subtipos), pero no existe una cifra exacta, puesto que todos estos estudios
están realizados en diferentes lugares, diferentes marcos temporales, y por tanto,
en diferentes condiciones. En líneas generales, se calcula que la inatención ocasio-
na entre el 25% y el 75% de los accidentes y casi-accidentes [3–12,12–14,14–17].
Tanto la distracción como la somnolencia y, en líneas generales, la inatención

han sido definidas de manera inconsistente y la relación entre ellas está poco
clara [18], lo que puede ocasionar diversos problemas tanto a los investigado-
res como a los profesionales de la seguridad [19]. Dichas inconsistencias pueden
llevar a que la comparación de los resultados no tenga sentido, e incluso, a la
obtención de diferentes interpretaciones de los datos de los accidentes, obte-
niendo diferentes estimaciones ocasionadas por la inatención [20]. Uno de los
trabajos que mejor define estos conceptos es el propuesto por [20], el cual des-
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Capítulo 1 Introducción

cribe una taxonomía para la inatención con sus diferentes subtipos y la define
como ‘insuficiente o falta completa de atención a las actividades críticas para
una conducción segura’. En esta taxonomía: a) la somnolencia se engloba en el
tipo ‘Conductor con Atención Restringida’ y es definida como ‘insuficiente o fal-
ta completa de atención a las actividades críticas para una conducción segura
debido a factores biológicos en los que el conductor no es capaz de procesar la
información crítica, como por ejemplo, en eventos de micro-sueños, parpadeos,
o procesos de somnolencia’, y b) la distracción se engloba en el tipo ‘Conductor
con Atención Desviada’, y es definida como ‘desviación de la atención de las
actividades críticas para una conducción segura’. Sin embargo, esta taxonomía
presenta alguna deficiencia que se debe poner de manifiesto con vistas a futuros
trabajos.
A pesar de la diversidad de datos acerca de las consecuencias de la inatención

en conductores, se concluye que ésta es una de las causas que más mortandad
ocasiona. En un estudio realizado en 10 países europeos sobre somnolencia y
conducción se consideró que la fatiga incrementa el tiempo de reacción en un
86% y es la cuarta causa de muerte en las carreteras españolas [21]. Además,
cabe destacar que el 75% de los conductores españoles han admitido haber su-
frido episodios de somnolencia mientras conducían, porcentaje muy superior a
la media del 47% del resto de europeos, que también han admitido este hecho.
Además, otro factor importante a tener en cuenta es que, aunque los accidentes
producidos por somnolencia suelen ser muy graves (según las estadísticas anterio-
res de mortalidad), muchos conductores infravaloran esta situación y conducen
aunque noten la presencia de sus síntomas. Bostezos frecuentes, cabeceos, visión
borrosa, caída de párpados y esfuerzos por mantener tanto los ojos abiertos como
la atención son signos habituales de somnolencia [21].
Respecto a la distracción, éste es uno de los factores que más fatalidades

ocasiona en España. De acuerdo con la Dirección General de Tráfico (DGT),
la distracción es la primera infracción detectada en los accidentes con víctimas
mortales, con un 13,15% de los casos [22]. Así mismo, la distracción es un
problema que se ha visto altamente incrementado debido al uso de dispositivos
móviles durante la conducción [23]. De manera más específica, Gregorio Serrano,
director general de Tráfico, ha presentado el balance de siniestralidad vial del
2016 con estos datos generales: 1.038 accidentes mortales en vías interurbanas
en los que 1.160 personas perdieron la vida y 5.067 necesitaron hospitalización
a consecuencia de sus heridas. Estas cifras suponen aumentos del 1,4% (+15)
en accidentes mortales; 2,6% (+29) en el número de fallecidos y 4,3% (+209)
en heridos hospitalizados [24]. Estos datos pueden verse de manera gráfica en la
Figura 1.1. Supone la cifra más elevada desde 2012 y, además, el fin de 12 años
de descenso continuado de la mortalidad, puesto que entre 2003 (3.993 muertos)
y 2015 (1.131) se produjo una reducción de 2.862 víctimas mortales en el periodo
de mayor caída de la siniestralidad desde que la Dirección General de Tráfico
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Figura 1.1: Víctimas mortales en accidentes de tráfico en España

(DGT) comenzara en 1960 a registrar datos de accidentes.
Los principales factores que contribuyeron a los accidentes mortales o graves en

2016 fueron la distracción (28%), la velocidad inadecuada (21%), el no respetar
la prioridad (9%), el cansancio o el sueño (8%), el consumo de alcohol (11%)
y el mismo porcentaje en drogas. Por esto, se puede concluir que en España, la
inatención fue la causante del 36% de las víctimas mortales en accidentes de
tráfico en el año 2016. Estos datos se pueden ver de manera más clara en la
Figura 1.2.
La comunidad investigadora ha explorado vastamente este campo clasifican-

do los diferentes estudios y soluciones para luchar contra la inatención en tres
grandes grupos.
El primero de ellos se corresponde con los métodos basados en el compor-

tamiento vehicular. Estos métodos detectan el estado del conductor analizando
constantemente ciertas métricas, como pueden ser la posición del coche, los movi-
mientos del volante, la presión del acelerador o del freno y el cambio de marchas
(entre otros), y si en alguno se sobrepasa un determinado umbral, es probable que
el conductor esté somnoliento o distraído [25–27]. En líneas generales, el principal
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Figura 1.2: Principales factores que contribuyen a los accidentes en España en
el año 2016

inconveniente de estos métodos es que su eficacia depende principalmente de las
características individuales del vehículo, conductor y carretera [27–29]. Dentro
de los métodos basados en el comportamiento vehicular, empiezan a desarro-
llarse alternativas que requieren la comunicación entre vehículos para operar
correctamente [30].
El segundo de los grupos se basa en el análisis de variables fisiológicas, princi-

palmente para la detección de la somnolencia. Son métodos muy robustos, pues
permiten la detección de la somnolencia en sus fases tempranas con una baja
tasa de falsos positivos [27]. En este grupo destacan los métodos basados en: a)
electroencefalograma (EEG), b) electromiograma (EMG), c) electrocardiograma
(ECG), d) electrooculograma (EOG). De entre todos ellos, el más común para
la detección de la somnolencia es el EEG, donde se analizan diferentes bandas
de frecuencia [27], incluyendo la banda delta (0.5-4Hz), que se corresponde con
la actividad del sueño, la banda theta (4-8Hz), correspondiente a la somnolen-
cia, la banda alpha (8-13Hz), que representa la relajación y la creatividad, y la
banda beta (13-25Hz), que se corresponde con la alerta. Un decremento en la
potencia de la señal en la frecuencia alpha y un incremento en la frecuencia theta
indican la presencia de somnolencia [27]. Sin embargo, estos métodos requieren

4



contacto con el conductor para la realización de las medidas, lo que ocasiona
que su implementación en entornos reales no sea ni lo más adecuado ni lo más
práctico [27,31].
Finalmente, el tercero de los grupos se basa en el análisis de las característi-

cas visuales que presenta un conductor distraído o bajo un estado somnoliento.
Un conductor distraído se caracteriza por no mantener la atención puesta en la
carretera, por lo que son continuos los movimientos de cabeza hacia ambos la-
dos sin mantener fija la mirada. En cuanto a la somnolencia, las características
visuales que la describen son muy variadas, incluyendo movimientos faciales,
parpadeos rápidos y constantes, cabeceos y bostezos frecuentes. Los métodos
basados en visión por computador para la caracterización del estado del con-
ductor se han posicionado como uno de los más prometedores por proporcionar
resultados bastante robustos y por su baja intrusión en la conducción.
En la mayoría de las ocasiones, estas características visuales de la somnolencia

aparecen en espacios temporales diferentes y normalmente bien definidos [29].
De manera específica, los bostezos ocurren generalmente antes de que el con-
ductor entre en somnolencia, mientras que, normalmente, los cabeceos ocurren
cuando el conductor está empezando a dormirse. Es por ello que los métodos
basados tanto en los bostezos como en los cabeceos no son capaces de detectar
con exactitud cuando un conductor está empezando a estar somnoliento. Sin
embargo, los métodos basados en obtener información de los ojos pueden detec-
tar con precisión este punto, es decir, son los métodos visuales más adecuados
para la detección de la somnolencia [32]. No obstante, puesto que existen esas
diferencias temporales entre los distintos signos visuales, un punto importante
a considerar puede ser la combinación de varias de estas características para
aumentar la robustez final de la solución [27,29].
Recientemente, se han propuesto algoritmos de visión por computador para

la obtención de variables fisiológicas, con lo que se abre un gran potencial en
el campo de la detección de la inatención al combinarse las bondades de ambos
tipos de procesamiento, ya que proporcionaría las bondades de los sistemas ba-
sados en la obtención de variables fisiológicas sin la necesidad de incluir sensores
conectados al conductor. Sin embargo, es necesario profundizar en este nuevo
campo para obtener su viabilidad en entornos reales.
En la Figura 1.3 se puede ver una tabla donde se recogen las aproximaciones

antes comentadas para la detección tanto de la somnolencia, como de los princi-
pales tipos de distracción que existen (visual, manual y cognitiva). Así mismo, se
recogen tanto las características de intrusividad que proporcionan las diferentes
aproximaciones, como su efectividad para detectar los diversos episodios de los
principales tipos de inatención.
La visión por computador es una disciplina científica que incluye métodos

para adquirir, procesar, analizar y comprender las imágenes del mundo real con
el fin de producir información numérica o simbólica y puedan éstas ser tratadas
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Figura 1.3: Aproximaciones para la detección de la inatención en los conductores

por un computador. Así pues, las imágenes juegan un papel fundamental, siendo
la entrada que alimenta todo el proceso. La resolución de una imagen, que es el
grado de detalle o calidad de una imagen digital, ya sea escaneada, fotografiada
o impresa, es uno de los factores clave, puesto que indica la cantidad de detalles
que puede observarse en ella. Sin embargo, a mayor resolución, más exigentes
serán las capacides de cómputo necesarias para realizar el procesamiento, ya
que la cantidad de píxeles a analizar será mayor. En entornos vehiculares, se
cuenta con espacio reducido para incluir elementos de cómputo, por lo que se
requiere de dispositivos de procesamiento compactos que puedan ser ubicados en
lugares estratégicos para interferir lo mínimo posible en la conducción. Además,
no siempre se dispone de calidad adecuada en las imágenes, pues muchas son
obtenidas por cámaras de seguridad con una calidad mediocre. Todo esto hace
necesario profundizar en la relación existente entre los algoritmos de visión por
computador y la resolución de la imagen de entrada.
Además de la resolución, existen aspectos más específicos que tienen influencia

en el procesamiento de imágenes faciales en entornos vehiculares. En los sistemas
para la detección de inatención en los conductores, uno de los puntos clave radica
tanto en la detección de la cabeza del conductor como de la cara y su seguimiento
a lo largo del tiempo para realizar un procesamiento posterior más avanzado,
que permita extraer los síntomas que caracterizan a un conductor bajo un estado
somnoliento o distraído. Esto hace que los algoritmos de tracking y detección
facial sean considerados clave para una extracción robusta de estos síntomas.
Otro de los puntos a tener en cuenta es lo que se conoce como pose, que es la

orientación y posición que un objeto (en este caso, una cara) presenta en relación
a la cámara. Así pues, dependiendo de la pose, la apariencia que muestra la cara
puede cambiar dramáticamente, reduciendo el rendimiento de los algoritmos
de visión por computador. La pose es uno de los aspectos que mayor impacto
causa, por lo que es necesario profundizar para mejorar el rendimiento global de
los algoritmos.
Otro aspecto que decrementa sustancialmente el resultado de los algoritmos

de procesamiento facial es la oclusión, que ocurre cuando un objeto se interpone
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entre la región facial y la cámara. La consecuencia producida es que existirán
zonas de la región facial tapadas por dicho objeto, imposibilitando su procesa-
miento posterior. En entornos vehiculares, uno de los objetos que mayor oclusión
ocasiona son las gafas, pues, en muchos casos, imposibilitan la detección de los
ojos, los cuales proporcionan información muy relevante para la detección tanto
de la somonlencia como de la distracción. La detección de estos objetos, por
tanto, es clave para un buen desempeño de los algoritmos.
Para que un sistema de ayuda a la conducción tenga una mayor aceptación

por parte de los conductores, es aspecto fundamental que dicho sistema funcio-
ne de manera completamente automática, sin necesidad de cooperación alguna.
Muchos de los sistemas propuestos para la detección de la inatención requieren
en algún punto de su ejecución (calibración, obtención de imágenes de entre-
namiento o validación) cooperación por parte del conductor para completar su
operación. Es necesario, por tanto, automatizar al máximo estos sistemas para
lograr una buena aceptación, proporcionando una baja intrusión a los usuarios.
Una vez los algoritmos de visión por computador han sido diseñados, el último

paso es portarlos a un sistema embebido para ser incluidos dentro del habitáculo
de conducción. Esto no es una tarea sencilla, pues una serie de aspectos claves
debería ser tenida en cuenta; procesamiento en tiempo real, bajo coste, tamaño
compacto o consumo eléctrico contenido son sólo algunos de estos factores. Todo
esto hace necesario que se recojan y analicen para ser tenidos en cuenta a la hora
de llevar a cabo dicha implementación en un entorno embebido.
El hecho de procesar un vólumen de imágenes relativamente grande para cum-

plir con los requisitos de procesamiento en tiempo real pone de manifiesto una
conexión entre el análisis de imágenes y el procesamiento en streaming, con lo
que se abre una nueva ventana de investigación en todo lo relacionado con el
procesamiento Big Data de imágenes. Proponer y validar una arquitectura de
procesamiento streaming de imágenes es clave para poder analizar un volumen
de imágenes en tiempo real.
La implementación de un algoritmo de visión por computador sólo representa

una parte de todo el ciclo de vida del diseño de un producto. Una de las tareas
más arduas consiste en validar el sistema completo en una amplia variedad de es-
cenarios [33]. Esto hace necesario validar los algoritmos en diversas condiciones,
teniendo en cuenta que los escenarios simulados tienen unas características muy
diferentes a los escenarios reales, mostrando en ambos casos diferentes compor-
tamientos en los conductores. Por todo esto, el hecho de validar los algoritmos
para la detección de la inatención en los conductores es una tarea sobre la que
es necesario profundizar.
En la presente introducción se han mostrado los aspectos más importantes

para el desarrollo e implementación de un sistema para la detección de la inaten-
ción en los conductores, haciendo hincapié en aspectos y conceptos claves para
la consecución de esta tarea. Este compendio de aspectos recoge desde los más
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generales, como la categorización de la inatención, las cifras arrojadas o las ca-
rencias y deficiencias en las taxonomías propuestas, hasta los más específicos,
como la resolución de la imagen, la pose facial o las oclusiones. Todos ellos serán
abordados y serán objeto de análisis en la presente tesis, pues se corresponden
con los objetivos que la vertebran y sustentan. Además, se comentan e identifi-
can aspectos futuros, que podrían suponer una clara continuación en la temática
del presente trabajo de investigación. Esta tesis se presenta como un compendio
de publicaciones, organizada como sigue: resultados obtenidos y contribucio-
nes aportadas en el capítulo 2, conclusiones y trabajo futuro en el capítulo 3.
Finalmente, el capítulo 4 contiene los artículos que forman el compendio de
publicaciones así como información sobre su impacto.

1.1. Motivación y objetivos

Los últimos datos y estadísticas arrojados por la inatención en los conductores
españoles son importantes, siendo la causa que más víctimas mortales ocasiona
(36%), muy por encima de la velocidad inadecuada (21%) o el consumo de al-
cohol (11%) [23,24]. La motivación de la presente tesis doctoral es consecuencia
directa de las cifras anteriores y radica en ofrecer mecanismos para ayudar
a contribuir a la disminución de los efectos ocasionados por la inaten-
ción en los conductores. Es por ello, también, que su principal objetivo es
alcanzar un mayor grado de conocimiento en todo lo relacionado con
la inatención en los conductores para que tenga como fin último la reduc-
ción del número de accidentes y víctimas mortales en accidentes producidos por
esta causa, haciendo uso de herramientas de la información y la comunicación
(TIC). Para ello, se propondrá, construirá y validará una arquitectura
basada en la captación de atributos faciales y características visuales
robustos mediante el empleo de técnicas de visión por computador y
aprendizaje automático para la detección tanto de la distracción como
de la somnolencia en los conductores.

Para llevar a cabo el objetivo anterior, es necesario la consecución de objetivos
más concretos, concisos y medibles, que abarquen todo el ciclo de desarrollo de
una herramienta TIC para la detección de la inatención, desde el marco teórico
que posibilite la base de conocimiento necesaria hasta los aspectos más concretos
que deba cumplir la ya mencionada herramienta informática. Dichos objetivos
concretos se exponen a continuación en la Tabla 1.1.

8



1.1 Motivación y objetivos

Objetivos de la presente tesis doctoral

1. Analizar la clasificación actual de la inatención en los conductores
2. Proponer mejoras en lo que a la clasificación de la inatención se refiere para concluir una
taxonomía que palie las deficiencias encontradas
3. Estudiar y comparar los datos producidos por la inatención en los conductores a nivel
mundial
4. Analizar los diferentes métodos que existen para la detección de la inatención en los
conductores
5. Analizar y clasificar los métodos basados en visión por computador para la detección de
la inatención
6. Profundizar en los algoritmos de visión por computador y aprendizaje automático para la
extracción automática de atributos
7. Valorar el potencial de los algoritmos para la extracción automática de atributos
8. Proponer mejoras en el estado del arte para la detección de la inatención por medio de
nuevos algoritmos en el campo de la visión por computador
9. Analizar el potencial de las variables fisiológicas obtenidas por medio de algoritmos de
visión por computador para su aplicabilidad en entornos vehiculares
10. Estudiar la relación entre la resolución de una imagen y la precisión obtenida por un
algoritmo de visión artificial en el caso concreto de atributos faciales
11. Profundizar en los algoritmos de tracking y detección facial en entornos vehiculares, pues
son la base de los sistemas para la detección de la inatención en los conductores mediante
técnicas de visión por computador
12. Proponer mejoras para reducir el impacto de la pose de la cabeza del conductor en los
algoritmos de visión por computador
13. Detectar la presencia de gafas, pues es un punto muy importante a incorporar en los
algoritmos para el procesamiento de la inatención por la oclusión que ocasionan
14. Automatizar los sistemas de ayuda a la conducción, evitando la necesidad de colaboración
por parte del conductor
15. Analizar los aspectos a considerar para la implementación de los algoritmos de visión por
computador en entornos vehiculares
16. Investigar en arquitecturas de streaming para el procesamiento de grandes volúmenes de
imágenes faciales en tiempo real
17. Investigar en métodos comerciales para la detección de la inatención en conductores
mediante técnicas de visión por computdor
18. Investigar en la comparativa entre métodos comerciales y no comerciales para la detección
de la inatención en conductores mediante visión por computaor
19. Aumentar la seguridad en los sistemas para la detección de la inatención (reconocimiento
facial, detección de spoofing, bases de datos)

Tabla 1.1: Objetivos concretos de la presente tesis doctoral
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Figura 1.4: Entidades y organismos de financiación habilitadores de la presente
tesis doctoral

1.2. Contexto
El contexto en el que se han desarrollado las actividades de investigación

que han dado lugar a la presente tesis doctoral han sido llevadas a cabo en:
1) Fundación CTIC - Centro Tecnológico y 2) TSK Electrónica y Electricidad,
S.A., siempre bajo el paraguas de las diversas convocatorias, tanto regionales
como nacionales financiadas parcialmente por diversos organismos y entidades
(Figura 1.4), facilitando la ejecución de proyectos de investigación. En el caso
de la Fundación CTIC, se han llevado a cabo varios proyectos de investigación
(algunos finalizados y otros todavía en ejecución). Estos proyectos están muy
relacionados con la presente tesis doctoral, los cuales se comentan a continuación:

NINE (Natural Language Interaction Engine). Aumentar la capacidad de
interacción de las máquinas interpretando el lenguaje oral y corporal de
las personas. Referencia: IE09-092C1. Entidad financiadora: PCTI. Plazo
de ejecución: 2010 - 2012.

CAVIAR (Creacion de algoritmos de visión artificial). Desarrollo de al-
goritmos para la obtención automática de atributos faciales en dispositivos
móviles. Referencia IE09-511. Entidad financiadora: FICYT. Plazo ejecu-
ción: 2012 - 2013.

VISOR (VISion Object Recognition). Framework de reconocimiento de
objetos adaptado a los dispositivos de realidad aumentada. Referencia:
CT14-04-2-01. Entidad financiadora: PCTI. Plazo ejecución: 2014 - 2015.

emoPLAY. Solución tecnológica para el tratamiento del Trastorno del
Espectro Autista mediante la detección de la emoción del usuario. Referen-
cia: Soluciones tecnológicas aplicadas al autismo 2015 Fundación Orange.
Entidad financiadora: Fundación Orange. Plazo de ejecución: 2015 - 2016.

Además, en la empresa TSK se han desarrollado proyectos que han permi-
tido generar el conocimiento necesario para abordar ciertas temáticas también
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1.3 Publicaciones

2013 2014 2015 2016 2017

SMARTMILE2013 MVAA2015 JON2017

FIOT2015

IEEELAT2016

SENSORS2016 RIAI2017

Revista JCR

Congresos Internacionales y otras revistas

CITS2015

Figura 1.5: Resumen de las publicaciones

importantes en la tesis, como puede ser el procesamiento en streaming de la
información:

SISFOTÓN. Monitoriza de forma remota numerosos procesos industria-
les a través de una innovadora plataforma de tratamiento de la información
basada en técnicas estadísticas y de inteligencia artificial, mediante la in-
corporación de tecnologías de tratamiento masivo de datos (Big Data),
almacenamiento NoSQL (bases de datos no relacionales) o procesamiento
distribuido, entre otros. Referencia: IDI-20130200. Entidad financiadora:
CDTI. Plazo ejecución: 2013 - 2014.

1.3. Publicaciones
Como se ha comentado, esta tesis se presenta como compendio de publicacio-

nes. Se incluyen, por tanto, revistas indexadas en el JCR. También se incluyen
artículos presentados en congresos internacionales y en otras revistas. Estos úl-
timos permiten ampliar la visión general de la labor investigadora llevada a
cabo durante todos estos años. En la Figura 1.5 se puede ver la clasificación de
las publicaciones según la división antes comentada. Esta Figura puede aportar
una idea del alcance de la presente tesis doctoral. A continuación, se adjuntan
en forma de lista las publicaciones referenciadas en la Figura anterior y que se
comentarán en capítulos sucesivos:

SMARTMILE2013: Losada, D. G., Lopez, G. A. R., Acevedo, R. G.,
& Villan, A. F. (2013, December). AVIUE Artificial vision to improve the
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user experience. In New Concepts in Smart Cities: Fostering Public and
Private Alliances (SmartMILE), 2013 International Conference on (pp. 1-
6). IEEE.

MVAA2015: Fernández, A., García, R., Usamentiaga, R., & Casado, R.
(2015). Glasses detection on real images based on robust alignment. Ma-
chine Vision and Applications, 26(4), 519-531.

FIOT2015: Fernández, A., Casado, R., & Usamentiaga, R. (2015, Au-
gust). A Real-Time Big Data Architecture for Glasses Detection Using
Computer Vision Techniques. In Future Internet of Things and Cloud (Fi-
Cloud), 2015 3rd International Conference on (pp. 591-596). IEEE.

CITS2015: Fernández, A., Carús, J. L., Usamentiaga, R., Alvarez, E.,
& Casado, R. (2015, July). Unobtrusive health monitoring system using
video-based physiological information and activity measurements. In Com-
puter, Information and Telecommunication Systems (CITS), 2015 Inter-
national Conference on (pp. 1-5). IEEE.

IEEELAT2016: Villan, A. F., Candas, J. L. C., Fernandez, R. U., &
Tejedor, R. C. (2016). Face recognition and spoofing detection system
adapted to visually-impaired people. IEEE Latin America Transactions,
14(2), 913-921.

SENSORS2016: Fernández, A., Usamentiaga, R., Carús, J. L., & Casa-
do, R. (2016). Driver distraction using visual-based sensors and algorithms.
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Capítulo 2

Discusión de resultados

La visión por computador y las técnicas de aprendizaje automático son claves
para la detección de la inatención en los conductores y, al mismo tiempo, son la
base en la presente tesis. En este punto, la obtención automática de atributos
juega un papel fundamental en la visión por computador, pues la información
que se puede obtener de manera no intrusiva para el usuario presenta un gran
potencial aplicable a multitud de campos. Atributos como el género, edad, etnia,
emoción e identificación facial, entre otros, se pueden obtener usando técnicas
de visión por computador de manera no intrusiva. Además, el reconocimien-
to automático de atributos permite la extracción de los principales signos de
inatención [34]. La base para la extracción automática de atributos radica en
una obtención robusta de la información de la cara del conductor. Para llevar a
cabo este paso existen diferentes alternativas, entre las que destaca el operador
Local Binary Pattern (LBP) [35], un tipo de descriptor visual usado amplia-
mente en la visión por computador, pues se caracteriza por su robustez, por su
facilidad en la implementación y por su baja carga computacional. Es habitual
utilizar conjuntamente Support Vector Machines (SVM) o Adaboost en la etapa
de clasificación, debido a que en muchos casos los descriptores visuales obtie-
nen vectores con alta dimensionalidad que las arriba mencionadas herramientas
de aprendizaje automático son capaces de clasificar. En la Tabla 2.1 se puede
observar una colección de algoritmos, considerados referentes, que hacen uso de
esta aproximación (LBP + SVM/Adaboost) para la extracción automática de
atributos.
Con el objetivo de validar la aproximación anterior, se realizó una implemen-

tación del operador LBP para la etapa de extracción de características y en la
etapa de clasificación se hizo uso de SVM, mediante la librería LIBSVM [45].
La idea de utilizar el operador LBP está motivada por el hecho de que una cara
puede ser asociada a una composición de micro-patrones, los cuales son descri-
tos con robustez por dicho operador [44]. Los detalles de dicha implementación
pueden verse en la primera Contribución de la tesis doctoral [46]. Para valorar
el posible potencial de dichos algoritmos, el caso de uso identificado radica en
su aplicación para la personalización de servicios utilizando datos abiertos del
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Atributo Aproximación

Género (LBP + SVM): Makinen et al. [36] investigan en la extrac-
ción automática de género incluyendo el pelo de los usuarios
además del resto de la región facial

Género (LBP + SVM): Lian et al. [37] llevan a cabo la extracción de
género incluyendo imágenes con una pose acusada

Género (LBP + SVM): Shan et al. [38] proponen la extracción de
género utilizando imágenes reales. Utilizan Adaboost para la
selección de los patrones LBP más significativos

Género (LBP + Adaboost): Yang et al. [39] hacen uso de Adaboost
en la etapa de clasificación para la clasificación de género

Género (LBP + SVM): Lyle et al. [40] realizan una clasificación de
género basada en la región periocular

Edad (LBP + Adaboost): Yang et al. [39] emplean Adaboost
para la obtención de diferentes grupos de edades (ni-
ño/adulto/anciano)

Etnia (LBP + Adaboost): Yang et al. [39] realizan una clasificación
binaria de la etnia (asiática/no asiática)

Etnia (LBP + SVM): Lyle et al. [40] realizan una clasificación de la
etnia (asiática/no asiática) basada en la región periocular

Emoción (LBP + SVM): Shan et al. [41] proponen una clasificación de
las emociones prototípicas

Emoción (LBP + SVM): Shan et al. [42] llevan a cabo la implementa-
ción de una solución muy similar al expuesto anteriormente

Identificación (LBP + comparación de histogramas): Woodard et al. [43]
realizan la identificación facial a partir de la región periocular

Identificación (LBP + SVM): Ahonen et al. [44] realizan la identificación
facial considerando toda la región

Tabla 2.1: Principales algoritmos para la extracción automática de atributos fa-
ciales utilizando la aproximación LBP + SVM/Adaboost

Ayuntamiento de Gijón. Una representación gráfica puede verse en la Figura 2.1.
Al tratarse de una implementación relativamente sencilla y tener margen de

mejora en muchas etapas del procesamiento, se sigue investigando en este punto
para obtener una información más precisa. Se empieza, por tanto, a profundizar
en determinadas etapas de los ya mencionados algoritmos que se determinaron
claves para, por un lado, aumentar su robustez, y por otra, para obtener un ma-
yor conocimiento de todo el procesamiento. Se detecta una carencia en el estado
del arte en lo relacionado con la detección de gafas, cuyos campos de aplicación
son bastante numerosos e importantes: marketing y publicidad, sistemas de se-
guridad o identificación basada en soft biometrics, entre otros. Éste, es un punto
importante, pues la obtención de signos de fatiga en los ojos del conductor pue-
de verse dificultada si el individuo lleva gafas [34]. Por esta razón, un método
para la detección de gafas puede ayudar a los sistemas de monitorización de los
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Figura 2.1: Ejemplo de la extracción automática de atributos utilizando la apro-
ximación LBP + SVM

conductores.
Los principales trabajos para la detección de gafas se pueden ver en la Tabla

2.2. Como parte de la presente tesis, se presenta en [47] la segunda Contribución
un método para este fin. Como principales innovaciones, caben destacar varios
aspectos.
El primero de ellos es la implementación de un algoritmo robusto para la de-

tección de gafas. Además, se realiza un alineamiento de la cara con el objetivo de
lidiar con la pose, pues es uno de los factores que decrementan el rendimiento de
los sistemas de procesamiento facial. También se lleva a cabo la implementación
y validación de una mejora del operador LBP, el cual proporciona una tasa de
reconocimiento más alta y se presenta más robusto frente al ruido, habitual en
imágenes con baja resolución. Por último, también se investiga en varios factores
que pueden influir en la obtención de un operador más eficiente computacional-
mente sin decrementar la tasa de reconocimiento, como son el tamaño de la
imagen y el número de divisiones del operador LBP.
A continuación, se comentan con mayor detalle los aspectos introducidos con

anterioridad.
En primer lugar, se propone un algoritmo de procesamiento que localiza la

región facial por medio del método propuesto por Viola y Jones [56]. Luego, se
realiza un pre-procesamiento de la región facial para lidiar con aspectos como
la pose, la rotación, el escalado y otras inexactitudes en la detección facial.
A continuación, se emplea un algoritmo para establecer la región de la cara
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Autor Aproximación

Jiang et al. [48] Primer algoritmo propuesto para la detección de las gafas en
imágenes faciales. Los resultados se reportan de manera simi-
lar en [49]

Dantcheva et al. [49] Entrenamiento: base de datos FERET. El testing está rea-
lizado con un subconjunto de imágenes de la base de datos
FERET. Tasa de detección: 87.7%. Tasa de falsos positivos:
7.17%. Tasa de faltos negativos: 5.66%

Jing et al. [50] Testing con un conjunto de 419 personas, 151 de ellas por-
tando gafas. Tasa de detección: 99.52%, presentando 2 falsos
positivos

Vaquero et al. [51] 1 044 imágenes obtenidas de Internet para el entrenamiento
(308 gafas de sol, 318 gafas, 418 sin gafas). Validado con un
vídeo de videovigilancia. Gafas de sol (precisión: 85%, exhaus-
tividad: 35%), Gafas (precisión: 90%, exhaustividad 8.9%),
Sin gafas (precisión: 77%, exhaustividad: 99.5%)

Wu et al. [52] 3 000 imágenes (1 500 con gafas y 1 500 sin ellas) obtenidas
de FERET y de Internet utilizando validación cruzada. Los
mejores resultados fueron obtenidos mediante características
de Gabor. Precisión: 98.9% (98.1% con gafas y 99.7% sin
ellas). Utilizando imágenes reales para el testeo, obtuvieron
una tasa de acierto del 94.0%

Wu et al. [53] Para entrenar el sistema emplearon un total de 513 imágenes
faciales de 19 personas utilizando 3 tipos de gafas diferentes y
9 poses faciales diferentes. Tasa de detección: ≈ 90%

Shan et al. [54] Para entrenar utilizaron 100 imágenes de la base de datos
Bern. Para validación, utilizaron 200 imágenes de la misma
base de datos, obteniendo una tasa de acierto del 77%

Wu et al. [55] Entrenaron un detector para la región de los ojos basado en
el detector facial propuesto por Viola y Jones [56] emplean-
do 12 710 ejemplos. Validaron el detector con 1 386 imágenes
faciales. Tasa de detección: 96% y una falsa alarma de 10−4

Heo et al. [57] Emplearon una base de datos de imágenes termográficas
(NIST), obteniendo una tasa de acierto del 86.6% para los
usuarios que llevaban gafas. Para las personas que no lleva-
ban gafas, obtuvieron un tasa de acierto del 97.1%

Tabla 2.2: Principales trabajos para la detección de gafas

alrededor de los ojos a partir de la cual se aplica el operador LBP mejorado
(RLBP) [58] para obtener el vector de características. En último lugar, se aplica
la etapa de clasificación, la cual se realiza por medio de una SVM, clasificando
el histograma en dos clases. Como se ha comentado con anterioridad, las SVMs
son una herramienta muy útil para la clasificación de datos, en general, y para
tareas de clasificación facial, en particular [59].
A continuación, se resumen los resultados recogidos en la mencionada publi-

cación [47].
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Figura 2.2: Alineamiento de la región facial

Una de las carencias detectadas en muchos algoritmos de visión por compu-
tador es la falta de claridad de las imágenes utilizadas tanto para entrenar como
para validar el sistema. En este caso, se emplea la base de datos LFW [60]. Esta
base de datos fue creada para estudiar el problema del reconocimiento facial
de imágenes reales, la cual contiene 13 233 imágenes faciales recogidas de 5 749
personas diferentes recogidas de la Web. Esta base de datos ha sido utilizada
recientemente para la comparación de atributos faciales [38,61]. En este trabajo
de la tesis [47] se emplean 3 000 imágenes faciales, de las cuales 1 500 presentan
gafas y 1 500 no. Todos los resultados que se muestran a continuación se obtu-
vieron mediante validación cruzada en 5 subconjuntos (5-fold cross-validation)
con el objetivo de usar prácticas estandarizadas [38].
El algoritmo de preprocesamiento permite aumentar la robustez en la detec-

ción de las gafas de media en un 1.55%, tal y como se puede ver de manera
gráfica en la Figura 2.2. Este algoritmo permite enfrentarse en gran medida con
la pose de la cara del usuario.
Una vez corregida la pose, el siguiente paso es el de obtener automáticamente

la región facial de los ojos. Para ello se propone el Algoritmo 1, que extrae de las
imágenes faciales dicha región de manera totalmente automática. El mencionado
algoritmo está basado en el propuesto por Makinen et al. [36], pero eliminando
la componente manual que requería éste. De esta manera, se consigue extraer
la región facial normalizada alrededor de los ojos de manera totalmente auto-
matizada para posteriormente extraer el vector de características mediante el
operador LBP. Para crear dicho vector, la región facial normalizada se divi-
de en m regiones más pequeñas, no superpuestas {R0, ...., Rm−1}. Para cada
una de estas regiones, se crea el histograma LBP, que se corresponde con las
concatenaciones de los histogramas para cada una de las regiones, obteniendo
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Algorithm 1 Normalización facial del ROI
eyes_distance_r, eye_line_r, size
1: Se localizan 8 puntos faciales. Se calcula recta de regresión basada en los 4

puntos de los ojos. El ángulo α de desviación es calculado y la imagen se
rota teniendo en cuenta dicho ángulo para alinear las imágenes

2: La distancia Euclídea d0 se calcula entre los ojos en la imagen rotada
3: La distancia entre los ojos en la imagen redimensionada se calcula según la

fórmula dt = size.w ∗ eyes_distance_r
4: El ratio r se calcula como r = d0/dt

5: La anchura w0 and la altura h0 de la región alrededor de los ojos se calcula
como w0 = r ∗ size.w y h0 = r ∗ size.h

6: Las coordenadas de las esquinas de la región facial en la imagen rotada se
calculan como xl = xe − w0/2, yt = ye − h0/eye_line_r, xr = xl + w0
y yb = yt + h0, donde xl es la coordenada x del borde izquierdo, xe es la
coordenada x del punto medio entre los ojos, yt es la coordenada y del borde
superior, ye es la coordenada y de los ojos, xr es la coordenada x del borde
derecho e yb es la coordenada y del borde inferior. Este ROI es extraído de
la imagen

7: return ROI

un histograma espacial extendido [44]. La longitud total del histograma es de
B = 59 ∗m, puesto que el operador LBP genera 59 valores diferentes en función
de los diferentes micro-patrones encontrados en la imagen. Por esto, el número
m de regiones en las que se divide la región facial juega un papel importante
que conviene estudiar en detalle. Un número de regiones pequeño permite un
histograma más compacto pero, por el contrario, se pierde información espa-
cial. Un número m de regiones más elevado, permite obtener mayor información
espacial pero, por contra, el histograma generado presenta un número de carac-
terísticas mayor. Esto puede ocasionar que la etapa de clasificación (mediante
SVM) no pueda mapear con precisión los vectores a las clases correspondientes.
En la Figura 2.3 se puede ver de manera gráfica un estudio exhaustivo donde
se puede apreciar como varía la tasa de acierto en la clasificación de las gafas
en función de las diferentes regiones. En la Tabla de la izquierda se parte de la
región sin alinear (sin rotar las imágenes en el ángulo α de desviación). En la
Tabla de la derecha, por el contrario, la imagen se rota en función del ángulo α
de desviación.
En función de la gama de colores se puede apreciar que se producen mejores

resultados si las imágenes han sido alineadas previamente (de media un 1.55%).
Sin embargo, llega un momento en que no se producen mejores reconocimientos
a pesar de aumentar el número de regiones. Además, cuanto más compacto sea
el vector de características, menos recursos computacionales y memoria serán
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Figura 2.3: Tasa de acierto en función del número de divisiones sin llevar a cabo
el proceso de rotar las imágenes para lidiar con la pose (izquierda)
y llevándolo a cabo (derecha)

necesarios.
Otro punto importante es la resolución de las imágenes de entrada al algorit-

mo. En aplicaciones de videovigilancia y sistemas de monitorización de usuarios
las imágenes suelen presentar una baja resolución [62], así que es necesario rea-
lizar pruebas para establecer una resolución mínima. Para llevar a cabo este
procedimiento, se tienen en cuenta las 3 000 imágenes de la base de datos LFW
y se obtiene el tamaño medio de la región facial. La distancia media entre los
puntos exteriores de los ojos fue de 63.86 pixels, con una desviación estándar
de 5.39. Para establecer la región facial se tiene en cuenta que las gafas habi-
tualmente se colocan a la misma altura tanto arriba y abajo, como de derecha
a izquierda del centro de los ojos. La altura, por tanto, se establece teniendo en
cuenta el tamaño de las gafas. El ancho está determinado teniendo en cuenta la
distancia entre los ojos y la forma de los lados de las gafas. Tras realizar varios
experimentos, se establece que el ancho de la región normalizada de las gafas
es un 122% más grande que la altura. En la Figura 2.4 se pueden ver varios
ejemplos de la zona que se emplea para la detección de las gafas.
Teniendo en cuenta los datos anteriores, las pruebas realizadas para establecer

la influencia de la resolución presentan una anchura máxima de 100 píxeles y 45
píxeles de altura. Así, el tamaño máximo de la región normalizada de las gafas
es de 4 500 píxeles. El tamaño mínimo considerado es de 16 píxeles y 7 píxeles
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Figura 2.4: Región normalizada para la detección de gafas

Figura 2.5: Representación visual de cómo afecta la resolución a las imágenes

de anchura y altura, respectivamente. En la Figura 2.5 se puede ver, para una
misma región normalizada de las gafas, cómo influye la resolución.
En la Figura 2.6 se puede ver la tasa de reconocimiento en función del tamaño

de la región facial de las gafas para diferentes configuraciones en el número
de divisiones del operador LBP. Como se puede apreciar, existe una relación
logarítmica entre el tamaño y la tasa de reconocimiento.
Esta relación logarítmica depende del número de divisiones del operador LBP

en la región facial. En la Figura 2.7 se pueden ver dos ejemplos. La siguiente lista
de valores R2 ={0.9880, 0.9875, 0.9826, 0.9812, 0.9897, 0.9880, 0.9876, 0.9891,
0.9915, 0.9898} se corresponde con los valores de los coeficientes de correlación
obtenidos de las diferentes series de valores de la Figura 2.6.
Es la primera vez que se emplea la base de datos LFW para la comparación

de los algoritmos de detección de gafas. Por lo tanto, la comparación con el
algoritmo aquí presentado es imposible. Pero con el objetivo de mostrar que el
algoritmo propuesto presenta un claro avance en el estado del arte, el algoritmo
también fue comparado haciendo uso de la base de datos FERET [63], pues
alguno de los algoritmos para la detección de gafas utilizaron dicha base de
datos [49,52]. Dantcheva et al. [49] obtienen una tasa de detección del 87.7%. Wu
et al. [52], por su parte, obtienen una tasa del 98.9%, utilizando no sólo imágenes
de la base de datos FERET sino también imágenes de Internet. El algoritmo
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Figura 2.6: Relación entre el tamaño de la imagen y la tasa de reconocimiento pa-
ra diferentes cantidades de regiones en la construcción del histograma

aquí propuesto obtiene unas tasas de reconocimiento del 99.89% y del 99.83%
utilizando RLBP y LBP respectivamente, mejorando los resultados de algoritmos
anteriores. Por otro lado, los estudios realizados para comprender como influyen
tanto el número de divisiones en el operador LBP, como el alineamiento previo
de la región facial y la resolución de la imagen de entrada, permiten obtener
un mayor conocimiento y llegar a un trade-off de los diversos parámetros antes
comentados. En lo que a la resolución de la imagen de entrada se refiere, se ha
detectado un estudio realizado por Shan et al. [41, 42] para ver cómo influye el
tamaño de la imagen de entrada y el reconocimiento automático de emociones.
Sin embargo, este estudio se limita a únicamente emplear 6 tamaños diferentes,
mientras que en la Contribución anteriormente comentada, se evalúan un total
de 43 resoluciones diferentes.
A medida que se va profundizando en la temática de la detección de inaten-

ción en los conductores mediante técnicas de visión por computador y apren-
dizaje automático, se evidencia que ciertas variables fisiológicas obtenidas del
conductor pueden ser muy valiosas para la detección de la inatención y carac-
terización de su estado. Por ejemplo, el pulso cardíaco tiende a incrementarse
cuando la carga cognitiva aumenta [64]. Esto puede ayudar a caracterizar mejor
la situación del conductor ante situaciones de estrés [65–67]. Por medio de la
información obtenida por el pulso cardíaco, el estado cognitivo del conductor
puede ser monitoreado [68]. Apparies et al. [65] evidenciaron que el ritmo car-
díaco y su variabilidad pueden servir como indicadores tempranos de fatiga en
el conductor. Zhao et al. [69] comprobaron en un simulador que durante una
situación de estrés el pulso cardíaco fluctúa violentamente.
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Figura 2.7: Relación entre el tamaño de la imagen y la tasa de reconocimiento pa-
ra diferentes cantidades de regiones en la construcción del histograma

Con el avance de la visión por computador, empiezan a proliferar algoritmos,
los cuales intentan extraer las variables fisiológicas antes comentadas mediante
análisis de imágenes faciales en tiempo real [70, 71]. En este sentido, se dedican
recursos y esfuerzos para profundizar con el objetivo de validar la potencial apli-
cabilidad de este tipo de algoritmos para un sistema de detección de inatención
en los conductores.
La tercera Contribución de la tesis [72] tiene por objetivo la creación de un

sistema de monitorización del estado de salud de un usuario mediante técnicas
de visión por computador. Además, el sistema se completa con información de
su actividad por medio de un reloj de pulsera. Usando técnicas de visión por
computador se extraen las diferentes variables fisiológicas: a) ritmo cardíaco,
b) variabilidad del ritmo cardíaco y c) ritmo respiratorio. Previamente, Lewan-
dowska et al. [73] llevan a cabo una serie de experimentos con la conclusión de
que la frente de los usuarios es una zona representativa de toda la región facial.
Sin embargo, no proponen ningún método para detectar dicha región de forma
automática. Alexander et al. [74], por un lado, y Rouast et al. [75], por otro,
llegan a las mismas conclusiones, es decir, la región de la frente es perfectamente
válida, pero tampoco emplean métodos robustos para su detección, pues sus al-
goritmos se basan en operaciones matemáticas básicas a partir de la información
de la posición devuelta por el algoritmo de Viola y Jones para la detección facial.
En esta Contribución [72], se propone un método de detección y localización de
la región de la frente de forma totalmente automática para después proceder
a procesarla y extraer las variables fisiológicas finalmente. En la Figura 2.8 se
pueden observar varios ejemplos de la mencionada zona. Para la localización
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Figura 2.8: Visualización de la región de la frente utilizada para la extracción
de las variables fisiológicas

de la región de interés (ROI, por sus siglas en inglés) de la frente se utiliza el
método previamente aplicado para ubicar el ROI de la región de las gafas, pero
modificado para posicionar el ROI correctamente (ver Figura 2.8). Las imágenes
con las que se realizan pruebas para validar el método de extracción de la región
de la frente están obtenidas de la base de datos LFW. Como se puede observar,
el método la localiza de forma robusta. El siguiente paso radica en la extracción
de las variables fisiológicas a partir del ROI de la frente.
En esta publicación sólo se lleva a cabo la validación del ritmo cardíaco utili-

zando las métricas y procedimientos comunes a publicaciones previas [70,73,76].
Para llevar a cabo dicha validación, una webcam se coloca en la parte superior
del espejo y está conectada a una unidad de procesamiento. Todos los vídeos
están registrados en color (24-bit RGB con 3 canales x 8 bits/canal) a 20 fps
con una resolución de 640x480. Doce participantes (6 hombres y 6 mujeres) con
una edad entre 26 y 35 años (media = 29, SD = 2.30) fueron involucrados en el
experimento. Al mismo tiempo, un sensor para la medición del pulso por oxime-
tría fue colocado en el dedo del usuario para la comparación de los resultados
(Nonin Onyx II Model 9560 Finger Pulse Oximeter). Los experimentos fueron
realizados en un laboratorio con la luz solar como única fuente de iluminación.
Durante la grabación de los vídeos los participantes siguieron las instrucciones
de permanecer de pie, respirar de manera espontánea y mirar hacia la webcam.
En la Figura 2.9 se pude ver el lugar donde se realizaron los experimentos y la
disposición de los diversos elementos.
De manera general, se obtuvieron resultados muy interesantes al compararse

con el sensor (media del error = 1.43, SD = 1.20), muy similar a otros tra-
bajos [70, 73, 76], empleando únicamente la región de la frente en vez de un
procesamiento de toda la región facial. Además, es de esperar que mediante el
procedimiento propuesto para la detección y seguimiento del ROI de la frente,
el sistema sea más robusto que los sistemas antes comentados. Para ejemplificar
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Figura 2.9: Procedimiento para la validación experimental de los algoritmos de
visión por computador para la extracción de variables fisiológicas

este punto, en el sistema propuesto en [70] se puede observar que, incluso sin un
movimiento aparente de la región facial, el ROI localizado fluctúa debido a irre-
gularidades en el tracking facial. Este problema radica en la base de utilizar el
algoritmo de detección facial propuesto por Viola y Jones [56] como algoritmo de
tracking facial unido al hecho de realizar operaciones matemáticas sencillas para
restringir el ROI. Este problema es común al resto de publicaciones analizadas
( [71,76–79]).
Por otro lado, en la presente publicación únicamente se ha llevado a cabo la

validación del pulso cardíaco, con lo que se requiere trabajo adicional para llevar
a cabo una validación del resto de variables fisiológicas. Para ello, se extiende el
trabajo presentado aquí [72] para incluir la validación de la solución completa,
es decir, validar el potencial de las variables fisiológicas para su posible inclusión
en un sistema de inatención en los conductores. Esta extensión se corresponde
con la cuarta Contribución de la presente tesis [80], donde se intenta reproducir
el mismo experimento que se presenta en [72], pero incluyendo un sensor de
tipo cinturón sobre el pecho para validar el ritmo respiratorio. Los resultados
obtenidos se pueden ver en la Tabla 2.3.
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Parámetro Error medio SD Índice R

HR 1.43 1.20 0.98
HRV LF 9.26 9.56 0.91
HRV HF 9.16 9.62 0.91

HRV LF/HF 1.11 1.47 0.86
RR 0.84 1.83 0.93

Tabla 2.3: Resumen de los resultados para la extracción de las variables
fisiológicas

Los resultados obtenidos se consideran, como en el caso anterior, muy in-
teresantes, similares a otras publicaciones analizadas. Como se ha comentado
previamente, es de esperar que la solución aquí mostrada aparezca más robusta
cuando los usuarios presenten movimientos más pronunciados. Se puede concluir,
por tanto, que los algoritmos de extracción de variables fisiológicas a partir de
la región facial del usuario presentan un resultado, a priori válido, para poder
ser incluidos y validados en entornos vehiculares. Bien es cierto que se requerirá
de esfuerzos adicionales para enfrentarse con las características de las imáge-
nes en este tipo de entornos, como pueden ser las condiciones cambiantes de
iluminación [81,82].
Una vez comprobado experimentalmente el potencial de las variables fisioló-

gicas, otro punto importante es el hecho de incluir mecanismos, que permitan
procesar en tiempo real un volumen grande de imágenes. En este sentido se
investigó en arquitecturas en streaming de procesamiento que pudieran ser apli-
cadas al procesamiento de imágenes en tiempo real, cuyo resultado se muestra
en la quinta Contribución de la tesis [83].
En los últimos años, con el rápido crecimiento de Internet, Internet of Things

(IoT) y el Cloud Computing, se ha llegado a un incremento exponencial de los
datos en prácticamente cualquier sector de la industria y negocios. El Big Data
se ha convertido en un tópico muy activo tanto para la comunidad investigadora,
como para la industria y los gobiernos a nivel mundial. Se caracteriza por las
tres V’s del procesamiento: velocidad, variedad y volumen [84,85]. Además, den-
tro de él, han surgido diferentes paradigmas de procesamiento, principalmente:
a) procesamiento en batch, b) procesamiento en streaming, y c) procesamiento
híbrido.
El procesamiento en batch es una manera eficiente de procesar grandes volú-

menes de datos, que se recogen durante un período de tiempo determinado y,
después, se procesan en lotes. Sin embargo, algunas aplicaciones requieren un
procesamiento en tiempo real de los datos (streams). El procesamiento en strea-
ming requiere una fuente de datos continua, así como un procesamiento de los
datos también continuo [85]. Está especialmente diseñado para operar en tiempo
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real, con lo que en este tipo de arquitecturas prima la velocidad sobre la riguro-
sidad en el análisis. El procesamiento híbrido combina las bondades de ambos
tipos. Sin embargo, se requiere una etapa final donde los resultados procedentes
del procesamiento en batch y en streaming se combinan [86].
En la última década, el procesamiento de imágenes y vídeo generado por

multitud de sensores y dispositivos se ha convertido en una de las mayores
fuentes de datos [87]. Un ejemplo es el procesamiento de vídeos de vigilancia,
donde se requiere un proceso en tiempo real para cumplir con los requisitos,
entre los que se pueden destacar el reconocimiento facial como clave para la
detección de intrusión. En este sentido, el hecho de proponer una arquitectura de
streaming de datos para el procesamiento de imágenes faciales es clave. En esta
quinta Contribución se propone una arquitectura Big Data de procesamiento
aportando dos contribuciones principales: 1) una arquitectura en streaming para
el procesamiento de imágenes faciales por medio de tecnologías Big Data, y 2)
paralelización de una innovadora estrategia para la detección de gafas. En lo
que al estado del arte se refiere, existen escasas publicaciones relacionadas con
el procesamiento facial de imágenes y el Big Data, destacando la extracción de
atributos faciales [88], o el reconocimiento facial [89, 90].
En la quinta Contribución, se parte del algoritmo para la detección de las

gafas propuesto en [47] para adaptarlo a una estrategia de procesamiento en
streaming capaz de procesar las imágenes en tiempo real. Para ello, se propone
una topología de procesamiento haciendo uso de Apache Storm [91, 92]. Storm
es una herramienta de computación distribuida en tiempo real liberada como
código libre por Twitter. En Apache Storm existen dos piezas principales en el
procesamiento:

Spouts: Se consideran las fuentes de datos y los emiten en forma de tuplas.

Bolts: Se consideran las unidades de procesamiento.

Combinando estas piezas el objetivo es conseguir procesar la información de
la manera adecuada cumpliendo con los objetivos establecidos.
Al tratarse de una arquitectura modular y hacer uso de diferentes nodos de

procesamiento, es relativamente fácil adaptar la arquitectura para procesar otro
tipo de atributos. Por ejemplo, el hecho de clasificar si un individuo presenta los
ojos abiertos o cerrados utilizaría exactamente la misma arquitectura de proce-
samiento. Únicamente sería necesario modificar la base de datos utilizada para
el entrenamiento del sistema. Si por el contrario se quiere saber si una persona
está sonriendo, simplemente se tendría que cambiar el Bolt de normalización,
para que recogiera la región de la boca, como se puede ver en la Figura 2.11. Es
decir, la arquitectura se puede modificar para detectar otros atributos faciales y
procesarlos en tiempo real: emoción, género, edad o reconocimiento facial entre
otros.
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Figura 2.10: Arquitectura Big Data para el procesamiento en streaming de imá-
genes faciales para la detección de gafas

Figura 2.11: Arquitectura de procesamiento para la detección de otro atribu-
to facial (sonrisa) utilizando únicamente un Bolt de normalización
diferente

Como conclusión, tras la realización de las pruebas con la arquiectura propues-
ta (mediante inyectores sintéticos para la generación de imágenes), se determina
experimentalmente que la mencionada arquitectura es adecuada para el procesa-
miento en tiempo real de imágenes para la obtención y clasificación automática
de atributos faciales. Además, como se muestra en la Figura 2.11 y como se
ha comentado previamente, es una arquitectura que se puede adaptar para la
extracción de cualquier atributo facial de forma automática.
Otro aspecto que no puede pasar desapercibido en el procesamiento de imá-

genes es todo lo relacionado con la seguridad. Para esto, son varios aspectos los
que se deben tener en cuenta para que sea lo más seguro posible.
El primero de estos aspectos es la identificación facial. Además de proporcionar

mecanismos de seguridad a una aplicación de monitorización de usuarios, per-
mite una personalización de la aplicación en función de los gustos y preferencias
de un terminado usuario. Además, los sistemas de procesamiento de imágenes
presentan ciertas vulnerabilidades de seguridad. Una de las más importantes es
lo que se conoce como spoofing. En términos de seguridad de redes, este término
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hace referencia al uso de técnicas a través de las cuales, un atacante, general-
mente con usos maliciosos, se hace pasar por una entidad distinta a través de la
falsificación de los datos en una comunicación. Los sistemas de procesamiento
facial son vulnerables a los ataques de tipo spoofing. Esto puede ocurrir cuando
una persona presenta una fotografía de la persona deseada a la cámara en lugar
de la suya propia, presentado un gran problema, pues es relativamente fácil y
sencillo hacerse con una fotografía para ser usada a posteriori. Basado en las
premisas anteriores, como siguiente trabajo de la tesis, se propone construir y
validar una arquitectura basada en reconocimiento facial y sistema anti-spoofing
que pueda ser integrado tanto en un videoportero como en una aplicación móvil
adaptado a personas con discapacidad visual [93], que se corresponde con la sex-
ta Contribución de la tesis. Si bien el caso de uso seleccionado es tremendamente
interesante, el objetivo de integrar tanto el sistema de reconocimiento facial co-
mo el sistema anti-spoofing en un videoportero y en una aplicación móvil es el de
conseguir unos algoritmos que conjuguen tanto la robustez como una capacidad
de cómputo contenida para su aplicación posterior en entornos vehiculares. A
continuación, se procede a comentar la publicación antes mencionada.
El reconocimiento facial ha recibido muchas mejoras en los últimos años y

hoy en día se acerca a la perfección. Los avances en el reconocimiento facial
no han sido ajenos a las personas con discapacidad. Por ejemplo, recientemente
se ha presentado un bastón inteligente para ciegos que utiliza reconocimiento
facial [94]. Sin embargo, además de realizar la tarea del reconocimiento, actual-
mente, los sistemas biométricos tienen que lidiar con otro tipo de problemas,
como el spoofing. La arquitectura propuesta se ha validado con usuarios reales y
en un entorno real simulando las mismas condiciones que se podrían dar tanto
en las imágenes capturadas por un videoportero como las imágenes capturadas
por una persona con discapacidad visual por medio de su dispositivo móvil. El
problema del reconocimiento facial adaptado a las personas con discapacidad
visual ha sido investigado en sus diferentes formas. A continuación, se resumen
los trabajos más importantes, indicando para cada uno de ellos las característi-
cas más importantes que han ido influyendo en el desarrollo de la arquitectura
aquí propuesta. En [95] se presenta un sistema de reconocimiento facial en dis-
positivos móviles para discapacitados visuales, pero se centra principalmente en
reuniones, con lo que aspectos como el campo visual capturado por el dispositi-
vo móvil centran gran parte de la temática. En [96] se desarrolló un sistema de
reconocimiento facial basado en LBP. Los autores comparan este descriptor con
otras alternativas (Local Ternary Pattern [97] o Histogram of Gradients [98]) y
llegan a la conclusión de que el rendimiento de LBP es un poco superior, su coste
computacional es menor y la representación de la información es más compacta.
En ninguno de estos métodos se lleva a cabo la detección de spoofing, haciendo
que el sistema tenga una vulnerabilidad total ante este tipo de ataques.
Además, ninguna de las alternativas antes comentadas está orientada a los
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videoporteros. Como en ninguno de los casos anteriores se ha estudiado la de-
tección de spoofing para ayudar a personas con discapacidad visual, se procede
a comentar los resultados más significativos en lo que a la detección de spoofing
se refiere.
Existen diferentes aproximaciones para su detección. Sin embargo, uno de los

factores clave en una aplicación que debe funcionar en tiempo real y en un dis-
positivo embebido radica en que el método sea computacionalmente ligero. La
mayoría de los algoritmos propuestos, o bien son muy complejos y, por tanto,
no son aptos para entornos reales, o bien no usan imágenes convencionales (por
ejemplo multi-espectrales o termográficas) [99]. Los algoritmos basados en el
análisis de micro-texturas ofrecen un buen resultado con un coste computacio-
nal relativamente bajo. En [99], se ha aplicado el algoritmo LBP a la detección
de spoofing aplicando dicho operador a diferentes escalas. En [100], se analizan
también diversas variantes del operador LBP para su detección. En [101], tam-
bién aplican el operador LBP para la extracción de características y SVM en
la etapa de clasificación para la detección de spoofing. En [102], se propone una
aproximación muy similar a la anterior, pero incorporan un método para reducir
la longitud del histograma generado por el operador LBP antes de la etapa de
clasificación por SVM. Tanto en [100] como en [101] utilizan una división de la
región facial en 9 regiones (3x3 regiones), pues comentan que es el número de
divisiones que mejores resultados ha generado. Después aplican el operador LBP
en cada una de las regiones y concatenan el histograma generado. Este factor es
tenido en cuenta en la generación del histograma LBP en la Contribución [93].
De manera sucinta, los principales puntos del procesamiento tanto para la

identificación facial, como para la detección de spoofing se pueden ver en la
Figura 2.12 y se comentan a continuación.
La imagen original (a) se convierte a escala de grises y se detectan los puntos

característicos (b). A continuación, se rota para alinearla en función del ángulo
(c). Después, se obtiene la región normalizada (64x64) de la cara (d). Se aplican
3x3 divisiones a la región facial (e) y se construye la imagen LBP (f). En el
siguiente paso, se construye el histograma dadas estas regiones para formar el
vector de características (g). Por último, se clasifica este vector usando ambos
clasificadores (h) para obtener las respuestas finales (i).
Para seleccionar los parámetros del algoritmo, como el número de divisiones

del operador (3x3) y otros adicionales que se pueden ver en la publicación [93],
se realizan unas pruebas preliminares. Los valores seleccionados de estos pará-
metros están en consonancia con otras investigaciones realizadas [100,101,103].
Una vez seleccionados los parámetros del algoritmo, se realizan pruebas durante
5 días consecutivos y con diferentes condiciones de iluminación (por la mañana
y por la tarde). Las pruebas se realizan a la entrada del edificio de la Fundación
CTIC, como puede verse en la Figura 2.13.
Aunque la entrada del edificio no recibe luz directa, es un sitio bastante ilumi-
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Figura 2.12: Principales pasos en el procesamiento de las imágenes para la iden-
tificación facial y la detección de spoofing

nado (ver Figura 2.13). En total se realizan pruebas con 25 usuarios. Se considera
este número como un número suficiente de personas con las que más a menu-
do interaccione una persona con discapacidad visual (familiares, amigos más
próximos, etc). Para validar el sistema de detección de spoofing, se imprimen
fotografías de cada uno de los 25 usuarios. Para cada usuario se validan ambos
algoritmos (reconocimiento facial y detección de spoofing). Para ello, el usuario
se debe situar delante del videoportero. Con el objetivo de que el algoritmo ob-
tenga una buena detección facial, el sistema de tracking facial procesa sucesivos
frames hasta que localiza uno donde las características faciales detectadas estén
simétricas (dentro de unos umbrales). De esta manera, se garantiza que la detec-
ción es frontal y en condiciones para que los algoritmos operen con propiedad.
En caso de que el algoritmo de tracking facial no detecte una detección frontal
por el mecanismo antes comentado, se le proporciona al usuario un comando de
voz para que se sitúe frontalmente al videoportero. A continuación, se resume en
forma de Tabla (ver Tabla 2.4) los principales resultados a los que se ha llegado.
Como se desprende de los resultados, el reconocimiento facial presenta unos

resultados muy robustos. El sistema de detección de spoofing presenta unos
resultados menos robustos, pero aún así son unos resultados bastante buenos.
Cabe destacar que en el cuarto día de pruebas (Día = 4) el tiempo fue bastante
soleado. Se cree que pudo afectar al rendimiento de ambos algoritmos.
Con el objetivo de sacar el máximo partido a la arquitectura, se decidió portar

los algoritmos a la plataforma Android. De esta manera, el usuario con discapaci-
dad visual dispone de una herramienta portable y usable para sus interacciones.
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Figura 2.13: Para las pruebas se selecciona un Lenovo ThinkPad X200 Tablet
que se posiciona encima del videoportero con la webcam en la parte
inferior del mismo. Se puede ver un detalle de la imagen capturada

Algoritmos Día 1 Día 2 Día 3 Día 4 Día 5

Reconocimiento facial 97% 98% 97% 94% 97%
Detección de spoofing 86% 86% 89% 84% 90%

Tabla 2.4: Resumen de los resultados de las pruebas realizadas con 25 usuarios
tanto para el reconocimiento facial como para la detección de spoofing
durante 5 días consecutivos

En el caso de uso de la aplicación móvil, se tienen en cuenta factores adicio-
nales que no necesitaron de estudio en el caso del videoportero, los cuales se
comentan a continuación. Es necesario tener en cuenta que las imágenes captu-
radas son tomadas por personas con discapacidad visual y, como consecuencia,
muchas imágenes pueden presentar ruido, desenfoque, borrosidad y diferentes
condiciones de iluminación. En segundo lugar, es necesario aportar al usuario
información auditiva acerca del estado de la aplicación: si ha detectado a una
persona, si ha perdido el tracking de dicha persona, si la ha conseguido identificar
y, por último, si la identificación ha sido real con el objetivo de proporcionarle
un feedback con el estado de la aplicación, pero sin abrumarle con un exceso de
información innecesaria. El principal punto a tratar es que la persona con dis-
capacidad visual no sabe donde está enfocando su dispositivo. Para solucionar
este factor, se proponen dos medidas:

1. Guía del estado del tracking por medio de pitidos sonoros

2. Analizar varios frames antes de predecir un resultado.
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Dispositivo móvil fps Tpo ejecución (N = 5) Tpo de ejecución aceptable

HTC DESIRE X 1.82 2.75 s SI
LG OPTIMUS L2 1.86 2.69 s SI

WOXTER (TABLET) 0.88 5.68 s NO
SAMSUNG GALAXY Y 0.76 6.58s NO

Tabla 2.5: Tiempos de ejecución para varios dispositivos de gama media/baja

En la primera medida, en caso de que el usuario de la aplicación detecte una
cara, se producirá un pitido. De esta manera, el usuario mantendrá el móvil
en esa posición para ‘mantener’ el tracking y que el algoritmo pueda funcionar
correctamente. Si se pierde el tracking antes de que el algoritmo haya termi-
nado, se producirán dos pitidos que indicarán al usuario que el algoritmo ha
finalizado sin concluir una respuesta. En cambio, si el algoritmo consigue dar
una respuesta al usuario es que ha procesado un número suficiente de frames N,
que se corresponde con el segundo de los puntos indicados antes. Tras realizar
varias pruebas y consultar la bibliografía relacionada, se ha establecido que el
número de frames N que se debe procesar antes de proporcionar un resultado es
de N = 5. Se ha establecido este valor con el objetivo de: (1) proporcionar unos
resultados más robustos; y (2) proporcionar un feedback rápido para mejorar la
fluidez en la interacción. Esto mejorará los resultados en los casos en los que las
imágenes estén borrosas o presenten ruido. Por lo tanto, para cada uno de los
clasificadores (identificador facial y spoofing) se obtienen tanto el identificador
de la clase predicha como el valor de fiabilidad de ésta. Es por ello, que para un
determinado número de frames N, antes de obtener el valor final, se calcula la
clase ganadora, y por tanto, el valor a predecir en función de estos valores de
confidencia. En la Tabla 2.5 se recogen los tiempos de ejecución del algoritmo.
Como se puede observar, se han seleccionado dispositivos móviles y tablets de
gama media/baja disponibles en el laboratorio, pues el objetivo del sistema es
que los algoritmos se ejecuten en dispositivos con baja potencia computacional.
A la vista de los resultados mostrados para la publicación anterior [93], se

puede concluir que éstos han sido muy satisfactorios. Además, comentar que se
han tenido en cuenta conclusiones y elementos claves obtenidos de otras publi-
caciones relevantes con el objetivo de lograr unos resultados más robustos, de
manera que la arquitectura final fuera lo más usable y adaptable a las personas
con discapacidad visual. En la Figura 2.14 se pueden ver dos ejemplos realizados
en el laboratorio tras la ejecución de los algoritmos.
Otro aspecto de seguridad a tener en cuenta es el tema de mantener el ano-

nimato de los usuarios que aparecen en las bases de datos tanto para entrenar
como para validar los sistemas de monitorización de usuarios en entornos vehicu-
lares. El estudio del comportamiento del conductor para evaluar los algoritmos
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Figura 2.14: Ejemplos visuales del funcionamiento de los algoritmos de identifi-
cación facial y detección de spoofing realizados en el laboratorio

Figura 2.15: La de-identificación permite preservar detalles en la imagen man-
teniendo el anonimato del individuo

de monitorización requiere de grandes cantidades de vídeos tomadas en entor-
nos reales [104]. Sin embargo, en la literatura actual existe una falta de bases de
datos disponibles principalmente debido a temas de privacidad y seguridad. En
este punto, en la séptima Contribución [17] se lleva a cabo una revisión de los
métodos más importantes para proteger la identidad del usuario. Estos métodos
están basados en lo que se conoce como de-identification [105]. Un algoritmo
ideal de de-identificación debería, por un lado, mantener el anonimato del usua-
rio, pero, por el otro, debería preservar suficientes detalles en la imagen para
concluir el estado del conductor [104]. En la Figura 2.15 se puede ver la idea que
hay detrás de estos algoritmos.
Una vez completados varios aspectos que se consideran claves para la monito-

rización de una persona a través de técnicas de visión por computador (detección
automática de atributos faciales, identificación facial, detección de spoofing, desa-
rrollo e implementación de arquitecturas en entornos embebidos o seguridad), el
siguiente punto radica en profundizar en aspectos específicos en la detección de
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la inatención en los conductores y en los algoritmos de visión por computador
para establecer y obtener una base de conocimiento cubriendo los aspectos más
importantes para el desarrollo e implementación de sistemas de monitorización
de conductores en entornos embebidos. Todos estos detalles se recogen en la
séptima Contribución de la tesis [17].
En concreto, los puntos sobre los que trata esta Contribución son los siguientes:

Introducción a la detección de la distracción en los conductores

Detección facial y detección de puntos característicos en entornos vehicu-
lares

Distracción visual

Distracción biomecánica

Distracción cognitiva

Combinación de varios tipos de distracción

Relación entre expresiones faciales y distracción

Principales pasos para portar un algoritmo de visión por computador a un
entorno embebido

Entornos simulados versus entornos reales para validar los sistemas de
monitorización de usuarios

Aspectos de privacidad y seguridad en aplicaciones de monitorización de
conductores

Discusión general de resultados

Aspectos futuros a considerar

El propósito de la publicación es el de realizar un análisis del estado del ar-
te relacionado con la detección de la distracción. El ámbito de la publicación,
que se comentó anteriormente de forma resumida, se puede ver también en la
Figura 2.16, en la que se puede apreciar que se lleva a cabo una categoriza-
ción de los diferentes tipos de distracción en los conductores, principalmente
de tipo biomecánico, visual y cognitivo. Además, se realiza una revisión a la
taxonomía existente, destacando los aspectos positivos y haciendo hincapié en
varias carencias detectadas, que es necesario considerar. Además, se realiza una
revisión de las publicaciones existentes que realizan contribuciones importantes
para portar un algoritmo de visión por computador en un entorno vehicular. El
hecho de entrenar y validar un algoritmo de este tipo es otro punto importante
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Figura 2.16: Principales puntos tratados en la séptima Contribución de la tesis

que es tratado. Los problemas derivados de la seguridad, que fueron comentados
previamente, también son contemplados. También se recogen los principales sis-
temas comerciales que realizan la detección de la inatención en los conductores
comentando sus características más destacadas. Cabe decir que no se han en-
contrado publicaciones que realicen una comparación entre sistemas comerciales
y sistemas basados en publicaciones existentes. Todos estos aspectos se tratan
de manera detallada en la publicación anterior.
Puesto que uno de los principales objetivos de la presente tesis es la detección

de la inatención en los conductores utilizando algoritmos de visión por compu-
tador, en la Tabla 2.6 se recogen los principales trabajos para la detección de
la distracción, en la que se tiene en cuenta si el sistema implementado detecta
alguno de los tres tipos de distracción (biomecánica, visual o cognitiva), además
de si el sistema está preparado para operar en condiciones reales y si es capaz
de operar tanto de día como de noche.
Una vez establecida la base teórica, el siguiente punto radica en el de pro-

poner un sistema que detecte tanto la distracción como la somnolencia en los
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Ref Tipos de distracción Real Operación
Manual Visual Cognitiva Día Noche

Zhao et al. [106] 4 8 8 8 4 8
Zhao et al. [107] 4 8 8 8 4 8
Zhao et al. [108] 4 8 8 8 4 8
Zhao et al. [109] 4 8 8 8 4 8
Bosch et al. [110] 4 8 8 8 4 8
Lowe et al. [111] 4 8 8 8 4 8
Yan et al. [112] 4 8 8 8 4 8
Yan et al. [113] 4 8 8 8 4 8

Zhang et al. [114] 4 8 8 8 4 8
Artan et al. [115] 4 8 8 4 4 4
Berri et al. [116] 4 8 8 4 4 8
Xu et al. [117] 4 8 8 4 4 4

Seshadri et al. [118] 4 8 8 4 4 8
Ohn et al. [119] 4 8 8 4 4 8
Ohn et al. [119] 4 8 8 4 4 8

Martin et al. [120] 4 8 8 4 4 8
Martin et al. [120] 4 8 8 4 4 8
Ohn et al. [121] 4 8 8 4 4 8
Ohn et al. [121] 4 8 8 4 4 8

Bergasa et al. [122] 8 4 8 4 4 4
Lee et al. [123] 8 4 8 4 4 4

Vicente et al. [124] 8 4 8 4 4 4
Cyganek et al. [125] 8 4 8 4 4 4
Donmez et al. [126] 8 4 8 8 4 8
Klauer et al. [11] 8 4 8 8 4 8

Kircher et al. [127–129] 8 4 8 8 4 8
Victor et al. [130] 8 4 8 8 4 8
Zhang et al. [131] 8 8 4 8 4 8
Zhang et al. [131] 8 8 4 8 4 8
Zhang et al. [131] 8 8 4 8 4 8
Zhang et al. [131] 8 8 4 8 4 8
Liang et al. [132] 8 8 4 8 4 8
Liang et al. [132] 8 8 4 8 4 8
Liang et al. [132] 8 8 4 8 4 8
Liang et al. [133] 8 8 4 8 4 8
Miyaji et al. [134] 8 8 4 8 4 8
Miyaji et al. [134] 8 8 4 8 4 8
Miyaji et al. [134] 8 8 4 8 4 8
Yang et al. [135] 8 8 4 8 4 8
Yang et al. [135] 8 8 4 8 4 8
Liu et al. [136] 8 8 4 8 4 8
Li et al. [137] 8 4 4 8 4 8

Craye et al. [138] 4 4 8 8 4 8
Liu et al. [139] 8 4 4 8 4 8

Ragab et al. [140] 4 4 8 8 4 8

Tabla 2.6: Aproximaciones para la detección de la distracción en los conductores
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conductores, por ser los tipos de inatención que más mortalidad ocasionan. Todo
esto se aborda en la octava (y última) Contribución de la tesis doctoral [141].
En ella, se propone una arquitectura de procesamiento especialmente diseñada
para operar en entornos vehiculares, con una carga computacional muy baja
y fácilmente integrable en dispositivos con reducidas capacidades de cómputo,
capaz de lidiar con distintas condiciones de imágenes muy presentes en este tipo
de entornos.
El sistema se validó, en primer lugar, con bases de datos de referencia testean-

do los diferentes módulos que la componen. En concreto, se detecta la presencia
o ausencia del conductor con una precisión del 100%, 90.56%, 88.96% por me-
dio de un marcador ubicado en el reposacabezas del conductor, por medio del
operador LBP, o por medio del operador CS-LBP, respectivamente. En lo que
respecta a la validación mediante la base de datos CEW [142] para la detección
del estado de los ojos, se obtiene una precisión de 93.39% y de 91.84% utili-
zando una nueva aproximación basada en LBP (LBP_RO) y otra basada en
el operador CS-LBP (CS-LBP_RO). Tras la realización de varios experimentos
para ubicar la cámara en el lugar más adecuado, se posicionó la misma en el
salpicadero, pudiendo aumentar la precisión en la detección de la región facial
de un 86.88% a un 96.46%. Las pruebas en entornos reales se realizaron durante
varios días recogiendo condiciones lumínicas muy diferentes durante las horas
diurnas involucrando a 16 conductores, los cuales realizaron diversas actividades
para reproducir síntomas de distracción y somnolencia. Dependiendo del tipo de
actividad y su duración, se obtuvieron diferentes resultados. De manera general
y considerando de forma conjunta todas las actividades se obtiene una tasa me-
dia de detección del 93.11%. En resumen, la principal contribución es el hecho
de presentar una solución completamente autónoma para detección de distrac-
ción y somnolencia pues son dos de los tipos en la inatención que más accidentes
ocasionan. Además, dicha solución presenta las siguientes características:

1. detección automática de la presencia del conductor en el entorno vehicular
para dirigir el flujo del algoritmo

2. detección facial adaptada al entorno vehicular

3. normalización facial para enfrentarse a características de imagen difíciles

4. detección rapida y robusta de distracción

5. detección rápida y robusta de somnolencia

De manera gráfica, en la Figura 2.17, se incluyen los principales puntos del sis-
tema propuesto en esta octava Contribución de la tesis [141]. En ella se puede ver
cómo interactúan los diferentes módulos para concluir el estado del conductor.
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Figura 2.17: Principales puntos del sistema propuesto para la detección tanto de
la somnolencia como de la distracción en conductores

La comparación mediante datasets y bases de datos disponibles para la com-
paración de los diferentes algoritmos, como puede ser la base de datos CEW en
este caso, permite una comparación ‘justa’ entre las diferentes aproximaciones.
En este sentido, de los resultados desprendidos tras la realización de la validación
de los módulos que componen el sistema con diferentes bases de datos, se puede
decir que los diferentes módulos se comportan de forma robusta. La detección
de ausencia del conductor por medio de un marcador es un método simple y
efectivo para detectar si el conductor está presente en el puesto de conducción.
Hasta donde se sabe, se trata de la primera publicación que propone la detección
del conductor por medio de un marcador ubicado en el asiento. De los resultados
obtenidos tras la ejecución de las pruebas en entorno real controlado, se puede
deducir que se detecta con bastante precisión los eventos de distracción y somno-
lencia, obteniéndose los resultados mas elevados para la detección del estado de
los ojos. El hecho de que el conductor lleve gafas en el momento de las pruebas
ocasionó que la tasa de reconocimiento se decrementara aproximadamente en un
2%. Por otro lado, la posición de la cámara juega un papel fundamental, pues
la detección facial es el punto principal sobre el que pivota el resto del sistema.
Esto es así porque los algoritmos de detección facial están entrenados con caras
con una determinada pose para poder ser detectadas de frente o de perfil. Así
pues, las caras capturadas en la imagen desde el interior vehicular deben tener
una apariencia similar a aquellas con las que fueron entrenadas. Si la cámara se
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sitúa en el salpicadero en frente del conductor, se puede incrementar la detección
facial en, aproximadamente, 8 puntos porcentuales respecto a si la cámara está
en el espejo retrovisor (de un 86.88% se puede pasar a un 96.46%), lo cual está
en consonancia con otros trabajos, que establecen que el salpicadero es el mejor
lugar para la ubicación de la cámara ( [143–145]).
El grado de detección facial logrado con la ubicación final de la cámara y

utilizando el algoritmo de detección facial antes comentado, es superior al de
todos los trabajos analizados ( [145–151]). Puesto que el resto de la arquitectura
de estos sistemas trabaja sobre la detección de la cara del conductor, este es un
factor determinante.
Además, el Algoritmo de Viola & Jones es frecuentemente usado por su facili-

dad de uso y por sus resultados más o menos robustos. En los trabajos analizados
( [145–151]) es usado como detector facial, lo que puede conllevar alguna restric-
ción en el procesamiento. Por ejemplo, en [148], con el objetivo de satisfacer los
requisitos de ‘tiempo real’, se vieron obligados a bajar la resolución a 320× 240
píxeles, lo que no ocurre en el sistema aquí propuesto.
Como conclusiones a esta publicación, existen básicamente dos limitaciones

en el sistema propuesto. El primero de ellos es que está orientado como sistema
para la detección tanto de la distracción como de la somnolencia en condiciones
diurnas. El sistema se debería completar con los algoritmos adecuados para con-
templar condiciones nocturnas para ofrecer un funcionamiento ininterrumpido.
Por otro lado, y relacionado con la detección de la distracción visual, el sistema

utiliza lo que se conoce como una aproximación coarse, lo que podría suponer
alguna limitación en alguna situación muy concreta. Por ejemplo, cuando el
conductor esté realizando una tarea secundaria que involucre intervención vi-
sual, en la que presente una orientación en la cabeza detectada por el algoritmo
de tracking como de distracción, pero pudiendo alternar de manera continua
y constante la mirada entre la carretera y el foco de atención de dicha tarea
secundaria.
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Conclusiones y trabajo futuro
La conducción requiere de una gran concentración y cualquier descuido puede

provocar un accidente. Los accidentes de tráfico representan actualmente la no-
vena causa de muerte, de los cuales, muchos son provocados por la inatención,
pues se calcula que ocasiona entre el 25% y el 75% de los accidentes y casi-
accidentes. La inatención se ha convertido en un campo muy estudiado, donde
los sistemas de visión por computador se han posicionado como una forma no
intrusiva y eficaz para la detección de la inatención.
La presente tesis doctoral se ha centrado en la detección de la inatención de

los conductores mediante el reconocimiento de atributos faciales haciendo uso
de la visión por computador. Para llevar a cabo el objetivo principal antes co-
mentado, se identifican, en primer lugar, un conjunto de objetivos particulares
los cuales es necesario abordar a lo largo de todo el Plan de Investigación. A tal
efecto, se han presentado ocho Contribuciones, que van planteando soluciones y
respuestas a los mencionados objetivos. Los resultados obtenidos de las Contri-
buciones concluyen que es posible plantear una arquitectura de procesamiento
capaz de recoger los principales signos que caracterizan a un conductor inatento
y procesarlos mediante algoritmos de visión por computador para ser embebidos
en un dispositivo con bajas capacidades de cómputo. En concreto, los principales
resultados se mencionan a continuación de manera concisa haciendo referencia
a la publicación que los aborda con mayor profundidad:

Tras analizar la diversa bibliografía, se determina que la inatención es la
causa que más muertes ocasiona en accidentes de tráfico. Además, con el
auge de los dispositivos móviles, el problema se ha visto agravado en los
últimos años. En España, el número de fallecidos en 2016 en carretera
acaba con 13 años de descenso de víctimas [SENSORS2016].

La distracción, somnolencia y, en general, la inatención han sido inco-
rrectamente definidas en muchas publicaciones. Actualmente, se proponen
taxonomías donde se empiezan a vislumbrar reglas claras para la categori-
zación de estos conceptos. Sin embargo, existen deficiencias en la clasifica-
ción de la inatención y es necesario contemplar y recoger varios aspectos,
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tales como el prejuicio de retrospectiva (hindsight bias) y la dinámica de
la distracción [SENSORS2016].

Se han analizado y recogido, en función de diversos criterios, los princi-
pales métodos para la detección de la inatención en los conductores. De
forma resumida (se puede consultar la Figura 1.3), existen cuatro tipos: 1)
métodos basados en el análisis del comportamiento vehicular, 2) métodos
basados en el análisis de variables fisiológicas por medio de sensores, 3)
métodos basados en el análisis de variables fisiológicas por medio de visión
por computador, y 4) métodos basados en el análisis de características
visuales [RIAI2017].

En función de las publicaciones analizadas, los métodos de visión por
computador se han posicionado como uno de los métodos más adecua-
dos para caracterizar el estado del conductor debido a su baja intrusión en
la conducción, por el potencial que presentan y por el auge del hardware
necesario para llevarlos a cabo [SENSORS2016].

Se ha llevado a cabo un estudio exahustivo donde se analizan los princi-
pales métodos basados en visión por computador para la detección de la
distracción, clasificados en función de diversos criterios: tipos de distrac-
ción (manual, visual o cognitiva), si han sido validados en entornos reales,
o si con capaces de operar tanto de día como de noche [SENSORS2016].

Se han clasificado y analizado los principales algoritmos de tracking facial
para entornos vehiculares, pues son el primer paso en los sistemas de moni-
torización de los conductores. Dichos algoritmos presentan características
diferentes, pudiendo requerir en su operación de una o varias cámaras co-
locadas a lo largo del habitáculo para poder capturar con mayor robustez
el rango de movimientos de la cabeza del conductor [SENSORS2016].

Se han clasificado y analizado los principales métodos para la la detección
automática de los principales atributos faciales (género, edad, emoción,
identificación, etnia) basados en el operador LBP para la etapa de extrac-
ción de características y de SVM en la etapa de clasificación [SMARTMI-
LE2013].

Se han clasificado y analizado los principales métodos para la la deteccion
automática de gafas en imágenes faciales [MVAA2015].

Se han propuesto y validado mejoras en la clasificación automática de
atributos faciales para lidiar con aspectos como la pose, el escalado o la
rotación en imágenes faciales, lo que permite aumentar la robustez final de
los algoritmos. Estas mejoras están aplicadas a la clasificación automática
de las gafas [MVAA2015].
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Se ha analizado como influye la resolución de la imagen en la detección
final del algoritmo para un atributo en concreto (detección de gafas), en-
contrándose una relación entre ambos factores [MVAA2015].

Se ha analizado como influye el número de divisiones del operador LBP
en la creación del vector espacial extendido y su posterior influencia en el
la clasificación final del algoritmo para un atributo en concreto (detección
de gafas)[MVAA2015].

Se ha validado el potencial de los algoritmos para la extracción automática
de variables fisiológicas a partir del procesamiento de imágenes para su
aplicabilidad en entornos vehiculares [CITS2015,JON2017].

Se ha propuesto un método para la automatización de los sistemas de
monitorización de los conductores, mediante la inclusión de un marcador,
o bien mediante algoritmos de aprendizaje automático [RIAI2017].

Se han analizado los principales factores a tener en cuenta para la imple-
mentación de los algoritmos de visión por computador en entornos vehi-
culares [SENSORS2016].

Se ha investigado en arquitecturas de streaming de datos para el procesa-
miento de grandes volúmenes de imágenes en tiempo real [FIOT2015].

Se han recogido los principales requerimientos en cuanto a la seguridad,
investigando y proponiendo algoritmos para la identificación facial, la de-
tección de spoofing y un análisis de los principales métodos en la de-
identificación de imágenes a incluir en las bases de datos para la com-
paración de los algoritmos [IEEELAT2016,SENSORS2016].

La presente tesis, por tanto, intenta recoger los signos de inatención del con-
ductor. Sin embargo, la visión por computador también se podría usar para
obtener, no sólo la información de dentro del vehículo, sino también la informa-
ción de lo que ocurre fuera del habitáculo. El paso final radicaría en fusionar la
información "out" y la información "in" para una caracterización completa del
estado del conductor. Además, esta tesis se centra en la obtención de información
"puramente" visual, pero se podría completar con la información procedente de
los sensores existentes tanto en los dispositivos móviles como en los vehículos.
Estos puntos antes comentados se consideran los principales aspectos futuros a
tratar y, comentados en detalle en la Contribución de la tesis [17], se exponen a
continuación en aras de la exhaustividad.
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3.1. Aspectos futuros a considerar
Como se ha comentado en la Introducción, el hecho de usar sensores ya dis-

ponibles en los vehículos para analizar el comportamiento del conductor es una
alternativa interesante a los sistemas basados en visión por computador [27,152].
Sin embargo, estos sistemas no se deberían tratar como diferentes alternativas,
sino que la información debería ser fusionada para obtener unos resultados fina-
les más robustos [153].
Además, las técnicas de visión por computador pueden ser usadas para obte-

ner, no sólo información del interior del habitáculo, sino también para extraer
información de fuera del mismo, como por ejemplo: caracterización del tráfico,
peligros en la carretera, peatones, condiciones externas, intersecciones, o posi-
ción relativa de otros vehículos. En este sentido, existen algunos trabajos que
intentan recoger ambos tipos de información, pero en muchos casos se restringen
a aspectos muy concretos [154–159], con lo que todavía hay margen de mejora
debido, por un lado, al avance de los algoritmos de visión por computador, y por
otro, al avance en el hardware disponible, principalmente cámaras con mejores
prestaciones y unidades de procesamiento más potentes.
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Difusión de la tesis doctoral
En este capítulo se adjuntan las publicaciones que conforman la tesis doctoral.

Conviene destacar que se incluyen tanto los artículos publicados en medios con
impacto, como son revistas indexadas en el JCR o similares, así como artículos
presentados en congresos de menor relevancia. No obstante, estos últimos permi-
ten ampliar la visión general de la labor investigadora llevada a cabo durante la
realización de la tesis doctoral, por lo que su inclusión puede considerarse obli-
gada para entender apropiadamente el alcance de la misma. Adicionalmente, se
incluyen tanto la información referente a la calidad como el factor de impacto
de las publicaciones que componen la tesis doctoral. En la Figura 4.1 se puede
ver la clasificación de las publicaciones.
Además, se incluyen las citas realizadas a los artículos incluidos en la Figura

anterior y mostrados en la Figura 4.2.
A continuación se adjuntan en forma de lista las publicaciones referenciadas

2013 2014 2015 2016 2017

SMARTMILE2013 MVAA2015 JON2017

FIOT2015

IEEELAT2016

SENSORS2016 RIAI2017

Revista JCR

Congresos Internacionales y otras revistas

CITS2015

Figura 4.1: Resumen de las publicaciones
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Figura 4.2: Citas realizadas a los artículos de la presente tesis doctoral. Fuente:
Google schoolar actualizado con publicaciones todavía no indexadas

en la Figura anterior y que se comentarán a continuación:

SMARTMILE2013: Losada, D. G., Lopez, G. A. R., Acevedo, R. G.,
& Villan, A. F. (2013, December). AVIUE Artificial vision to improve the
user experience. In New Concepts in Smart Cities: Fostering Public and
Private Alliances (SmartMILE), 2013 International Conference on (pp. 1-
6). IEEE.

MVAA2015: Fernández, A., García, R., Usamentiaga, R., & Casado, R.
(2015). Glasses detection on real images based on robust alignment. Ma-
chine Vision and Applications, 26(4), 519-531.

FIOT2015: Fernández, A., Casado, R., & Usamentiaga, R. (2015, Au-
gust). A Real-Time Big Data Architecture for Glasses Detection Using
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Computer Vision Techniques. In Future Internet of Things and Cloud (Fi-
Cloud), 2015 3rd International Conference on (pp. 591-596). IEEE.

CITS2015: Fernández, A., Carús, J. L., Usamentiaga, R., Alvarez, E.,
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Abstract—Users require specialized and specific services in-
creasingly. In this paper a vision-based system to personalize and
specialize services is proposed. Attributes such as gender, age,
ethnicity, emotion and identity can be acquired using computer
vision techniques by employing state-of-the-art algorithms. In
this way, user attributes are captured in an automated and non-
intrusive way. In order to test the presented solution, current
open data available for cities is used. In particular, data provided
by the city of Gijón is taken into account. Thereby, personalized
services can be developed in order to provide better information
to the user. Data is captured in strategic locations with no impact
on the urban furniture with the aim of collecting users’ informa-
tion on a non-intrusive way and develop new services tailored to
the users’ profile. The proposed system is complemented with a
gestural user interface in order to achieve a more relaxed and
natural man-machine interaction. Index Terms—Personalization,
Natural Interaction, User attributes, Emotional Design, Senseable
City

I. INTRODUCTION

Personalization involves a process of gathering user-
information during interaction with the user. This information
is then used to deliver appropriate content and services, tailor-
made to the users’ needs. So the aim of personalization is
to improve the users’ experience of a service. Personalization
can be described as being about “building customer loyalty
by building a meaningful one-to-one relationship” [1]. Users’
satisfaction is the ultimate aim of personalization. It is moti-
vated by the recognition that a user has needs, and meeting
them successfully is likely to lead to a satisfying relationship
and re-use of the services offered. Beyond the common goal,
however, there is great diversity in how personalization can be
achieved. Information about the user can be obtained in many
different ways [2]:

• Directly (survey). This is an explicit method where the
system asks the user to express preferences or choices
explicitly and uses this feedback to build a user profile
and make recommendations accordingly.

• From a history of previous sessions (implicit method).
This data is used to build consumer profiles. The profiles

should include the information describing who the consumers

are and how they behave in a way that is more relevant for
the particular personalization application(s)/service(s).

However, due to the static nature of gathering this informa-
tion, dynamic information cannot be obtained. For example,
the emotion of one user is an important aspect to take into
account. A personalization system sending too much feed-
back to the user is intrusive and often irritating. Therefore,
minimizing intrusiveness is usually desirable. Another key
point to take into account is that although consumers want
personalized services, they may be unwilling to provide some
of the personal information needed to improve the system
ability to make recommendations.

In this research, a way of obtaining users’ attributes avoiding
intrusiveness and using dynamic information is proposed.
Attributes such as gender, age, ethnicity, emotion and identity
can be acquired using computer vision techniques.

The proposed system is complemented with a complete ges-
tural user interface in order to make the interaction efficient,
natural and satisfying for the user.

In order to validate the current approach, it is expected to
use the open data provided by Gijon Town Council for the
customization of services. Gijon keeps on with the idea of
becoming a smart city developing smart services for citizens,
improving environmental sustainability, energy efficiency in
the use of facilities and infrastrucures, and in general, life
quality. Nowadays there are 423 datasets published by the
Gijon Town Council which can be used by the citizens.

It is believed that the benefits taken by the current approach
will be:

• The promotion of innovative products and services by
contributing to the social and economical development
and employment.

• The contribution to improve citizens’ life quality by
means of more efficient and personalized services.

• The improvement of citizens’ involvement and participa-
tion in the town affairs.

• The promotion to open new datasets by companies and
individuals that want to expose their data.

• The acceleration to become a smart city.978-1-4799-2911-5/13/$31.00 c©2013 IEEE



II. RELATED WORK

A. Similar initiatives

Open data is a philosophy and practice which aims to
make certain data available to all, using free, open, accessible
and standard formats. New services can be created fostering
innovation by exposing and reusing this data.

Moreover it improves transparency on governance and pro-
motes interoperability and interaction between administrations.

There are multiple initiatives both at national and inter-
national levels focusing on generating added value through
reuse of open data. Basque Government became the first
Spanish authority to make the public data in its possession
available on a specific Internet portal. This resulted in the
development of applications such as mini-dictionaries from
translation memories, or lists of grants and subsidies offered by
the Basque government itself. Aporta project, born in October
2008 in the framework of the Avanza Plan, has provided,
among other services, customized weather forecasts and col-
lections of laws with national and international jurisprudence
ready to be consumed by citizens. Open Data in Zaragoza.
Providing initiatives in Facebook to geotag public schools.
This action has been awarded the Idezar (EUROGI Award /
eSDI-Net). Open Data in Catalonia is another example. Very
useful services based on geolocation functions are developed.
Weather forecast, real time traffic incident information in
Catalonia and tourist accommodation are examples of mobile
services based on Generalitat open data. Similarly, there are
many international initiatives on reuse of open data.

One of the prominent examples in the world is the Open
Data San Francisco initiative. Data is offered in several
formats: drawings, tables, graphs, links to external sources,
etc. This data is provided by public and private organiza-
tions, and is enriched with opinions or comments of portal
users. The data can be also be queried using smartphones
applications (apps). Some of this apps include information
about criminology (“Score Neighborhood”, “alerted”, “Are
You Safe San Francisco”, “CrimeReports”, or “CrimeMapping
SpotCrime”), restoration and what to eat (“Landmarks: San
Francisco”, “SF Way”, “SparkleDine”), education such as the
aforementioned “Score Neighborhood” offering different data
about neighborhoods of the city, surroundings, environment
and recycling (“Open City Agora”, “Ecofinder”), maps and
transport (“Parkzing” to locate parking, “Smart Ride” to locate
urban transport, “SFFILMSPOTS” with offers for recreation
and culture), news like “Everyblock” and politics like “HowS-
FVotes” that shows historical information of San Francisco
election results since 2004, etc. Other international initiatives
like “Toilet Map” app developed in the UK to locate public
toilets, apps about bicycle accidents in CA, crime map in UK,
Buses in Real Time in Gijon, “Where do you live?” in the
UK, “Health” in the US, can be cited.

Regarding the use of computer vision techniques to develop
new services for the citizen, the initiative of the Zaragoza
City Council can be cited. There is an implementation of a
system for the detection of queues at traffic lights. Cameras are

installed to use computer vision techniques to obtain the queue
measure of cars that are waiting. Each time a traffic lights
is closed, it calculates the accumulated cars, and this allows
adapting the traffic lights to avoid long traffic jams. Computer
vision systems are also used in exhibitors for advertisement
purposes.

However, as far as authors know, there is no initiative
that combines the reuse of open data with artificial vision
techniques in order to provide enhanced services to users.

B. User Experience and emotions

The user experience is any aspect of a person’s interaction
with a system, which results in the generation of a positive or
negative perception of the service it offers. This experience not
only depends on traditional design factors (hardware, software,
graphic design, content quality ...), it also depends on desirable
or undesirable aspects induced in the user.

The emotional interface design is oriented to create a bond
between the user and the system or product so the interaction
creates a pleasant experience. The user interface must be
useful, usable, desirable, valuable, believable and accessible
[3].

Besides, the user is the main element related to the design
of the system. Designers have to work trying to make products
with a clear idea about what the user needs and likes, instead
of making products without a specific final user. It is well
known that ergonomics is the origin of usability, because its
goal is effectiveness and efficiency, as well as the welfare and
health of the user. The effort is to adapt work to people, so that
systems and devices can adopt their way of thinking, behaving
and working. Thus, an experiential and emotional imprint in
people with meaning to them can be generated. The content
must be intelligible at a cognitive level, otherwise it can
generate frustration in the subject creating negative emotions
and thereby reducing the chances of future interaction.

When the subject cognitively understands the product in-
terface, he can learn to use the system easily and effectively.
The desire to achieve a better experience to the user ends up
in more efficient interfaces.

Considering the emotional factor in the design, makes
possible that products labeled as smarts” reach a higher degree
of humanization and achieve a higher level as a “senseable”
product.

C. Open Data Catalog

The goal of the action plan promoted by the City Council
of Gijon is to make the information generated and managed
by the City Council available to the citizens. This project will
show transparency and will provide the basis to improving
citizen’s participation. This initiative is also aimed at pro-
moting innovation, facilitating the creation of new services
or adding value to existing ones and enabling new business
models for companies. This will benefit both businesses and
users, as users will have new high value useful services.
Gijon City Council is committed to an effective aperture
of this public data provided under open property licenses



that allow redistribution, reuse and its use for commercial
purposes. The data catalog provided by the city council
currently has a total of 423 datasets organized by sectors,
among which are: science and technology, law enforcement,
culture and leisure, demographics, sport, economy, education,
employment , energy, finance, information, administration
information, environment, transport, tourism, health, public
sector, security, urban planning and infrastructure. Society of
new generation has become more selective, more critical and
with the ability to access a greater volume of information.
However, the information is globalized and each individual
looks for something in particular, according to his likes and
emotions. This information could be enriched and customized
to each person using attributes and emotional state extracted by
means of a computer vision system. Some of the datasets are
susceptible to be improved if they are reused in conjunction
with computer vision techniques and thus provide greater value
to the user.

With this initiative, there are some data sets prone to be
enriched with artificial vision techniques to generate added
value to the final services such as datasets related to tourism
and information sectors. Thus, within the tourism sector should
be noted the following datasets: wine and tapas, gourmet
shops, bakery, cafes, shops, casinos, lodging, accommodation,
village houses, hostels, hotels and rural hotels. These datasets
are the most susceptible to improve in terms of customizing
because they are related to tastes, preferences and dynamic
information.

D. Vision-based algorithms to obtain users’ attributes

A high degree of accuracy is needed in order to get users’
information. Attributes such as gender, age, ethnicity, emotion
and identity can be acquired using computer vision techniques
by employing state-of-the-art algorithms in a non-intrusive
way. Local Binary Pattern (LBP) operator [4] is a type of
feature that is commonly used to get the face information.
The face image is divided into several regions from which the
LBP feature distributions are extracted and concatenated into
an enhanced texture vector to be used as a face descriptor. The
classification is usually performed by using Support Vector
Machines (SVMs), which had been shown to be superior to
traditional pattern classifiers in these classification problems.

This simple but efficient approach is widely being used
for attribute recognition. Reference algorithms based on Local
Binary Pattern and Support Vector Machine (most of them)
are listed on Table I. Therefore, these approaches are used
to build the classifiers in order to get the users’ attributes.
Information about how these classifiers are built, classes of
each one, images used for training and another additional
details can be seen on next section.

E. Gesture recognition for human-computer interface interac-
tion

An intelligent and efficient human-computer interface must
recognize motion by a human, involving hands, arms, face,
head and/or body in real time [14]. A gesture can be seen as

TABLE I: Attributes and related work

Attribute Results
Gender Makinen et al [5]

FERET images without normalization:
LBP + SVM: 75.56% (without hair) 72.19% (with hair)
FERET images with normalization:
LBP + SVM 80.56% (without hair) 92.00% (with hair)
WWW images with normalization:
LBP + SVM 75.32% (without hair) 76.71% (with hair)
Lian et al [6]
CAS-PEAL face database:
LBP + SVM: 96.75%
Shan et al [7]
LFW database:
LBP + SVM: 89.78% (female) 95.73% (male)
LBP + Adaboost: 91.98% (female) 95.98% (male)
Boosted LBP + SVM : 92.02% (female) 96.64% (male)
Yang et al [8]
Real AdaBoost(LBPH) 3.68% (error on 5 fold-cross
correlation on snapshot dataset) 6.7% (error on FERET
for testing) 8.9% (error on PIE for testing)

Age Yang et al [8]
LBP + Adaboost: 6.82% (error on 5 fold-cross correlation
on snapshot dataset) 7.88% (error on FERET for testing)
12.5% (error on PIE for testing)

Ethnicity Yang et al [8] 2-class: Asian/Non Asian
LBP + Adabppst: 3.01% (error on 5 fold-cross correlation
on FERET and snapshot datasets) 6.8% (error on PIE for
testing)
Lyle et al [9] 2-class: Asian/Non Asian
LBP + SVM: 91% on FRGC face dataset on 5-fold cross
validation using periocular images

Emotion Shan et al [10] 6-class / 7-class (including neutral face)
LBP + Template Matching (10-fold cross-validation):
84.5% (6-class), 79.1% (7-class)
LBP+SVM (10-fold cross-validation): 87.2% (linear ker-
nel) 88.4% (polynomial kernel) 87.6% (RBF kernel)
Shan et al [11]
LBP+SVM: Train with CohnKanade and Test with MMI
50.8% (linear kernel) 50.8% (polynomial kernel) 51.1%
(RBF kernel)
LBP+SVM: Train with CohnKanade Test with JAFFE
40.4% (linear kernel) 40.4% (polynomial kernel) 41.3%
(RBF kernel)

Identitfication Woodard et al [12]
LBP + histogram comparison: left eye 0.9%, right eye
0.9% (using periocular region)
LBP + histogram comparison: 0.92% (using full face
images)
Ahonen et al [13]
LBP + histogram comparison: 0.76% (mean of different
tests with FERET database)

Attributes and references

a piece of raw or processed sense data that corresponds to an
instance of human motion [15].

For the sensing technology there are different approaches:
camera, accelerometer [16], [17], or touch screen. With Mi-
crosofts launch of Kinect in 2010, and release of Kinect SDK



in 2011, camera sensing technology has been widely used
exploring new ways in human-computer interaction. There
are also different approaches for the gesture recognizer. The
most commonly used are: Dynamic time warping (DTW) and
Hidden Markov Models (HMM).

DTW can significantly outperform HMMs when the number
of pre-classified gestures is very low (5 or less) [18]. With a
sufficient number of pre-classified gestures, the accuracy of
both methods is approximately equal [15]. DTW has been
widely used due to its simplicity and facility of modification
in order to increase its robustness [19], [20].

DTW is a template matching algorithm that warps a time
sequence of joints to reference time sequences and is able
to cope with different speeds. This advantage is suitable for
dynamic gestures, but its a limitation regarding static gestures.
If a user is required to hold a certain pose for a given time (2
sec), DTW is not the right method to do it due to its intrinsic
design concerning different speeds. Therefore, a static gesture
recognizer is added to alleviate this limitation. A complete
but simple gesture recognizer is proposed to deal with both
static and dynamic gestures for a human-computer interaction.
Details on next section.

III. SYSTEM

A. Architecture of the application

The ultimate goal regarding the hardware design of the
prototype that combines artificial vision and open data reuse
is the non intrusion of the device in the ecosystem of the
city. From this point of view, the system will not require
a specific place within the Smart City. This prototype is
intended to be implanted in everyday systems, leveraging the
existing infrastructure of the Smart City. Therefore, it is not
required to design a specific structure that could disturb the
aesthetics of the city. Thus, the only hardware requirements
are a graphic display with suitable dimensions, a camera to
capture a constant stream of video to recognize gestures and
user attributes and a computer system able to process all
information received from the previous system. The screen
is the link between the citizen, urban environment and open
data. Through it, the user could have a completely satisfying
experience.

B. Attribute recognition

Local Binary Pattern operator (LBP) [4] is one of the best
texture descriptors and it can be used for face description. The
idea of using LBP for face description is motivated by the
fact that faces can be seen as a composition of micro-patterns
which are well described by such operator [13]. The facial
image is divided into local regions and texture descriptors are
extracted from each region independently. The descriptors are
then concatenated to form a global description of the face. The
classification is performed by using Support Vector Machines
(SVMs), which had been shown to be superior to traditional
pattern classifiers in these classification problems [21]. This
approach can be seen in Figure 1.

Male
Adult
Black
Neutral face
Barack Obama

Fig. 1: LBP operator is applied on the normalized face region
and a vector descriptor is obtained. SVM is used to classify
the descriptor

TABLE II: Databases and attributes

Database Attributes

AT&T face Database [22] Gender, Emotion

The Extended Cohn-Kanade Gender, Emotion
Dataset (CK+) [23]

Extended Yale B Database [24] Gender, Ethnicity

FEI face Database [25] Gender

FERET Database [26] Gender, Ethnicity, Age

FG-NET Aging Database [27] Age

Morph Database [28] Age

MPLab GENKI Database [29] Gender, Ethnicity

Indian Face Database [30] Gender, Ethnicity, Emotion

The Japanese Female Facial Gender, Ethnicity, Emotion
Expression Database (JAFFE) [31]

Labeled Faces in the Gender, Age, Ethnicity
Wild Database [32] Emotion

Mug facial expression Database [33] Gender, Age, Emotion

The Images of Groups Dataset [34] Gender, Age, Emotion

Classifiers are trained with face images obtained from
reference databases. Details about what databases are used and
images obtained to train every classifier can be seen on Table
II. Classes and number of images for every classifier can be
seen on Table III.

C. Complete gesture recognizer

Microsoft Kinect sensor is used to obtain joint positions.
Kinect SDK tracks 3D coordinates of 20 body joints in real
time. Common gestures used in human-computer interaction
(Right hand push up, Left hand push up, Right hand pull down,
Left hand pull down, Right hand swipe left, Left hand swipe
right, Right hand wave and Left hand wave) can be effectively
identified using only 6 joints [19], [20]. These 6 joints (left



TABLE III: Attributes, classes and number of images

Attribute Id Classes Total of images

Gender 2 (Male/Female) 3000

Age 3 (Young/Adult/Old) 5000

Ethnicity 3 (White/Black/Asian) 5000

Emotion 7 (Seven basic emotions) 7000

Identity 100 (100 different people) 2000

Classification

...

... ...

Decision Maker

Pose Preprocessed 
step

Dynamic 
Gesture 

Recognizer

Static Gesture 
Recognizer

Gesture 1

Fig. 2: Static and dynamic gesture recognizer

hand, right hand, left wrist, right wrist, left elbow and right
elbow) generate a feature vector of 18 components.

Feature vectors are preprocessed in order to eliminate vari-
ations due to the size of the user or its position in the camera
field of view. Firstly, a subtraction of the shoulder center from
all elements which account for cases where the user is not in
the center of the depth image is performed. Secondly, feature
vector is normalized with the euclidean distance between the
shoulders to account for the variations due to the size of the
user.

After preprocessed step, feature vectors are concatenated to
create the gesture sequence. The gesture sequence is used to
recognize gestures by matching them with pre-stored reference
sequences. Both static and dynamic recognizers are fed with
this sequence. After, a decision maker is applied in order to
get the final gesture. DTW using a weighted distance in the
cost computation is applied because this approach outperforms
classical DTW [19], [20]. A static gesture recognizer is pro-
posed in order to cope with static gestures over time. Euclidean
distance is used to measure the difference between the two
sequences at a given time. The decision maker classifies the

final gesture based on which of the two recognizers has
detected a gesture for a longer time. It can be seen in Figure
2.

D. System location and conclusions

As already mentioned in previous points, the system will
attempt not to have an impact on the environment and ecosys-
tem in the Smart City. There is no need to create a space
exclusively for it; it could be integrated into other existing
urban elements of the environment. Besides having the goal
of not impact the existing ecosystem of Smart City, another
goal is that the user can feel more comfortable when using
the system in well known locations of their daily lives, thus
preventing rejection to the intrusion of a new system in their
space. Given the minimum requirements level of system hard-
ware to run the service, it’s only needed a graphical display
with suitable dimensions and a camera to capture gestures
and user attributes. With these requirements, and analyzing the
typical environments of cities and observing where users often
have long waits on a usual place within the urban space, the
objective is to locate the system initially in bus stops, where
advertising is usually shown. This location allows users to
interact with the system to carry out the experience, without
introducing new architectural elements and in a place where
future users usually have long waits. As a new element in a
known space, it will not cause an initial rejection and will
allow users to practice the personalized experience of this
service that reuses open data of the Smart City.

Through open data and computer vision techniques new
services can be developed to enrich existing ones. This is an
important source of potential growth of innovative online ser-
vices. We believe that introducing computer vision techniques
open data will be transformed into vauable tools and enable
collaborations across sectors in both public and private set-
tings. Therefore, governments, companies and individuals will
take benefit of this approach leading to greater transparency
and innovative reuse of public sector information.
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Abstract Automatic glasses detection on real face images
is a challenging problem due to different appearance varia-
tions. Nevertheless, glasses detection on face images has not
been thoroughly investigated. In this paper, an innovative
algorithm for automatic glasses detection based on Robust
Local Binary Pattern and robust alignment is proposed.
Firstly, images are preprocessed and normalized in order to
deal with scale and rotation. Secondly, eye glasses region
is detected considering that the nosepiece of the glasses is
usually placed at the same level as the center of the eyes in
both height and width. Thirdly, Robust Local Binary Pattern
is built to describe the eyes region, and finally, support vector
machine is used to classify the LBP features. This algorithm
can be applied as the first step of a glasses removal algorithm
due to its robustness and speed. The proposed algorithm has
been tested over the Labeled Faces in the Wild database show-
ing a 98.65 % recognition rate. Influences of the resolution,
the alignment of the normalized images and the number of
divisions in the LBP operator are also investigated.

B Alberto Fernández
alberto.fernandez@fundacionctic.org

Rodrigo García
rodrigo.garcia@fundacionctic.org

Rubén Usamentiaga
rusamentiaga@uniovi.es

Rubén Casado
ruben.casado@treelogic.com

1 Fundación CTIC (Technological Center), Technological
Scientific Park of Gijón, 33204 Gijón, Asturias, Spain

2 Department of Computer Science and Engineering,
University of Oviedo, Campus de Viesques, 33204 Gijón,
Asturias, Spain

3 Treelogic, Technological Scientific Park of Asturias, 33428
Llanera, Asturias, Spain

Keywords Glasses detection · Face alignment · Robust
Local Binary Pattern · Face image processing

1 Introduction

Automatic face recognition is an attractive research issue due
to its great potential in real-life applications. However, robust
face recognition is not a trivial task and occlusions (like wear-
ing glasses) can decrease the performance of an automatic
face recognition system. In some cases, certain glasses can
identify a person or in other cases, act like soft biometrics for
person identification (matrix glasses, U2 glasses). Automatic
gender recognition suffers from the same problems as face
recognition. However, there is certain appearance difference
between men glasses and women glasses, which could help
to distinguish a person’s gender. Even, glasses appearance
between a young person and an older one could improve an
automatic age classification algorithm rather than decrease
its performance. Many security systems require the use of
glasses, their use is mandatory, and intelligent advertising
and marketing could also take advantage of this. Last but not
least, glasses can provide valuable information. For instance,
glasses could reveal the activity a person is doing at a given
time (safety glasses, sport glasses, snow glasses, sunglasses,
underwater glasses, diving mask, reading glasses, eyeglasses,
Google glasses, etc).

Automatic recognition of eyeglasses on facial images
needs a thorough study. Different types of glasses on real
images can be seen in Fig. 1. The inherent appearance
variation on glasses frames, which are even not clearly distin-
guishable (Fig. 1d), makes it a challenging problem. Further
challenges are the different types of glasses: sport glasses
(Fig. (1a, b, h) or sunglasses (Fig. 1g, i), different sizes
(Fig. 1e, f), reflections and glare (Fig. 1c) or rotation of the
face image (Fig. 1d).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Glasses can convey information about the user’s context. Dif-
ferent variations in glasses appearance can be seen. These images are
obtained from LFW database

Summarizing, the main areas that can benefit from an
automatic eyeglasses recognition on facial images would
be the use of safety glasses in security systems, intelli-
gent advertising and marketing, soft biometrics for person
identification, face recognition, gender classification, age
classification, hints of activity detection based on type of
glasses, Google glasses recognition and first step of auto-
matic glasses removal.

The main contributions are summarized as follows. Firstly,
the problem of eyeglasses detection needs an up-to-date
review. Main studies on glasses detection are summarized
and analyzed. Secondly, a LBP-based algorithm is developed
to cope with the glasses detection problem and a simple yet
robust algorithm is proposed in order to deal with face align-
ment normalization. Lastly, (1) influences of resolution of
the image, (2) alignment of faces, (3) number of divisions of
the LBP operator and (4) a performance comparison between
LBP and Robust LBP are analyzed.

2 Related work

2.1 Glasses detection, extraction and removal

Facial image analysis has stimulated increasing interest,
including tasks as face detection, face recognition, facial

expression analysis, demographic classification and other
related topics. Although there are less research papers focus-
ing on glasses detection, there are some studies in this regard
(a short description of the results of main studies on glasses
detection can be seen in Table 1).

In [1], six measures for the likelihood of glasses in dif-
ferent regions for detecting the presence of glasses are
introduced. Furthermore, a combination of them turns out
to consistently improve the performance of the individual
measures. Experiments showed that measure from the region
containing the nosepiece of the glasses is the most power-
ful criterion for glasses recognition. In another work [3],
glasses detection and extraction are proposed. Detection is
carried out using edge information within a small area defined
between the eyes. Detection is similar to the method proposed
in [1]. As mentioned in [1], the nosepiece is one of the most
common features existing on all of the glasses. Extraction
is achieved with a deformable contour, combining edge and
geometrical features. In [11], glasses detection and removal
for face recognition using Bayes rules are proposed. Experi-
ments within a face image database showed that this method
is effective and has a better performance than that proposed
in [3]. Extraction is realized using Bayes rules that incorpo-
rate the features around each pixel and the prior knowledge
on glasses features that were learnt and stored in a database.
Glasses removal is achieved with an adaptive median filter
conducted in the points classified as glasses.

A method that makes use of the 3D features obtained by a
trinocular stereo vision system is proposed in [6] to perform
glasses frame detection with 3D Hough transform. It is based
on the fact that the rims of a pair of glasses lie on the same
plane in 3D space. This method requires more cameras and
computational time than other 2D image-based methods. In
[7], a framework for classifying facial attributes is presented.
Similarity is measured by the reconstruction error motivated
by the Eigenface- based methods, and thus, this paper extends
the Eigenface method by representing each attribute by using
a ‘facial attribute-specific subspace (FASS)’.

Wavelet feature-based boosting methods can also be
applied to glasses recognition [5]. This method was orig-
inated from the work on face detection [9]. The glasses
detectors use a variation of the original boosting algorithm
called real AdaBoost [12]. Authors suggest that the nose-
piece of the glasses frame is an important clue for glasses
detection. An algorithm for eyeglasses detection, localiza-
tion and removal is proposed in [8]. An eye region detector,
trained offline, is used to approximately locate the region
of the eyes and thus the region of the eyeglasses. The loca-
tion of the eyeglasses pattern is defined as twice as big as
the detected eye area. Afterward, eyeglasses localization is
done with a Markov chain Monte Carlo (MCMC) method. A
Delaunay triangulation- based method is proposed to locate
glasses from a front-up face image [13]. They decompose
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Table 1 Results of main studies on glasses detection from face images

Jiang et al. [1] Forerunner algorithm on detection of glasses
in facial images. Results are reported
similar in [2]

Dantcheva et al. [2] Train: FERET database. Test performed on a
testing set of images on FERET database.
Detection rate: 87.7 %. True-positive rate:
7.17 %. False- positive rate: 5.66 %

Jing et al. [3] Tested on a set of 419 people, 151 wearing
glasses under different imaging conditions.
Detection rate: 99.52 %, falsely detecting
the presence of glasses in two facial images

Vaquero et al. [4] 1044 internet images were used for training
(308 sunglasses, 318 eyeglasses, 418 no
glasses). Tested on a surveillance video.
Sunglasses (precision: 85 %, recall: 35 %),
eyeglasses (precision: 90 %, recall: 8.9 %),
no glasses (precision: 77 %, recall: 99.5 %)

Wu et al. [5] 3000 images (1500 wearing glasses and 1500
with no glasses) obtained from FERET
database and world wide web were used for
fivefold cross-validation. Best results were
obtained using gabor boost features.
Accuracy: 98.9 % (98.1 % with glasses and
99.7 % without glasses). They implemented
an automatic glasses detection system
whose input is real-life photographs and the
overall correctness is 94.0 %

Wu et al. [6] 513 facial images of 19 people wearing three
kinds of glasses and nine kinds of pose were
used for training. Detection rate: ≈90 %

Shan et al. [7] 100 face images from Bern face database
were used for training: 50 examples from
five subjects wearing glasses were used to
learn glasses-FASS, and 50 examples from
five subjects no wearing glasses were used
to learn non-glasses-FASS. Tested on 200
images from Bern face database with an
average correct rate of 77 %

Wu et al. [8] They train a detector for the eye region based
on the face detector [9] with 12710 samples.
They tested the detector with 1386 face
images. Detection rate: 96 % and false
alarm at 10−4

Heo et al. [10] Correct detection rate was 86.6 % for the
subjects wearing eyeglasses. For the face
images with no eyeglasses, 97.1 % true
negative accuracy was achieved. False-
positive and false-negative errors were 2.9
and 13.4 %, respectively. The database used
in this experiment is comprised of thermal
images from the database developed by the
National Institute of Standards and
Technology (NIST) and Equinox
Corporation

the face shape using the Delaunay triangulation. In the first
step of the algorithm, they perform a binarization of the face.
This method can have some problems if glass frames have

very low contrast. In addition, they do not obtain very good
results if the glasses do not cover eyes. Data-fused image
composed of visual and thermal ones is used in [10] to pro-
duce an integrated image for eyeglass removal in order to
perform a robust face recognition. The eyeglass region in
thermal face images can be represented by two ellipses.

A method for removing glasses from a human frontal
face image is proposed [14]. Glasses region is automatically
extracted using color and shape information. They perform
glasses removal, but not glasses detection. Firstly, glasses
region is automatically extracted using color and shape infor-
mation, and then, a natural looking facial image without
glasses is generated by means of recursive error compen-
sation using PCA reconstruction. They carried out some
experiments, and the recognition performance is improved
by using glasses removal methods. In [4], authors trained
nine Viola and Jones detectors, one for each facial attribute.
Glasses type is performed. They distinguish three types: sun-
glasses, eyeglasses and the absence of them.

Soft biometrics (eyeglasses, for example) can be used
for person identification [2]. They implement an algorithm
deduced from [1], which performs edge detection on a pre-
processed gray-level image.

2.2 Face alignment and normalization

Alignment step of a face recognition algorithm is often
ignored or not detailed. In some cases, the alignment is
done manually, where the positions of the eyes are manually
labeled. In other cases, this step is ignored, under the assump-
tion that the face detection algorithm will perform some
kind of alignment. Many recognition algorithms depend on
an accurate positioning of the face region into a canonical
pose before the recognition step takes place. This alignment
process can lead to improve recognition accuracy on real
images, even for algorithms robust to misalignments [16].
In [17], authors propose a method for aligning images using
poorly aligned examples of a class with no additional data
generating a alignment machine for that object class. In [18],
authors use a combination of unsupervised joint alignment
with unsupervised feature learning in order to align images.

Some studies are done in relation to the alignment of the
images. It was found that automatic alignment methods did
not increase gender classification rate, while manual align-
ment increased the classification rate a little [19]. Therefore,
they concluded that automatic alignment needs improv-
ing. This statement, valid at that time, should be reviewed,
because automatic alignment methods have improved in both
accuracy and robustness.

A face normalization algorithm based on eyes detection
is proposed [20]. The algorithm detects the position of the
pupils in the face image. After that, the algorithm normal-
izes the orientation, the scale and the gray scale of the face
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image. Face region is adjusted based on the position of the
mouth. This algorithm has the drawback it needs to locate the
position of the pupils, and thereby, glasses and partial occlu-
sions can alter the result of the normalization step. Another
face normalization algorithm is proposed [21]. The eyes are
located manually in the faces, and faces are rotated and
aligned in the images so that each face has eyes in the same
location. After the normalization step, images are scaled to
a fixed size.

In this work, a face alignment and normalization algo-
rithm is proposed. In order to get the angle of misalignment,
a regression line is calculated based on four points of the
eyes. There are some automatic facial feature points detec-
tor [22], [23], but the detector of facial landmarks used in
this paper [15] takes advantage of relationship among some
facial features of the face (eyes, nose and mouth) in terms of
appearance and structure distribution. In this way, this algo-
rithm can estimate the position of the eyes under occlusion
(like wearing glasses or sunglasses).

3 Methodology

In Fig. 2, the main steps of the algorithm, which are dis-
cussed below, can be seen. First of all, this work starts with
location of the face using the algorithm by Viola and Jones
[9]. After the face is located in the image, some preprocess-
ing is necessary in order to deal with pose, rotation, scale and
inaccuracies of the located face. A face normalization algo-
rithm is applied to get the region around the eyes. Afterward,
LBP and Robust LBP are applied in order to get the feature
sets. Finally, support vector machine (SVM) is applied on the
classification step. SVM is applied to classify the extracted
feature histograms over the normalized eyes glasses regions.
The output of the SVM classifier is a two-class classification
problem, i.e., glasses vs no glasses. Therefore, different type
of glasses (sport glasses, sunglasses, safety glasses, reading
glasses, etc.) belong to the same category. SVMs are a useful
technique for data classification and have been proven useful
in a number of pattern recognition tasks including face and
facial recognition [24]. LIBSVM was used for the training
and testing of SVMs [25].

3.1 Face alignment and normalization

3.1.1 Landmarks relationship to estimate eyes position

When the shape or intensity characteristics of the eyes cannot
be reliably measured due to occlusion (like wearing glasses or
sunglasses), the context characteristics are very useful for eye
localization. This is because eyes in the face context usually
have stable relationship with other facial features in terms of
both appearance and structure distribution [26]. In this way,

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

Fig. 2 Pipeline of the algorithm for glasses detection on facial images:
a input image obtained from LFW database, b landmarks detection and
regression line, c rotated face, d normalized eye glasses region and e
Local Binary Pattern
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(a) (b)

(c) (d)

Fig. 3 Definition of a underlying graph for the landmark configuration
and b the components of the detector. Sample images c and d where
the estimated landmark positions have the mean normalized deviation
equal to 10 %. The green and red points denote the manually annotated
and estimated landmarks, respectively. These images are obtained from
[15] (color figure online)

a detector of facial landmarks learned by structured output
SVM [15] has been applied in order to detect the positions
of the main points of the face and hence of the eyes.

The input of the classifier is a still image of fixed size con-
taining a single face. The output of the classifier is estimated
locations of a set of facial landmarks. A graph constraint
with eight components is taken into account see Fig. 3a.
Each facial feature is computed on a rectangular window
see Fig. 3b. The accuracy of the classifier has been tested
on LFW database [27]. The detector estimates around 97 %
of the images with the mean normalized deviation between
the estimated and the ground truth positions <10 %. In order
to clarify this measure, two sample images (see Fig. 3c, d)
are shown, where the estimated landmark positions have the
mean normalized deviation equal to 10 %.

3.1.2 Procedure

In order to perform a robust, fully automatic ROI normaliza-
tion a new algorithm is proposed in Algorithm 1. The input
of the normalization algorithm is a still image. This image
is resized to a certain size. Different tests are performed in
order to know how this size affects the recognition rate (see
Sect. 4). This algorithm is based on [21] but fully automatic,
where:

• eyes_distance_r is the ratio of the distance from left outer
eye to right outer eye in the resized image.

• eye_line_r is the ratio of the height above and below eyes.
• size is the size of the resized face image

– size.w is the width of the resized image
– size.h is the height of the resized image

Main steps are summarized as follows. Eight facial land-
marks are obtained [15]. In order to get the angle of
misalignment, a regression line is calculated based on four
points: the canthi of the left and right eye, i.e., left inner eye,
left outer eye, right inner eye and right outer eye (see Fig. 4).
After that, faces are rotated and aligned in the images so that
eyes are located in the same coordinates for all the images.
The area around the eyes is calculated in source image. Once
the coordinates for the corners of the eye glasses region in
the rotated image are calculated, the resulting area is cropped
from the rotated image.

Algorithm 1 Face ROI normalization
eyes_distance_r, eye_line_r, size
1: Eight facial landmarks are located. Linear regression is calculated

based on the four landmarks of the eyes. Angle α of misalignment
is calculated, and image is rotated based on α in order to align the
source image

2: Euclidean distance d0 between the eyes is calculated in the rotated
image

3: Distance of the eyes in the resized image is calculated by dt =
si ze.w ∗ eyes_distance_r

4: Ratio r is calculated by r = d0/dt
5: Width w0 and height h0 of the area around the eyes are calculated

by w0 = r ∗ si ze.w and h0 = r ∗ si ze.h
6: Coordinates for the corners of the face area in the rotated image

are calculated by xl = xe − w0/2, yt = ye − h0/eye_line_r ,
xr = xl + w0 and yb = yt + h0, where xl is x-coordinate of the left
border, xe is x-coordinate of the point in the halfway between the
eyes, yt is y-coordinate of the top border, ye is y-coordinate of the
eyes, xr is x-coordinate of the right border, and yb is y-coordinate
of the bottom border. This ROI is cropped from the image

7: return ROI

3.2 Local Binary Pattern

The Local Binary Pattern operator is a type of feature used for
classification. It has been found to be a powerful feature for
texture classification. It was introduced in 1996 as a means
of summarizing local gray-level structure [28]. The operator
takes a local neighborhood around each pixel, thresholds the
pixels of the neighborhood at the value of the central pixel and
uses the resulting binary-valued image patch as a local image
descriptor. It was originally defined for 3×3 neighborhoods,
giving eight bit codes based on the eight pixels around the
central one. Formally, the LBP operator takes the form:
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Fig. 4 Linear regression based
on four landmarks of the eyes

LBP (xc, yc) =
7∑

p=0

2ps(gp − gc) (1)

where in this case, p runs over the eight neighbors of the
central pixel c, gc and gp are the gray-level values at c and
p and

s(x) =
{

1, if x ≥ 0
0, otherwise

(2)

The LBP encoding process is illustrated in Fig. 5. The
operator was extended to use neighborhoods of different sizes
[29], thus making it feasible to deal with textures at different
scales. This is denoted by (P, R) where P represents the
number of sampling points and R represents the radius of the
neighborhood. When the sampling points do not fall at integer
positions, the intensity values are bilinearly interpolated. See
Fig. 6 for an example of the circular (8, 2) neighborhood. This
implementation is called circular LBP (LBPP,R):

LBPP,R (xc, yc) =
P−1∑

p=0

2ps(gp − gc) (3)

Another extension to the original operator [29] defined
the so-called uniform patterns: An LBP is ‘uniform’ if it
contains at most two bitwise transitions from 0 to 1 or vice
versa when viewed as a circular bit string. For example,
00000000, 00011110 and 10000011 are uniform patterns.
Uniformity is an important concept in the LBP methodology,
representing primitive structural information such as edges
and corners. Although only 58 of the 256 8-bit patterns are
uniform, nearly 90 % of all observed image neighborhoods
are uniform [29]. The following notation for the uniform
LBP operator is used: LBPu2

P,R . Because the gray value of
the central pixel is used as threshold, LBP is sensitive to
noise, especially in the near-uniform image regions. Another
demerit of LBP is that many different structural patterns may
have the same LBP code. In order to enhance the discrimina-
tive capability of the local structure, Completed LBP (CLBP)

6

7 2

1 1 0

1

1 0 03

1
Binary: 11010011Threshold

Decimal: 211
4

5 9 1

4

Fig. 5 The basic LBP operator

Fig. 6 The circular (8, 2) neighborhood. The pixel values are bilinearly
interpolated whenever the sampling point is not in the center of a pixel

was proposed [30]. Although CLBP solves some confusion
of different patterns, not all of these patterns can be differ-
entiated perfectly. Besides, CLBP is sensitive to noise since
the value of a pixel is still used as a threshold directly.

In order to solve these difficulties, Completed Robust
Local Binary Pattern (CRLBP) was proposed [31]. This
descriptor is used to extract the region glasses information.
Firstly, Average Local Gray Level (ALG) is calculated as
follows:

ALG =
∑8

i=1 gi + g

9
(4)

where g represents the gray value of the center pixel and gi
denotes the gray value of the neighbor pixel. ALG represents
the average gray level of local texture, which is obviously
more robust to noise than the gray value of the central pixel.
ALG ignores the specific value of an individual pixel, while
sometimes the specific information of the central pixel is
needed. To make a balance between anti-noise and informa-
tion of individual pixel, a Weighted Local Gray Level (WLG)
is defined as follows:

WLG =
∑8

i=1 gi + αg

8 + α
(5)
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where α is a parameter set by user. Now the RLBP can be
calculated as follows:

RLBPP,R =
P−1∑

p=0

2ps(gp − WLGc) (6)

That is the same as:

RLBPP,R =
P−1∑

p=0

2ps

(
gp −

∑8
i=1 gi + αgc

8 + α

)
(7)

After labeling an image with the different LBP operators,
a histogram of the labeled image fl(x, y) can be defined as:

Hi =
∑

x,y

I { fl(x, y) = i}, i = 0, . . . , n − 1 (8)

where n is the number of different labels produced by the
LBP operator and:

I {A} =
{

1, if A = true
0, otherwise

(9)

For efficient face representation, feature extracted should
retain also spatial information. Hence, the facial image is
divided intom regions {R0, . . . , Rm−1}. In this way, the basic
histogram defined above can be extended into a spatially
enhanced histogram [32], which encodes both the appear-
ance and the spatial relations of facial regions. The spatially
enhanced histogram is defined as:

Hi, j =
∑

x,y

I { fl(x, y) = i}I {(x, y) ∈ R j } (10)

where i = 0, . . . , n − 1, j = 0, . . . ,m − 1. The histogram
has a description of the normalized eye glasses region on
three different levels of locality: The labels for the histogram
contain information about the patterns on a pixel level, the
labels are summed over a small region to produce information
on a regional level, and the regional histograms are concate-
nated to build a global description [32]. In conclusion, the
extracted feature histogram represents the local texture and
global shape of the normalized eye glasses region.

4 Results

A series of experiments are conducted on LFW database [27].
LFW database is a database originally created to study the
problem of unconstrained face recognition, which contains
13,233 face images of 5749 distinct subjects collected from
the web. This database has also recently been used as bench-
mark for another attribute recognition algorithms [33], [34].

In this paper, the use of this database as benchmark for glasses
recognition in real images is carried out. Three thousand face
images (1500 wearing glasses, 1500 not wearing glasses) are
considered in the experiment; see Fig. 1 for some examples.
All experimental results were obtained using the commonly
used fivefold cross-validation in order to use standardized
practices [33].

In order to get a robust and computationally lightweight
(efficient) algorithm, a good trade-off between recognition
performance and feature vector length should be addressed.
There are some parameters that can be chosen to optimize this
algorithm: LBP operator, radius of the operator, number of
neighbors, multiresolution analysis and number of divisions.

Uniform patterns produces 59 labels for a neighborhood of
eight pixels and produces 256 labels for standard LBP. Addi-
tionally, for the 16 neighborhoods, the numbers are 243 and
65,536, respectively. In experiments with facial images [32],
it was found that 90.6 % of the patterns in the (8, 1) neighbor-
hood and 85.2 % of the patterns in the (8, 2) neighborhood
are uniform. Using uniform patterns instead of all the possi-
ble patterns has produced better recognition results in many
applications [35]. By varying sampling radius R, LBP of dif-
ferent resolutions can be obtained, and thus, multiresolution
analysis can be accomplished by combining the information
provided by multiple operators varying (P, R) [36]. How-
ever, for most of the existing work, LBP with a fixed radius
(R = 2) was applied. A small radius of the operator makes
the information encoded in the histogram more local [37].

Preliminary tests carried out in this work showed that
LBPu2

8,2 gives better results than other combinations. Mean
recognition rates achieved on these preliminary tests for the
LBP indicated that multiresolution analysis is not necessary
for glasses detection.

4.1 Resolution and size of the normalized region

In many practical video surveillance applications, the faces
acquired by outdoor cameras are of low resolution [38], so
tests are carried out in order to establish the minimum reso-
lution of the images. First of all, taken into account the set of
selected images from LFW database, the average size of the
facial regions is calculated to establish an approximate size of
the facial region in the algorithm. The average distance from
left outer eye to right outer eye is 63.86 pixels and a standard

deviation of 5.39 pixels

(
5.39 =

√∑
(63.86−x)2

(3000−1)

)
. In order

to decrease the amount of data to process and to avoid false-
positive recognition, eye glasses region is selected taken into
account only the eyes zone. A symmetrical region around the
center of the eyes is selected considering that the nosepiece
of the glasses is usually placed at the same level as the cen-
ter of the eyes in both height and width. The height of the
eye glasses region is heavily determined by the size of the
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Fig. 7 Normalized eye glasses
regions at different resolutions.
Original image corresponds
with Fig. 1e and normalized
eyes glasses region matches
with Fig. 13k

(a) 100 x 45 normalized

eye glasses region (max-

imum size)

(b) 80 x 36 normalized

eye glasses region

(c) 58 x 26 normalized

eye glasses region

38 x 17 normalized

eye glasses region

(f) 16 x 7 normalized

eye glasses region (min-

imum size)

(d)

glasses. The width is determined taking into account the dis-
tance between the eyes and the sides of the glasses. In these
experiments, the width of the normalized eye glasses region
is 122 % bigger than the height of the normalized region (see
Fig. 13 for some examples).

Since the average distance from left outer eye to right outer
eye is 63.86 pixels, the maximum tested width for the nor-
malized eye glasses region is 100 pixels and a height of 45
pixels. So, the size of the maximum normalized eye glasses
region is 4500 pixels. The minimum tested width is 16 pixels
and a height of seven pixels. So, the size of the minimum nor-
malized eye glasses region is 112 pixels. See Fig. 7 for some
examples. In Fig. 8, different tests are performed varying
from the maximum to the minimum size of the normalized
eye glasses region. It can be appreciated that the relationship
between the size of normalized eye glasses region and the
recognition rate follows a logarithmic distribution. This log-
arithmic distribution depends on the number of division of
the LBP operator. Two examples can be seen in Fig. 9. R2 =
{0.9880, 0.9875, 0.9826, 0.9812, 0.9897, 0.9880, 0.9876,

0.9891, 0.9915, 0.9898} correspond to the correlation coef-
ficients obtained from the different LBP series from Fig. 8.

4.2 Number of divisions of the LBP operator

Since the LBP histogram is calculated over each rectangu-
lar region of the image, using a small number of divisions
makes the feature vector shorter, but also means losing spa-
tial information. In order to encode the spatial information,
face image is usually divided into a grid of non-overlapping
regions {R0, . . . , Rm−1}. So, the length of the feature vector
becomes B = 59 × m using uniform patterns, in which m
is the number of regions. The mean recognition rates for the
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Fig. 8 Results varying from the maximum to the minimum size of the
normalized eye glasses region
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Fig. 9 Relationship between size of normalized eye glasses region and
recognition rate follows a logarithmic distribution. Two examples are
shown

LBPu2
8,2 as a function of the number of regions is plotted in

Figs. 10 and 11. When looking for the optimal number of
regions, it is observed the changes in the number of regions
may cause big difference in the length of the feature vector,
but the performance is not necessarily affected significantly.
However, it is noticed the divisions in the width of the image
have a greater impact on the performance than the divisions
in the height of the image. It makes sense due to the charac-
teristics of the normalized eyes region.
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Fig. 10 Recognition rates as a function of the number of regions. No
alignment of the images is carried out
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Fig. 11 Recognition rates as a function of the number of regions.
Alignment of the images is carried out

4.3 Alignment of the images

A performance comparison between alignment of the faces
and non alignment can be seen in Figs. 10 and 11. It can be
seen that the recognition rate improves if the alignment step
is performed, which is increased by an average of 1.55 %.

4.4 Varying α on the Robust Local Binary Pattern
algorithm

A set of experiments is carried out to select the optimal para-
meter α (see Fig. 12). RLBP introduced a parameter α in
order to make a balance of robustness and stability. It should
be pointed out that RLBP performs more stably under com-
plex illumination and viewpoint variations, since it extracts
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Fig. 12 LBP and RLBP comparison varying α between [1–30]

the gray-level information of both local neighbor set and
individual pixel. RLBP outperforms standard LBP.

5 Discussion

The proposed algorithm has been tested on real images over
the Labeled Faces in the Wild database achieving a 98.65 %
recognition rate (Fig. 13). Most algorithms are not tested with
real-life photographs. In [5], the overall correctness is 94.0 %
on real-life photographs. In [4], the system was tested on a
surveillance video with real conditions and the best results
are detecting eyeglasses with a precision of 90 % and a recall
of 8.9 %.

As far as authors know, this is the first time this database
is proposed for comparison of glasses detection. So, compar-
isons with our algorithm using this database are not possible.
But in order to see that the proposed method advances the
state of the art, the algorithm has also been tested on FERET
database [39] because some of the previous methods were
trained/tested with this database [2], [5]. A detection rate of
87.7 % was obtained by the algorithm proposed by Dantcheva
et al. [2]. Wu et al. [5] achieved a remarkable accuracy of
98.9 % using wavelet features. It is worth mentioning that the
algorithm proposed in [5] was trained/tested not only with
FERET database images but also with other World Wide Web
images. The results of our algorithm on FERET database
achieved 99.89 and 99.83 % recognition rate with RBLP and
LBP, respectively. Some examples can be seen in Figs. 14
and 15. In most images, the results are like the ones shown in
Fig. 14, that is, the normalized eye glasses region are calcu-
lated on FERET face images based on the accurately position
of the facial landmarks. In Fig. 15, even when some of the
four landmarks of the eyes are not accurately detected, the
normalized eye glasses region algorithm can operate robustly.
This fact can be appreciated even better in Fig. 15g, h. The
algorithm used for detecting the landmarks did not perform
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Fig. 13 Normalized eye glasses
region for all images from LFW
database contained in this work

(a) (b) (c) (d) (e)

(f) (g)

(h) (i) (j) (k) (l)

(m) (n)

well probably because these images exhibit a profile view
pose. Even so, due to the fact that the relationship among
facial features could approximate the location of the eyes,
the eye glasses normalization algorithm can operate quite
well. The failure case from FERET database can be seen in
Fig. 15i. So, in conclusion, the proposed glasses region nor-
malization algorithm has the capabilities of detecting glasses
region with different poses and under different conditions.

Furthermore, since a low-resolution face contains limited
information [38], several tests are performed in order to know
how the resolution of the face images affects recognition rate.
A total of forty-three different resolutions of the normalized
eye glasses region were studied in this research. The lower-
resolution images were down-sampled form original images.
It should also be noted that the relationship between the size
of normalized eye glasses region and the recognition rate
follows a logarithmic distribution. In other words, the LBP
features perform robustly and stably over a useful range of
low resolutions.

In case of alignment of the face images, an average
recognition rate of 95.19 % is achieved (average value from
Fig. 11). The best average performance is achieved with ten
division in the width (average performance of 96.40 %) and
seven division in the height (96.03 %). Additionally, if the
choice is not to align the faces, an average recognition rate
of 93.64 % is performed (average value from Fig. 10). The

(a) (b) (c)

(d) (e) (f)

Fig. 14 The normalized eye glasses region is calculated on FERET
face images based on the accurate position of the facial landmarks

best average performance is achieved with eight divisions in
the width (average performance of 95.54 %) and five divi-
sions in the height (average perfomance of 94.85 %). It can
therefore be concluded that a large number of divisions can
decrease the performance due to the nonalignment of the face
images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15 The normalized eye glasses region algorithm can operate
robustly under different image conditions from FERET database. The
failure case is included (Fig. 15i)

A large number of LBP variations are designed to expand
the scope of application, which offers better performance as
well as improvement in the robustness of one or more aspects
of the original LBP [40]. In this study, Robust Local Binary
Pattern is applied and compared with Local Binary Pattern.
RLBP outperforms LBP for almost all values of α in the range
of (1–30). Small values of α did not increase the performance
compared with original Local Binary Pattern. However, for
bigger values, the performance is improved considerably. For
instance, varying α from 10 to 30, the average performance
can increase by 0,42 %.

Finally, it should also be noted that the relationship
between size of the normalized eye glasses region and the
execution time for both RLBP and LBP follows a linear dis-
tribution. R2 = {0.9993, 0.9981} values are obtained for
RLBP and LBP, respectively, see Fig. 16. LBP is in aver-
age, 2.31 % times faster than RLBP. All steps and processes
involved in the eye glasses region normalization operation
(face detection, landmark detection, face rotation, eye glasses
region cropping and resize to desired output) take an average
of 30 ms. All experiments in this study are carried out on a
2500-MHz Intel running Windows.

Fig. 16 Relationship between size of the normalized eye glasses region
and the execution time for both RLBP and LBP follows a liner distrib-
ution

6 Conclusions

Automatic glasses detection on real face images has many
potential uses in security systems, intelligent advertising and
marketing. In this study, glasses detection on real face images
has been investigated. A normalized eye glasses region is
proposed, and a comparison between the original LBP and
RLBP is carried out varying α parameter. Influences of the
resolution, the alignment of the normalized images and the
number of divisions in the LBP operator are also carried
out. Experimental results demonstrate that a simple yet effi-
cient algorithm can obtain impressive classification accuracy
achieving 98.65 % recognition rate on LFW database. This
algorithm has been tested on FERET database too, achieving
99.89 % recognition rate. Experimental results also show that
the proposed algorithm is robust under a wide range of light-
ing conditions, different poses and can deal with occlusion,
that are very common with sunglasses, for example. Even
when main features from the face are not correctly extracted,
the algorithm can estimate glasses region quite robust.

Normalized eye glasses region described in this study can
also be used to extract relevant information to deal with the
problem of eye closeness detection. Eyes closeness detection
from face images has wide applications like facial expres-
sion recognition, driver fatigue detection and so on. Closed
eyes in the Wild (CEW) database has recently been released
[41]. Future work includes the development of an architec-
ture able to face with both problems simultaneously using
LFW and CEW databases and new models and descrip-
tors in order to get better image features to achieve better
recognition performance without sacrificing simplicity. For
example, Completed Hybrid Local Binary Pattern (CHLBP)
has recently been proposed [42] to avoid tuning α parame-
ter. A new comprehensive database to benchmark glasses
detection and recognition will be proposed. To improve gen-
eralization, different databases will be combined and some
checks will be performed [43] in order to build a realistic
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and, as far as possible, not biased database. Different types
of glasses (sport glasses, sunglasses, safety glasses, reading
glasses, etc) will be included in this database in order to test
both detection and recognition.

Acknowledgments Authors are grateful to anonymous reviewers for
constructive feedback and insightful suggestions that greatly improved
this article.
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Abstract—The progressive aging population and the preva-
lence of chronic diseases are some of the major challenges of
current society. This paper aims to illustrate an innovative
approach to pervasive health monitoring based on state
of the art technology. The proposed solution is based on
two main agents: a non-contact health monitoring system
embedded in a mirror-like device and a non-invasive and
automatic activity monitoring system embedded in a watch-
like device. Heart Rate (HR), Respiratory Rate (RR), Heart
Rate Variability (HRV) are extracted from the user’s face
by the mirror-like device. Physical Activity (PA) is extracted
from the user’s activity by the wearable watch-like device.
The health monitoring system proposed in this paper works
in an unobtrusive way tracking the user’s health status
without interaction.

I. INTRODUCTION

The progressive aging population and the prevalence
of chronic diseases have emerged as two of the main
challenges of the global health care systems. In recent
years, the number of people over 65 has increased consid-
erably and it is expected to triple between 2008 and 2060.
Nowadays, the chronic diseases are the leading cause of
death and disability in the world. These two factors have
caused an increase in costs both in intervention and health
care.

In response to these challenges, researchers have been
actively seeking for innovative and technological-based
solutions to improve the quality of health care as well
as to reduce the cost of care through early detection and
more effective disease management.

Physiological and activity monitoring are a good and
common strategy to detect, control and prevent health
diseases through the use of sensors. However, people’s
reluctance to use and interact with sensors avoids wide
application. Video technology can be used in this context
to recognize and monitor physiological data in a unob-
trusive and transparent way for the user. Thus, wearable
sensors integrated in a personal item can measure users’
activity automatically and reduce invasiveness.

This paper illustrates an innovative approach to per-
vasive health monitoring based on the state of the art
technology. The proposed solution is based on a non-
contact health monitoring system embedded in a mirror-

like device and an activity sensor embedded in a watch-
like device. Heart Rate (HR), Respiratory Rate (RR) and
Heart Rate Variability (HRV) are extracted from the users’
face by the mirror and the physical activity (PA) by the
analysis of the data collected by the watch. The methods
used to collect and analyzed both data are presented with
a experimental stage involving real users.

Therefore, an unobtrusive health monitoring system is
proposed and validated in this work through the non-
invasive collection of medical information (physiological
data) and contextual information (activity data). Both data
can be checked and analyzed by caregivers using a web
page. Alerts and recommendations will be automatically
generated according to the gathered information. The main
barriers of state-of-the art solutions are broken in this work
using a wearable watch-like activity sensor and video-
based technologies in a mirror-like device.

II. BACKGROUND

A. Physiological parameter monitoring

In 2008, Verkruysse et al. found that in an ambient light
condition, the PPG-signal has different relative strength
in three colour channels of an RGB camera that senses
human skin [1]. Based on this finding, Poh et al. [2]
proposed a linear combination of RGB channels defining
three independent signals with Independent Component
Analysis (ICA) using non-Gaussianity as the criterion
to separate independent resource signals. In [3], they
extended their prior work in order to detect multiple
physiological parameters. They extract the Blood Volume
Pulse (BVP) for computation of Heart Rate (HR), Res-
piratory Rate (RR), as well as HR Variability (HRV).
They improved their method by adding several temporal
filters both before and after applying ICA. Lewandowska
et al. [4] varied this concept defining three independent
linear combinations of the color channels with Principal
Component Analysis (PCA).

In 2012, MIT developed a method called “Eulerian
video magnification” to amplify the subtle colour changes
through band-pass filtering the temporal pyramidal im-
age differences [5]. However, any motion-induced colour
distortions within the same frequency band as that of
the pulse are unfortunately amplified. More recently, de978-1-4673-6946-6/15/$31.00 c© 2015 European Union



Fig. 1: Architecture of the system

Haan et al. [6] has introduced the chrominance-based
rPPG method (CHROM) to consider the pulse as a linear
combination of three-colour channels under a standardised
skin-tone assumption.

Another approach is to detect the periodic head motions
caused by the blood pulsing from heart to head via the
abdominal aorta and carotid arteries [7].

It is worth mentioning that on most of these previous
methods ([5], [7], [2], [3]) no subjects’ motions were in-
volved since no task was assigned and subjects were asked
to keep still during video recording. The performance
of these algorithms degrades when subjects’ motions are
involved [8].

B. Activity monitoring

Two main alternatives can be used for activity monitor-
ing: ambient sensors and wearable sensors.

Ambient sensors are embedded in users’ environments
creating smart homes. They are usually integrated in com-
mon objects or in common locations providing pervasive
sensing in free-living environments. This information can
be used to predict and to prevent health risks by health
care platforms or alarm-triggering systems [9]. However,
ambient sensors tend to be intrusive in some scenarios and
cannot be used in an easy way in outdoor environments.

Wearable sensors refer to sensors that can be worn
by users. Although they are more accurate than ambient
sensors to measure the human body, some works report
their invasiveness and the reluctance of some users to wear
them [10]. The solution is to integrate sensors in clothes
or clothing accessories (personal items) to achieve an
accurate wearable measurement method without invading
their privacy. Accelerometers are the most common wear-
able sensor used for activity monitoring through physical
activity. They are small, lightweight and portable, and
motion can be recorded to provide an indication of the
frequency, duration, and intensity of activities [11]. Their
drawback is the lack of standards for conversion of the raw
output of an accelerometer to activity magnitudes [12].
Several works use accelerometers for activity monitoring
[13],[14]. They differ on the number and position of the
accelerometers used; wrist, waist and chest are the most
common locations for sensors on the human body.

III. PROPOSED SYSTEM AND ARCHITECTURE

The main components of the proposed solution can be
seen in Fig. 1. This solution is composed mainly by three
subsystems: physiological monitoring subsystem, activity
monitoring subsystem and integration subsystem.

The physiological monitoring subsystem collects phys-
iological data (HR, RR and HRV) using computer vi-
sion techniques through a mirror-like device. The activity
monitoring subsystem is based on a wearable watch-like
measuring the physical activity of the user through a
novel magnitude called JIM. All the information collected
(physiological and activity) are sent to the integration
subsystem.

The integration subsystem works in a remote device pro-
cessing all the information collected by the physiological
and the activity monitoring subsystems. Based on the data
collected, alerts and recommendations will be given to the
users and their caregivers. All the data collected can also
be visualized by the caregivers through a web page.

A. Physiological monitoring subsystem

The physiological monitoring subsystem is mainly di-
vided in three steps: face detection, ROI detection and
tracking and quantification of physiological parameters on
forehead ROI.

1) Face detection: A common first step of these al-
gorithms is to detect the face to operate properly. The
process of determining the location of the patient’s face
is challenging for video recordings. The method proposed
by Viola and Jones [15] is usually used to track the face
over time ([16],[2],[3],[7],[6],[8]). This detector is most
effective only on frontal faces. It can hardly cope with
45◦ face rotation both around the vertical and horizontal
axis. Moreover, multiple detections of the same face can be
get due to overlapping sub-windows. Therefore, a robust
algorithm is needed to detect the face rectangle on the first
frame and track it over time.

In order to solve the aforementioned difficulties, three
different face detectors are combined to detect the face on
the first frame. Each face detector is based on the Viola
and Jones algorithm [15]. Therefore, three face detectors
are trained: a frontal detector that handles yaw angles in
a range of -40◦ to +40◦, a left half-profile detector that
handles yaw angles in a range of 30◦ to 60◦, and a right
half-profile detector that handles yaw angles in a range of
-30◦ to -60◦. Each of these also handles pitch angles in
a range of -30◦ to +30◦. If two or more detectors detect
faces, a bounding box containing all detected rectangles
is returned. This bounding box is treated in the following
step of the algorithm.

2) ROI detection and Tracking: A common second step
of these algorithms is to detect a ROI inside the face
region. Some methods are manual and non-automatic [4].
Most methods rely on the rectangle output by Viola and
Jones algorithm. For example, in ([2],[3]), they selected
the center 60% width and full height of the rectangle
output by Viola and Jones as the ROI. In [7], they opt to
use 50% of the rectangle widthwise and 90% heightwise
from top in order to ensure that the entire rectangle is
within the facial region. In [16], they opt to use 60%
width and the full height of the box. These methods are
not very accurate. Viola and Jones algorithm only finds
coarse face locations as rectangles, which is not precise
enough since non-face pixels on the corners of rectangles
are always included. Therefore, further processing of the



image is needed. In [6], a skin selection process is ap-
plied, which produces a skin-map to be used later on.
However, obtaining robust color representations against
varied illumination conditions is a major problem. In [17],
the Active Appearance Model (AAM) technique is used
to detect facial landmark locations. However, the AAM
based detectors are not very robust, particularly in low
resolution images [18].

In this research work, in order to track the face over
time and detect the ROI robustly, (1) a face normalization
algorithm and (2) a tracking algorithm are proposed.

The face normalization algorithm is necessary in order
to deal with pose, rotation, scale and inaccuracies of the
located face. This algorithm is based on [19] but modified
in order to get the forehead ROI. The main steps are
summarized as follows. Once the face is detected on the
first frame, a robust detector of facial landmarks based on
the Deformable Parts Models is applied [18]. The output
of the classiffier is estimated locations of a set of facial
landmarks. In order to get the angle of misalignment,
a regression line is calculated based on four points: the
canthi of the left and right eye, i.e., left inner eye, left
outer eye, right inner eye and right outer eye. After that,
faces are rotated and aligned in the images so that eyes
are located in the same coordinates for all the images.
The desired area above the eyes is calculated in the source
image. Once the coordinates of the corners of the desired
region in the rotated image are calculated, the resulting
area is cropped from the rotated image.

A bounding box containing the estimated locations
of the set of facial landmarks given by the detector is
provided to a robust tracker [20]. This tracker will follow
the face over time. The output of this tracker will be used
for the next frames. The normalized region above the eyes
is used as ROI in order to measure the users’ physiological
parameters.

3) Quantification of Physiological Parameters on Fore-
head ROI: Two main factors influenced the forehead
selection as the ROI: (1) the first one is to exclude the
eye region since blinking may interfere with calculations;
and (2) the mouth region is also excluded since talking or
facial expressions may also interfere with calculations. For
the quantification of physiological parameters, a similar
algorithm proposed by [3] is used. ROI pixels are sepa-
rated into the three RGB channels and spatially averaged
over all pixels in the ROI to yield a red, blue and green
measurement point for each frame and form the raw traces.
Afterwards, these raw traces are smoothed and normal-
ized. The normalized raw traces are then decomposed
into three independent source signals using Independent
Component Analysis (ICA). Then, a temporal filter to
exclude frequencies outside the range of interest is applied.
Temporal filters have been demonstrated to be helpful for
HR measurement [8], [3]. For the HR measurements, inter-
beat intervals (IBIs) are calculated. Analysis of HRV was
performed by Power Spectral Density (PSD) estimation
using the Lomb periodogram. The RR can be estimated
from the HRV power spectrum.

B. Activity Monitoring Subsystem
Physical activity (PA) is measured using a novel and

efficient magnitude. This subsystem is based on [21], but
this method has been modified in order to only monitor
physical activity.

Motion wearable sensors (mainly accelerometers) are
proposed in this work to measure PA. They are the oldest
and most used technique in physical activity measurement
[22]. Accelerometers are light, non-invasive, easy to use,
adequate for general free-living assessments, and widely
integrated in common devices (e. g. mobile phones, cam-
era and watches). There are many accelerometer features
[12]that can be used to measure and analyze physical
activity. The most widely used and accepted is the signal
magnitude area (SMA) [13], which requires an accelera-
tion sample rate of 50 Hz and several filtering stages.

In this work a jerk-based inactivity magnitude (JIM)
[23] is used to measure physical activity in a more
computationally efficient way than SMA. JIM is calculated
each minute (N = 60) with an acceleration sample rate
of 1Hz. Eq. 1 shows the JIM definition for N samples.
It can be interpreted for each acceleration sample as the
rate of change of the acceleration (i.e. the jerk). The
JIM calculation is implemented in a watch-like wearable
device, which fulfills the features required in [24] for a
wearable activity monitor. The use of JIM to measure PA
increases the battery life (one of the critical factors of
wearable sensors [13]) by about 5 times.

JIM =
1

N

N∑

i=1

|Jerkx[i]|+ |Jerky[i]|+ |Jerkz[i]| (1)

C. Integration Subsystem
The information from the Physiological Monitoring

Subsystem and the Activity Monitoring Subsystem is
remotely processed in the Integration Subsystem. This sub-
system receives the HR, RR and HRV from the mirror-like
device and the PA from the watch-like device. The data
collected will be processed with three main objectives:
visualization, alerts triggering and recommendations.

1) Visualization: Through a web page, the data col-
lected can be checked by caregivers. Selecting a time span,
the PA is shown for each minute. The measured HR, RR
and HRV are also shown in the same graph indicating
the time of acquisition. Therefore, the physiological mea-
sured information (HR, RR and HRV) could be analyzed
according to the contextual information obtained from the
PA.

2) Alerts Triggering: The measured HR, RR and HRV
are remotely processed to generate alerts related to critical
conditions. Medical experts fixed the following thresholds
to trigger alerts:

• HR must be below 65% of HRmax being:
1) HRmax = (220 − age) bpms, for males
2) HRmax = (210 − age) bpms, for females.

• RR must be in the range of 12-20 breaths per minute.
• HRV is evaluated by the relation between the LF

(lower frequency) and HF (high frequency) power of
the Lomb periodogram. The relation must be in the
range of 1.5-2.



3) Recommendations: Using the PA, the activity profile
of the user is identified. Users are divided into: sedentary,
low, medium and high activity profile depending on the
amount of PA measured throughout the day. Users with
sedentary and low activity profile will be recommended
to change their lifestyle. Physiological measures will be
used to give recommendations depending on the health
status. Users with a high HR or a critical RR will receive
fitness recommendations of lower intensity.

IV. EXPERIMENTAL RESULTS

The experimental results shown in this section are
based on the expected performance according to the initial
validation of the two main subsystems of the solution:
physical monitoring subsystem and activity monitoring
subsystem. Further experiments should be done to do a
validation of the whole solution.

A. Physical monitoring subsystem results

1) Experimental results for the Forehead ROI valida-
tion: First of all, the selected forehead ROI is presented on
real images from the Labeled Faces in the Wild database1.
LFW database has been created to study the problem
of unconstrained face recognition, which contains 13,233
face images of 5,749 distinct subjects collected from
the web. This database has also recently been used as
benchmark for another attribute recognition algorithms.
The only constraint on these faces is that they were
detected by the Viola-Jones face detector. The selected
region corresponding to the forehead ROI for the quan-
tification of the physiological parameters can be seen in
Fig. 2. Further experiments and metrics will be provided in
order to give quantitative results. In any case, experimental
results on LWF database, showed that the proposed ROI
normalization algorithm is quite robust.

2) Experimental setup, measurement procedure and re-
sults: In this paper, only the HR is tested. Future work will
include testing the other physiological parameters. The
experimental setup (see Fig. 3) is very similar to other
works in order to allow comparisons ([2], [4], [16]). A
basic webcam2 is located on the top of a mirror and is
connected to a laptop (see Fig. 3). All videos are recorded
in color (24-bit RGB with 3 channels x 8 bits/channel)
by means of a webcam at 20 fps with pixel resolution of
640x480. Twelve participants (6 male, 6 female) ranging
from 26 to 35 years old (mean = 29, SD = 2.30) were
involved in the experiment. At the same time, a finger
pulse oximeter sensor3 was used to measure the partici-
pants’ pulse rate. The experiments were conducted indoors
and with a varying amount of sunlight as the only source
of illumination. During the video recording, participants
were asked to stand still, breathe spontaneously and stare
at the webcam.

Overall, the proposed algorithm showed very good
results compared with the finger pulse oximeter (mean
error = 1.43, SD = 1.20), very similar to other works

1Labeled Faces in the Wild http://vis-www.cs.umass.edu/lfw/
2Logitech Webcam Pro 9000. USB connection and usb cable (6 feet).

http://support.logitech.com/product/quickcam-pro-9000
3Nonin Onyx II Model 9560 Finger Pulse Oximeter with wireless

technology http://www.nonin.com/Onyx9560

Fig. 3: Experimental setup

([2],[4],[16]) but it is expected that with the use of
the proposed robust face tracking algorithm results will
improve. In [2] for example, it can be seen that even in the
lack of face movement, the localized ROI fluctuates due to
tracking irregularities. This benefit is expected to be seen
in presence of moving testing videos (see conclusions and
future work), where people’ motions are involved.

B. Activity monitoring subsystem results

The Activity Monitoring Subsystem is based on the
JIM magnitude to measure PA. The proposed subsystem
was implemented in a commercial watch-like device4 with
accelerometer integrated (see Fig. 3). The device was
configured to calculate the PA using the JIM and the SMA
magnitudes. The experimental setup was focused on the
JIM validation as PA estimator.

The same twelve users presented in Section IV.A (6
males, 6 females) ranging from 26 to 35 years old
(mean=29, SD=2.30), with different activity profiles and
a mean BMI (body mass index) of 22.71 were involved
in the experiment. Users were required to wear the watch-
like device 24 hours, follow their usual routine and take
off the device at bath and sleep times.

The validation of JIM as a PA estimator was done
analyzing the relation between JIM and SMA using the
Spearman correlation index. The correlation study proves
the overall strength of association between the two mag-
nitudes (mean = 0.95, SD = 0.03, p-value < 0.05).

The computational performance features of SMA and
JIM were also analyzed during the experiment. The main
advantage of the JIM calculation against SMA is the
lower accelerometer sample frequency. This characteristic
decreases the current consumption of the accelerometer
and increases battery life by about 5 times in the used
watch-like device. Therefore, JIM can be considered as
good activity estimator as SMA with better computational
features.

4TI eZ430 Chronos http://www.ti.com/tool/ez430-chronos
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Fig. 2: Normalized forehead region for some images from LFW database

V. CONCLUSION AND FUTURE WORK

In this paper a health monitoring system using video
technology and a wearable activity device is proposed.
The system measures Heart Rate (HR), Respiration Rate
(RR) and Heart Rate Variability (HRV) based on facial
analysis through video technology and Physical Activity
(PA) based on users’ activity through a wearable device.

The proposed solution combines physiological data with
activity data, giving contextual information (activity data)
to the medical information (physiological data). All data
can be visualized using a web page and are used to
give recommendations and trigger alerts based on the
combination of the medical and contextual information.

The section of the experimental results only includes
results of the HR parameter. Therefore, this work should
be extended to include more detailed results of the three
physiological parameters. Despite the fact that the system
is on a preliminary stage, interesting results were found,
so the system is promising.

Future work will include: (1) the testing of the whole
solution and (2) the testing of the system using elderly
people and (3) extended results.
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Abstract— The progressive aging population and the preva-
lence of chronic diseases are some of the major challenges
of current society. To address these unfulfilled healthcare
needs, especially for the early prediction and treatment of
major diseases, health informatics has emerged as an active
area of interdisciplinary research. It is possible to improve
the quality of life maintaining the independence of the
vulnerable elderly people using novel technological solutions.
This paper aims to illustrate an innovative approach to
pervasive health monitoring based on state of the art
technology. This approach could be used by caregivers to
act over the users’ behaviour improving it and helping them
in their daily routine. The proposed solution is based on
two main agents: a non-contact health monitoring system
embedded in a mirror-like device and a non-invasive and
automatic activity monitoring system embedded in a watch-
like device. Heart Rate (HR), Respiratory Rate (RR) and
Heart Rate Variability (HRV) are extracted from the user’s
face by the mirror-like device. Physical Activity (PA) is
extracted from the user’s activity by the wearable watch-
like device. Experimental results involving 12 participants
(6 male, 6 female) aged between 26 and 35 have shown that
the system demonstrates expectations. The proposed solution
combines both physiological and activity data, giving contex-
tual information (activity data) to the medical information
(physiological data). The health monitoring system proposed
in this paper works in an unobtrusive way tracking the
user’s health status without interaction. Future work will
include the testing of the system using elderly people.

Index Terms— pervasive health monitoring, healthcare,
physiological and activity data, computer vision, health
monitoring system

I. INTRODUCTION

The progressive aging population and the prevalence of
chronic diseases have emerged as two of the main chal-
lenges of the global health care systems. In recent years,
the number of people over 65 has increased considerably
and it is expected to triple between 2008 and 2060 [1].
Nowadays, the chronic diseases are the leading cause of
death and disability in the world. These two factors have
caused an increase in costs both in intervention and health
care.

In response to these challenges, researchers have been
actively seeking for innovative and technological-based
solutions to improve the quality of health care, as well

as to reduce the cost of care through early detection and
more effective disease management.

One of the main aims of health informatics is to
provide personal safety to the elderly people. People with
long-term health conditions often experience a reduced
quality of life and dependence upon health and social
care services [2]. It is expected that the future healthcare
system should be preventive, predictive, preemptive, per-
sonalized, pervasive, participatory, patient-centered, and
precise, i.e., p-health system [3]. Physiological and activ-
ity monitoring are a good and common strategy to detect,
control and prevent health diseases through the use of
sensors. However, people’s reluctance to use and interact
with sensors avoids wide application. Video technology
can be used in this context to recognize and monitor
physiological data in a unobtrusive and transparent way
for the user. Thus, wearable sensors integrated in a
personal item can measure users’ activity automatically
and reduce invasiveness.

This paper illustrates an innovative approach to perva-
sive health monitoring based on the state of the art tech-
nology shown in Fig. 1. The proposed solution is based
on a non-contact health monitoring system embedded in
a mirror-like device and an activity sensor embedded in
a watch-like device. Heart Rate (HR), Respiratory Rate
(RR) and Heart Rate Variability (HRV) are extracted from
the users’ face by the mirror and their physical activity
(PA) by the analysis of the data collected by the watch.
The methods used to collect and analyzed both data are
presented with an experimental stage involving real users.

It should be noted the present work is an extension of
our previous one presented here [4]. Therefore, with the
purpose of clarifying the differences between these two
versions, the improvements of this work are commented
as follows. Our previous work proposed an unobtrusive
health monitoring system using video-based physiological
information and activity measurements. More specifically,
it proposed to extract HR, RR and HRV from the users’
face by the mirror and the PA by the analysis of the
data collected by the watch. However, only the HR was
tested and a finger pulse oximeter sensor with wireless
technology was used to measure the participants’ pulse



Figure 1: General overview of the proposed approach

rate. Moreover, due to space constraints, some of the
sections of the paper needed further explanations. In the
present work, these weaknesses are resolved, a more
detailed solution is presented and the other physiological
parameters are extracted and tested with the required
sensors to be used as benchmarks.

Therefore, an unobtrusive health monitoring system is
proposed and validated in this work through the non-
invasive collection of medical information (physiological
data) and contextual information (activity data). Both data
can be checked and analyzed by caregivers using a web
page. Alerts and recommendations will be automatically
generated according to the gathered information. The
main barriers of state-of-the art solutions are broken in
this work using a wearable watch-like activity sensor and
video-based technologies in a mirror-like device.

The rest of the paper is organized as follows. Section II
introduces main research work about both physiological
parameters and activity monitoring approaches. Section
III describes the stages of the proposed system. The
experimental results to validate the proposed approach are
detailed in Section IV. Finally, in Section V, conclusions
and future work are given.

II. BACKGROUND

The main objective of unobtrusive sensing is to enable
continuous monitoring of physical activities and behav-
iors, as well as physiological and biochemical parameters
during the subject’s daily routine. Unobtrusive sensing
can be implemented in two ways: 1) sensors are worn
by the subject, e.g., in the form of shoes, eyeglasses,
earring, clothing, gloves and watch, or 2) sensors are
embedded into the ambient environment or as smart
objects interacting with the subjects (see Zheng et al.
[3] for references). As in this research work these two
main methods are combined, a review of both methods is
carried out in this section.

A. Physiological parameter monitoring

In 2008, Verkruysse et al. found that in an ambient
light condition, the PPG-signal (photoplethysmography:
light-based technology to sense the rate of blood flow

as controlled by the hearts pumping action) has different
relative strength in three colour channels of an RGB
camera that senses human skin [5]. Based on this finding,
Poh et al. [6] proposed a linear combination of RGB
channels defining three independent signals with Indepen-
dent Component Analysis (ICA) using non-Gaussianity
as the criterion to separate independent resource signals.
In [7], they extended their prior work in order to detect
multiple physiological parameters. They extract the Blood
Volume Pulse (BVP) for computation of Heart Rate (HR),
Respiratory Rate (RR), as well as HR Variability (HRV).
They improved their method by adding several temporal
filters both before and after applying ICA. Lewandowska
et al. [8] varied this concept defining three independent
linear combinations of the color channels with Principal
Component Analysis (PCA). In [4], a health monitor-
ing system using video-based physiological information
and activity measurements is proposed. Regarding video-
based physiological information, only the HR is tested.

In 2012, MIT developed a method called “Eulerian
video magnification” to amplify the subtle colour changes
through band-pass filtering the temporal pyramidal im-
age differences [9]. However, any motion-induced colour
distortions within the same frequency band as that of
the pulse are unfortunately amplified. More recently, de
Haan et al. [10] has introduced the chrominance-based
rPPG method (CHROM) to consider the pulse as a linear
combination of three-colour channels under a standardised
skin-tone assumption.

Another approach is to detect the periodic head motions
caused by the blood pulsing from heart to head via the
abdominal aorta and carotid arteries [11]. A review of
the main methods for the measurements of both non-
contact heart rate and heart rate variability can be seen
here [12]. It is worth mentioning that in most of these
previous methods ( [9], [11], [6], [7]) no subjects’ motions
were involved since no task was assigned and subjects
were asked to keep still during video recording. The
performance of these algorithms degrades when subjects’
motions are involved [13].

B. Activity monitoring

Two main alternatives can be used for activity moni-
toring: ambient sensors and wearable sensors.

Ambient sensors are embedded in users’ environments
creating smart homes. They are usually integrated in com-
mon objects or in common locations providing pervasive
sensing in free-living environments. This information can
be used to predict and to prevent health risks by health
care platforms or alarm-triggering systems [14]. However,
ambient sensors tend to be intrusive in some scenarios and
cannot be used in an easy way in outdoor environments.

Wearable sensors refer to sensors that can be worn
by users. Although they are more accurate than ambient
sensors to measure the human body, some works report
their invasiveness and the reluctance of some users to
wear them [15]. The solution is to integrate sensors in
clothes or clothing accessories (personal items) to achieve



an accurate wearable measurement method without invad-
ing their privacy. Accelerometers are the most common
wearable sensor used for activity monitoring through
physical activity. They are small, lightweight and portable,
and motion can be recorded to provide an indication of
the frequency, duration, and intensity of activities [16].
Their drawback is the lack of standards for conversion of
the raw output of an accelerometer to activity magnitudes
[17]. Several works use accelerometers for activity moni-
toring [18], [19]. They differ on the number and position
of the accelerometers used; wrist, waist and chest are the
most common locations for sensors on the human body.

III. PROPOSED SYSTEM AND ARCHITECTURE

Figure 2: Architecture of the system

The main components of the proposed solution can be
seen in Fig. 2. This solution is composed mainly by three
subsystems: physiological monitoring subsystem, activity
monitoring subsystem and integration subsystem.

The physiological monitoring subsystem collects phys-
iological data (HR, RR and HRV) using computer vision
techniques through a mirror-like device. The activity
monitoring subsystem is based on a wearable watch-like
measuring the physical activity of the user through a novel
magnitude called JIM (jerk-based inactivity magnitude).
All the information collected (physiological and activity)
are sent to the integration subsystem.

The integration subsystem works in a remote device
processing all the information collected by the physiolog-
ical and the activity monitoring subsystems. Based on the
data collected, alerts and recommendations will be given
to the users and their caregivers. All the data collected
can also be visualized by the caregivers through a web
page.

A. Physiological monitoring subsystem

The physiological monitoring subsystem is mainly di-
vided in three steps: face detection, region of inter-
est (ROI) detection and tracking and quantification of
physiological parameters on forehead ROI, which can
be seen in Figure 3. The novelty of this approach is
based on automatic face tracking and localization of ROI
measurement.

Figure 3: The physiological monitoring subsystem: a)
face detection, b) ROI detection and tracking and c)
quantification of physiological parameters

1) Face detection: A common first step of these al-
gorithms is to detect the face to operate properly. The
process of determining the location of the patient’s face
is challenging for video recordings. The method proposed
by Viola and Jones [20] is usually used to track the
face over time ( [21], [6], [7], [11], [10], [13]). This
detector is most effective only on frontal faces. It can
hardly cope with 45◦ face rotation both around the vertical
and horizontal axis. Moreover, multiple detections of the
same face can be taken due to overlapping sub-windows.
Therefore, a robust algorithm is needed to detect the face
rectangle on the first frame and track it over time.

In order to solve the aforementioned difficulties, three
different face detectors are combined based on the idea
proposed by Asthana et al. [22] to detect the face on the
first frame. Each face detector is based on the Viola and
Jones algorithm [20]. Therefore, three face detectors are
trained: a frontal detector that handles yaw angles in a
range of -40◦ to +40◦, a left half-profile detector that
handles yaw angles in a range of 30◦ to 60◦, and a right
half-profile detector that handles yaw angles in a range of
-30◦ to -60◦. Each of these also handles pitch angles in
a range of -30◦ to +30◦. If two or more detectors detect
faces, a bounding box containing all detected rectangles
is returned. This bounding box is treated in the following
step of the algorithm.

2) ROI detection and Tracking: A common second
step of these algorithms is to detect a ROI inside the face
region. Some methods are manual and non-automatic [8].
Most methods rely on the rectangle output by Viola and
Jones algorithm. For example, in ( [6], [7]), they selected
the center 60% width and full height of the rectangle
output by Viola and Jones as the ROI. In [11], they opt to
use 50% of the rectangle widthwise and 90% heightwise
from top in order to ensure that the entire rectangle is
within the facial region. They also removed eyes from the
region so that blinking artifacts do not affect calculations.
To achieve this, they removed the subrectangle spanning
20% to 55% heightwise. For videos where the face is not
visible, they marked the region manually.

In [21], they opt to use 60% width and the full height of
the box. These methods are not very accurate. Viola and
Jones algorithm only finds coarse face locations as rectan-
gles, which is not precise enough since non-face pixels on



the corners of rectangles are always included. Therefore,
further processing of the image is needed. In [10], a
skin selection process is applied, which produces a skin-
map to be used later on. However, obtaining robust color
representations against varied illumination conditions is
a major problem [23]. In [24], the Active Appearance
Model (AAM) technique [25] is used to detect facial
landmark locations. However, the AAM based detectors
are not very robust, particularly in low resolution images
[26].

In this research work, in order to track the face over
time and detect the ROI robustly, (1) a face normalization
algorithm and (2) a tracking algorithm are proposed.

The face normalization algorithm is necessary in order
to deal with pose, rotation, scale and inaccuracies of the
located face. This algorithm is based on [27] but modified
in order to get the forehead ROI. We have previously used
this face normalization algorithm achieving state of the art
results. For example, in [27], [28] we used this algorithm
to automatically detect glasses on real face images. In
[29], we also performed this face normalization algorithm
in order to build a system for face recognition adapted to
the visually-impaired people.

The main steps of this algorithm are summarized as
follows. Once the face is detected on the first frame, a ro-
bust detector of facial landmarks based on the Deformable
Parts Models is applied [26]. The output of the classifier
are the locations (x,y coordinates) of a set of facial
landmarks. In order to get the angle of misalignment,
a regression line is calculated based on four points: the
canthi of the left and right eye, i.e., left inner eye, left
outer eye, right inner eye and right outer eye. After that,
faces are rotated and aligned in the images so that eyes are
located in the same coordinates for all the images. The
desired area above the eyes is calculated in the source
image. Once the coordinates of the corners of the desired
region in the rotated image are calculated, the resulting
area is cropped from the rotated image.

A bounding box containing the estimated locations
of the set of facial landmarks given by the detector is
provided to a robust tracker [30]. This tracker will follow
the face over time. The output of this tracker will be used
for the next frames. The normalized region above the eyes
is used as ROI in order to measure the users’ physiological
parameters.

3) Quantification of Physiological Parameters on Fore-
head ROI: Two main factors influenced the forehead
selection as the ROI: (1) the first one is to exclude the
eye region since blinking may interfere with calculations;
and (2) the mouth region is also excluded since talking
or facial expressions may also interfere with calculations.

For the quantification of physiological parameters, a
similar algorithm proposed by [7] is used, but further
calculations of the physiological parameters are extracted
from the forehead ROI. For the sake of completeness,
these steps are explained as follows.

ROI pixels are separated into the three RGB channels
and spatially averaged over all pixels in the ROI to yield

a red, blue and green measurement point for each frame
and form the raw traces. Afterwards, these raw traces are
smoothed and normalized. The normalized raw traces are
then decomposed into three independent source signals
using Independent Component Analysis (ICA).

The component whose power spectrum contained the
highest peak is selected [6], [7].

Temporal filtering to exclude frequencies outside the
range of interest is applied. Temporal filters have been
demonstrated to be helpful for HR measurement [13], [7].

Specifically, a moving-average filter, which removes
random noise using temporal average of adjacent frames,
is firstly applied. Secondly, a Hamming window-based
finite impulse response bandpass filter (cutoff frequency
of [0.7, 4] Hz) is applied. For the HR measurements,
interbeat intervals (IBIs) are calculated.

Analysis of HRV was performed by Power Spectral
Density (PSD) estimation using the Lomb periodogram.
Frequency domain methods assign bands of frequency and
then, count the number of normal-to-normal (NN) inter-
vals that match each band. The bands are typically high
frequency (HF) from 0.15 to 0.4 Hz and low frequency
(LF) from 0.04 to 0.15 Hz. HRV signals contain well-
defined rhythms including physiological information [31]:

• HF generally represents parasympathetic activity and
is therefore generally considered to be a marker of
vagal activity [32].

• LF is influenced by both sympathetic and parasym-
pathetic activity [33].

• The ratio of HF to LF (HF/LF) represents the balance
between parasympathetic and sympathetic activity
[34].

Therefore, LF and HF powers were measured as the
area under the PSD curve corresponding to 0.04-0.15 and
0.15-0.4 Hz, respectively, and quantified in normalized
units (n.u.) to minimize the effect on the values of the
changes in total power [7].

Finally, since the HF component is connected with
breathing, the RR can be estimated from the HRV power
spectrum. It should be noted that when the frequency of
respiration changes, the center frequency of the HF peak
shifts in accordance with RR [35]. RR is calculated by
locating the center frequency of the HF peak in the HRV
PSD.

B. Activity Monitoring Subsystem

Main steps of the Activity Monitoring Subsystem are
shown in Fig. 4. Physical activity (PA) is measured using
a novel and efficient magnitude called JIM and based on
the derivative of the acceleration. This subsystem is based
on [36], but it has been modified in order to only monitor
physical activity.

Motion wearable sensors (mainly accelerometers) are
proposed in this work to measure PA. They are the oldest
and most used technique in physical activity measurement
[37]. Accelerometers are light, non-invasive, easy to use,
adequate for general free-living assessments, and widely
integrated in common devices (e. g. mobile phones,



Figure 4: The Activity Monitoring Subsystem: a) accel-
eration sampling, b) derivative calculation and c) JIM
calculation

camera and watches). There are many accelerometer
features [17] that can be used to measure and analyze
physical activity. The most widely used and accepted is
the signal magnitude area (SMA) [18], which requires an
acceleration sample rate of 50 Hz and several filtering
stages.

In this work a jerk-based inactivity magnitude (JIM)
[38] is used to measure physical activity in a more com-
putationally efficient way than SMA. JIM is calculated
each minute (N = 60) with an acceleration sample rate
of 1Hz. Eq. 1 shows the JIM definition for N samples. It
can be interpreted for each acceleration sample as the
rate of change of the acceleration (i.e. the jerk). The
JIM calculation is implemented in a watch-like wearable
device, which fulfills the features required in [39] for a
wearable activity monitor. The use of JIM to measure PA
increases the battery life (one of the critical factors of
wearable sensors [18]) by about 5 times.

JIM =
1

N

N∑

i=1

|Jerkx[i]|+ |Jerky[i]|+ |Jerkz[i]| (1)

C. Integration Subsystem

The information from the Physiological Monitoring
Subsystem and the Activity Monitoring Subsystem is re-
motely processed in the Integration Subsystem. This sub-
system receives the HR, RR and HRV from the mirror-like
device and the PA from the watch-like device. The data
collected will be processed with three main objectives:
visualization, alerts triggering and recommendations.

1) Visualization: Through a web page, the data col-
lected can be checked by caregivers. Selecting a time
span, the PA is shown for each minute. The measured HR,
RR and HRV are also shown in the same graph indicating
the time of acquisition. Therefore, the physiological mea-
sured information (HR, RR and HRV) could be analyzed
according to the contextual information obtained from the
PA.

2) Alerts Triggering: The measured HR, RR and HRV
are remotely processed to generate alerts related to critical
conditions. Medical experts fixed the following thresholds
to trigger alerts:

• HR must be below 65% of HRmax being:
1) HRmax = (220 − age) bpms, for males

2) HRmax = (210 − age) bpms, for females.
• RR must be in the range of 12-20 breaths per minute.
• HRV is evaluated by the relation between the LF

(lower frequency) and HF (high frequency) power
of the Lomb periodogram. The relation must be in
the range of 1.5-2.

3) Recommendations: Using the PA, the activity pro-
file of the user is identified. Users are divided into: seden-
tary, low, medium and high activity profile depending on
the amount of PA measured throughout the day. Users
with sedentary and low activity profile will be recom-
mended to change their lifestyle. Physiological measures
will be used to give recommendations depending on the
health status. Users with a high HR or a critical RR will
receive fitness recommendations of lower intensity.

IV. EXPERIMENTAL RESULTS

The experimental results shown in this section are
based on the expected performance according to the initial
validation of the two main subsystems of the solution:
physical monitoring subsystem and activity monitoring
subsystem. Further experiments should be done to do a
validation of the whole solution.

A. Physical monitoring subsystem results

1) Experimental results for the Forehead ROI valida-
tion: First of all, the selected forehead ROI is presented
on real images from the Labeled Faces in the Wild
database [40] LFW database has been created to study
the problem of unconstrained face recognition, which
contains 13,233 face images of 5,749 distinct subjects
collected from the web. This database has also recently
been used as a benchmark for another attribute recognition
algorithms. The only constraint on these faces is that
they were detected by the Viola-Jones face detector. The
selected region corresponding to the forehead ROI for
the quantification of the physiological parameters can be
seen in Fig. 5. Further experiments and metrics will be
provided in order to give quantitative results. In any case,
experimental results on LWF database, showed that the
proposed ROI normalization algorithm is quite robust.

2) Experimental setup, measurement procedure and
results: The experimental setup (see Fig. 6) is very similar
to other works in order to allow comparisons ( [6], [8],
[21]). A basic webcam is located on the top of a mirror
and is connected to a laptop. All videos are recorded in
color (24-bit RGB with 3 channels x 8 bits/channel) by
means of a webcam at 20 fps with pixel resolution of
640x480. Twelve participants (6 male, 6 female) ranging
from 26 to 35 years old (mean = 29, SD = 2.30) were
involved in the experiment. At the same time, a finger
BVP sensor and a chest belt respiration sensor where used
to record their BVP and spontaneous breathing.

The experiments were conducted indoors and with a
varying amount of sunlight as the only source of illu-
mination. During the video recording, participants were
asked to stand still, breathe spontaneously and stare at
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Figure 5: Normalized forehead region for some images from LFW database

Figure 6: Experimental setup

the webcam. All analyses and results are performed on
one-minute recording from all the participants.

Concerning HR analysis, the proposed algorithm has
shown very good results compared with the finger BVP
(mean error = 1.43, SD = 1.20), which are very similar
to other works ( [6], [8], [21]). Results derived from
the HRV calculations are commented as follows. LF n.u.
(mean error = 9.26, SD = 9.56), HF n.u (mean error =
9.16, SD = 9.62), LF/HF (mean error = 1.11 SD = 1.47)

are obtained compared with the finger BVP. Results from
the RR measurements (mean error = 0.84, SD = 1.83)
are compared with a chest belt respiration sensor. These
physiological measurements were obviously correlated
across all parameters with r = 0.98 for HR, r = 0.91 for
HF and LF, r = 0.86 for LF/HF, and r = 0.93 for RR.

It is expected that with the use of the proposed robust
face tracking algorithm results will improve. In [6] for
example, it can be seen that even in the lack of face
movement, the localized ROI fluctuates due to tracking
irregularities. This benefit is expected to be seen in
presence of moving testing videos (see conclusions and
future work), where people’ motions are involved.

All steps and processes involved in the physiological
monitoring subsystem (face detection, landmark detec-
tion, face rotation, forehead region detection and tracking,
and the quantification of the physiological parameters)
take an average of 50 ms. All experiments in this study
are carried out on a 3600-MHz Intel running Windows. In
other words, the system is capable of running at 20 fps.
This frame rate is the same one that was introduced before
by the webcam, which is capable of recording frames at
20fps with pixel resolution of 640x480.

B. Activity monitoring subsystem results

The Activity Monitoring Subsystem is based on the
JIM magnitude to measure PA. The proposed subsystem
was implemented in a commercial watch-like device with
accelerometer integrated (see Fig. 6). The device was
configured to calculate the PA using the JIM and the SMA
magnitudes. The experimental setup was focused on the
JIM validation as PA estimator.

The same twelve users presented in Section IV.A (6
males, 6 females) ranging from 26 to 35 years old
(mean=29, SD=2.30), with different activity profiles and
a mean BMI (body mass index) of 22.71 were involved in
the experiment. Users were required to wear the watch-



TABLE I.: Summary of experimental results

Parameter Mean error SD R index
HR 1.43 1.20 0.98
HRV LF 9.26 9.56 0.91
HRV HF 9.16 9.62 0.91
HRV LF/HF 1.11 1.47 0.86
RR 0.84 1.83 0.93
PA - - 0.95

like device 24 hours, follow their usual routine and take
off the device at bath and sleep times.

The validation of JIM as a PA estimator was done
analyzing the relation between JIM and SMA using
the Spearman correlation index. The correlation study
proves the overall strength of association between the two
magnitudes (mean = 0.95, SD = 0.03, p-value < 0.05).

The computational performance features of SMA and
JIM were also analyzed during the experiment. The main
advantage of the JIM calculation against SMA is the
lower accelerometer sample frequency. This characteristic
decreases the current consumption of the accelerometer
and increases battery life by about 5 times in the used
watch-like device. Therefore, JIM can be considered as
good activity estimator as SMA with better computational
features.

Table I shows the main results of this section describing
the mean and SD of the error produced in the estimation
by the proposed system and the R index.

V. CONCLUSION AND FUTURE WORK

In this paper a health monitoring system using video
technology and a wearable activity device is proposed.
The system measures Heart Rate (HR), Respiration Rate
(RR) and Heart Rate Variability (HRV) based on facial
analysis through video technology and Physical Activity
(PA) based on users’ activity through a wearable device.

The proposed solution combines physiological data
with activity data, giving contextual information (activity
data) to the medical information (physiological data). All
data can be visualized using a web page and are used
to give recommendations and trigger alerts based on the
combination of medical and contextual information. For
the sake of argument, a user with high heart rate or high
respiratory rate related to high activity will not rise an
alarm. On the other hand, high values of both heart rate
or respiratory rate but low activity will trigger an alarm.

The activity monitoring subsystem proposed in this
paper will be able to measure the activity of the user in
an unobtrusive way using a wearable watch-like device.
The proposed system has a very good performance with
a high correlation index, so it can be considered as a
reliable method to measure physical activity. The non-
contact health monitoring subsystem proposed in this
paper will also be able to measure some key physiological
parameters extracted from the face by using face tracking
and a normalization algorithm to locate the ROI measure-
ment. The integration subsystem proposed in this paper
has three main objectives: visualization, alerts triggering

and recommendations. Based on the reliability of the
physiological and activity monitoring subsystems, this
subsystem can be used by the caregiver to act over the
users behavior improving it and helping them in their
daily routine.

Experimental results involving 12 participants (6 male,
6 female) aged between 26 and 35 have shown that the
system is promising. It should be noted that respiratory
rate estimation from HRV worked well in healthy young
volunteers, but it would be more unlikely to give accurate
results in elderly people, especially those with chronic
diseases, most of whom lack autonomic function [41].
This aspect makes it almost impossible to implement
these methods accurately in unhealthy elderly patients
[42]. Therefore, future work will include the testing of
the system in elderly people and further investigation will
be performed in this matter.
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Abstract—Automatic glasses detection is a hot topic
withing the large-scale face images classification domain,
which has impact on face recognition or soft biometrics for
person identification. In many practical video surveillance
applications, the faces acquired by cameras are low resolu-
tion. Therefore, this type of applications requires processing
of a large number of relatively small-sized images. However,
continuous stream of image and video data processing is a
big data challenge. This need fits with the goals of Big Data
streaming processing systems. In this paper, we propose a
real-time Big Data architecture in order to collect, maintain
and analyze massive volumes of images related with the
problem of automatic glasses detection. This architecture
can be used as an automatic image tagging related with
glasses detection on face images.

I. INTRODUCTION

In recent years, the rapid development of Internet,
Internet of Things, and Cloud Computing have led to an
impressive growth of data in almost every industry and
business area. Big data has rapidly developed into a hot
topic, which attracts thorough attention from academia,
industry, and governments around the world.

Big Data has become important as many organi-
zations, both public and private, have been collecting
massive amounts of domain-specific information, which
can contain useful information about problems such
as national intelligence, cyber security, fraud detection,
marketing, and medical informatics. Companies such as
Google and Microsoft are analyzing large volumes of data
for business analysis and decisions, influencing existing
and future technology [1].

Big Data is a collection of data sets, which is enor-
mously large and complex so that conventional database
systems cannot process within desired time. For instance,
storing and processing of daily tweets at Twitter demand
significant data storage, processing and data analytics
capabilities e.g., finding correlations among millions of
tweets or analyze the demographics of users. Though
conventional SQL-based databases have proved to be
highly efficient, reliable and consistent in terms of storing
and processing structured (or relational) data, they fall
short of processing Big Data, which is characterized by
large volume, variety, velocity, openness, inappropriate
structure, and visualization among others [2].

Big Data is set to play a major role in various domains
such as science, research, engineering, medicine, health-
care, finance, business, and, eventually, society itself [3].
It can be used to analyze and forecast business trends,

profit and loss, identify real-time road traffic conditions,
healthcare, weather information and so on.

Big Data is generally characterized by the 3Vs: vari-
ety, volume and velocity.

Volume refers to the size of the data to be processed.
Volume of Big Data goes far beyond the conventional
limits of megabytes or gigabytes and reaches the terabytes
or even petabyte. Velocity refers not only to frequency of
the data generation but also to the dynamic aspects of the
data as well as the need of generating the results in real-
time. Variety refers to the multimodal nature of data such
as different data schemas of data sources, structured data
like ontologies and unstructured data like sensor signals
[4], [5].

Furthermore, the processing, availability or acquisition
of Big Data can be classified into different categories,
including batch processing, real-time processing and hy-
brid processing. Batch processing is an efficient way of
processing high volumes of data, which are collected
during a period of time. In this scheme, data are collected
and stored into the data sources and processed. The batch
results are then produced. However, several applications
require real-time processing of data (streams), which is
acquired from heterogeneous data sources. Streaming pro-
cessing involves continuous input, processing and output
of data [4]. Low latency is the main goal of this process-
ing paradigm, that is, data must be processed in a small
(or near real) time period. Application domains include
smart cities, entertainment, and disaster management.

Note that batch processing provides rigorous results
since more data can be used and it performs better
training of predictive models. But it is not feasible for
domains which need low-response time. Real-time pro-
cessing generally ensures low response time. However,
low-response time can be achieved at the expense of
less rigorous analysis of data. The hybrid approach is,
therefore, required so that application domains (using
Big Data) can benefit from both batch and real-time
processing. To obtain desired results under this approach,
both batch and real-time results are queried. The results
are then merged together, synchronized or composed.
Data acquisition and analysis become more complicated
under the approach [6].

Big Data has grown exponentially in the last decade
and video/image generated by sensors and devices has be-
come the largest source [7]. Big Data on image analytics
is best applicable on processing photos and surveillance
videos. Processing surveillance videos for information
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extraction requires real-time stream processing. The video
data will be continuous in motion, which can reach
massive proportions over time. The video data requires
to get processed on time to extract the full benefit of
surveillance.

Face processing and Big Data are two facets that
had scarcely anything in common, but recent advances
in several related domains have led them to converge
in impactful ways. These domains include Social Net-
working along with headway in the nationalization of law
enforcement facial Databases.

These unprecedented amounts of video/image data
have created great opportunities uncovering new insights
since Big Data is a top business priority and it has also
posed many fundamental technological challenges. One of
the most critical challenges is how to intelligently analyze
and understand the visual information in such large-scale
video/image data.

In this work we propose a Big Data architecture for
streaming processing of large amounts of images. Our
objective is to provide a real-time scalable system for
automatic glasses detection using video images. Main
contributions of this paper are summarized as twofold:

• A scalable low-latency architecture for image
analysis using Big Data technologies.

• Parallelization of an innovative glasses detection
strategy.

The rest of the paper is organized as follows. Section 2
some approaches related with Big Data processing are re-
sumed. Section 3 is composed by two subsections. Firstly,
the algorithm used for glasses detection is described.
Afterwards, the Big Data architecture for streaming pro-
cessing of large amounts of images is proposed. Finally,
in Section 4 conclusions are given.

II. BACKGROUND

Big Data has been speeding up its development to
trend as the most important topic attracting considerable
attention from researchers, academicians, industries, and
governments worldwide.

Jin et al. [8] present, briefly, the concept of Big
Data combined with its features and challenges. They put
forward a few necessary conditions for the success of
a Big Data project. Since Big Data consists of a large
amount of information, it is necessary to identify the
specific requirements regardless of its nature. Also, it
is said that the kernel data/structure is to be explored
efficiently. The most important point noted by them is
the application of a top-down approach to handle Big
Data. This allows the isolated solutions to be put together
to come to a complete solution. They also support the
conclusion of a project by integrating the solution.

Gandomi et al. [9] present the various analytics meth-
ods used for Big Data. Since a majority of the available
Big Data is unstructured, their focus on this dataset
provides a wider understanding on the applications on
Big Data. They have stressed the importance of real-time
analytics, which are bound to become the major field of
research in the future. This is highly due to the growth of
social networking and mobile apps. They have identified
that predictive analysis has been dominating all fields of

analytics and present the case for new methods to address
the differences of Big Data.

The primary application of video analytics in recent
years has been in automated security and surveillance
systems.

Video analytics, also known as video content analysis
(VCA), involves a variety of techniques to monitor,
analyze, and extract meaningful information from video
streams. Although video analytics is still in its infancy
compared to other types of data mining [10], various
techniques have already been developed for processing
real-time as well as pre-recorded videos. The increasing
prevalence of closed-circuit television (CCTV) cameras
and the booming popularity of video-sharing websites are
the two leading contributors to the growth of computer-
ized video analysis. A key challenge, however, is the sheer
size of video data. To put this into perspective, one second
of a high-definition video, in terms of size, is equivalent
to over 2000 pages of text [11].

Big data technologies turn this challenge into opportu-
nity. Obviating the need for cost-intensive and risk-prone
manual processing, big data technologies can be leveraged
to automatically sift through and draw intelligence from
thousands of hours of video. As a result, the big data tech-
nology is the third factor contributing to the development
of video analytics [9].

Video analytics can efficiently and effectively perform
surveillance functions such as detecting breaches of re-
stricted zones, identifying objects removed or left unat-
tended, detecting loitering in a specific area, recognizing
suspicious activities, and detecting camera tampering, to
name a few. Upon detection of a threat, the surveillance
system may notify security personnel in real time or
trigger an automatic action (e.g., sound alarm, lock doors,
or turn on lights) [9].

The data generated by CCTV cameras in retail outlets
can be extracted for business intelligence. Marketing and
operations management are the primary application areas.
For instance, smart algorithms can collect demographic
information about customers, such as age, gender, and
ethnicity [9].

Soyata et al. [12] have presented a mobile-cloudlet-
cloud architecture called MOCHA as a platform for our
target face recognition application. This architecture is
designed to minimize the overall response time of the
face detection and face recognition algorithms under the
circumstances of having heterogeneous communication
latencies and compute powers of cloud servers at diverse
geographical placements. This architecture reduces over-
all processing time when face recognition applications run
on mobile devices using the cloud as the backend servers.

Vinay et al. [13] have proposed a face recognition
approach operating on Big Data applied for the task of
Face Tagging in the context of social networks. They
employ Extreme Learning Machines (ELM) to conduct
facial extraction. The architecture proposed by Vinay et
al. is mainly focused on Face Tagging.

III. PROPOSED SYSTEM AND ARCHITECTURE

In this Section, the algorithm used for glasses detec-
tion is described. Afterwards, the Big Data architecture
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Fig. 1: Standard approach for glasses detection on face images: (a) input image, (b) location of the face, landmark
detection and regression line, (c) aligned and normalized eye glasses region, (d) LBP descriptors are built by partitioning
the LBP face image into a grid, (e) LBP histograms are built over each grid cell and concatenated into a vector, (f)
This vector is used for SVM classification, and (g) final output

for streaming processing of large amounts of images is
proposed.

A. Glasses detection on face images

Our original glasses detection algorithm [14] is ex-
plained hereafter. It can be seen in Figure 1.

First of all, this work starts with the face location
using the algorithm by Viola & Jones [15].

After the face is located in the image, some prepro-
cessing is necessary in order to deal with pose, rotation,
scale and inaccuracies of the located face.

A face normalization algorithm is applied to get the
region around the eyes (see Figure Figure 2). The face
normalization algorithm is explained as follows. Once the
face is detected on the first frame, a robust detector of
facial landmarks based on the Deformable Parts Models
is applied [16]. The output of the classifier is estimated
locations of a set of facial landmarks. In order to get
the angle of misalignment, a regression line is calculated
based on four points: the canthi of the left and right eye,
i.e., left inner eye, left outer eye, right inner eye and right
outer eye. After that, faces are rotated and aligned in the
images so that eyes are located in the same coordinates
for all the images. The desired area above the eyes is
calculated in the source image. Once the coordinates of
the corners of the desired region in the rotated image are
calculated, the resulting area is cropped from the rotated
image.

Afterwards, Local Binary Pattern (LBP) [17] is ap-
plied in order to get the feature sets.

Finally, Support Vector Machine (SVM) is applied on
the classification step. SVM is applied to classify the
extracted feature histograms over the normalized eyes
glasses regions. The output of the SVM classifier is a
two-class classification problem i.e. glasses vs no glasses.
LIBSVM was used for the training and testing of SVMs
[18].

Fig. 2: Face normalization algorithm to get the region
around the eyes

1) Local Binary Pattern: The Local Binary Pattern
operator is a type of feature used for classification. It
has been found to be a powerful feature for texture
classification. It was introduced in 1996 as a means of
summarizing local gray-level structure [17]. The operator
takes a local neighborhood around each pixel, thresholds
the pixels of the neighborhood at the value of the central
pixel and uses the resulting binary-valued image patch
as a local image descriptor. It was originally defined for
3 × 3 neighborhoods, giving 8 bit codes based on the 8
pixels around the central one.

The operator was extended to use neighborhoods
of different sizes [19], thus making it feasible to deal
with textures at different scales. Another extension to
the original operator [19] defined the so-called uniform
patterns: an LBP is ‘uniform’ if it contains at most two
bitwise transitions from 0 to 1 or vice versa when viewed
as a circular bit string. For example, 00000000, 00011110
and 10000011 are uniform patterns.

2) Support Vector Machine: SVMs are supervised
learning models with associated learning algorithms,
which analyze data and recognize patterns, used for
classification and regression analysis. Given a set of
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Fig. 3: Big Data architecture for streaming processing of large amounts of images

training examples, each marked for belonging to one of
two categories, an SVM training algorithm builds a model
that assigns new examples into one category or the other,
making it a non-probabilistic binary linear classifier.

An SVM model is a representation of the exam-
ples as points in space, mapped so that the examples
of the separate categories are divided by a clear gap,
which is as wide as possible. New examples are then
mapped into that same space and predicted to belong
to a category based on which side of the gap they fall
on. More formally, a support vector machine constructs
a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation
is achieved by the hyperplane with the largest distance
to the nearest training-data point of any class (so-called
functional margin), since in general the larger the margin
the lower the generalization error of the classifier.

B. Big data architecture for glasses detection on face
images

The main objective of the proposed architecture is
to parallelize the different steps of the glasses detection
workflows. In order to do that, we propose a topology
implemented with a streaming technology like Apache
Storm. Storm is distributed real-time computation system
released as open source by Twitter. The architecture is
simple. There are two types of elements:

1) Spouts reading information from the source and
emiting the data as K-V tuples.

2) Bolts processing information coming from the
spouts or other bolts.

By connecting bolts, Storm defines topologies similar
to Jobs in MapReduce. The main difference is that a
topology never ends, because the data to process is in
streaming. Thus, there is always new information to
process. Following the principles of the Apache Storm
architecture, Figure 3 depicts the proposed system:

1) VideoSpout: These software components split the
video streaming into a sequence of images (frames).
These frames are the input information for the glasses
detection algorithm. This Spout uses a shuffle grouping.
So, frames are randomly distributed across the next bolts
in the topology in such a way that each bolt is guaranteed
to get an equal number of frames.

2) V&Bolt: The basic face detection method is Ad-
aBoost algorithm with a cascading Haar-like feature clas-
sifiers based on the framework proposed by Viola & Jones

Fig. 4: The classifiers initially detected four bounding
boxes, but by applying non-maximum suppression, the
correct faces are obtained

[15]. Different face sizes are detected by repeating the
classification at different scales. Good results are obtained
by trying different scales a factor of 1.25 apart [15].

The proposed algorithm is implemented using a bolt
node to process frames in parallel. The computational
complexity of the Viola & Jones algorithm is indepen-
dent of scale [20]. If the complexity were not scale-
independent, the distribution would have to balance the
computational load by randomly assigning scales to each
bolt, mixing face scales evenly to the bolts. Anyway,
this bolt also uses shuffle grouping. Frames are randomly
distributed across the bolt tasks in such a way that each
bolt is guaranteed to get an equal number of frames.
Parallelizing, the face detection task helps to reduce
overall processing times.

3) Non-Maximum SupressionBolt: Since the Viola &
Jones algorithm is invariant to minor position and scale
changes, there will often be a set of overlapping faces
being detected around the vicinity of an actual face.
These overlapping results should be processed in order to
determine the final valid face locations. This process is
usually called Non-Maximum Supression (NMS), which
is a a key post-processing step in many computer vision
applications. In the context of object detection, it is used
to transform a smooth response map, which triggers many
imprecise object window hypotheses in, ideally, a single
bounding-box for each detected object. Therefore, two
key points on NMS include:

• A real face may result in multiple nearby detec-
tions

• Postprocess detected subwindows to combine
overlapping detections into a single detection
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Fig. 5: Normalized eye glasses region for some images from LFW database

Many approaches have been recently proposed to
prune the set of responses for object detection [21],
[22], [23]. However, with the purpose of keeping the
original NMS proposed by Viola & Jones algorithm, this
procedure is taken into account and it is described as
follows (see Figure 4).

The Viola & Jones detector [15] partitions those
responses in disjoint sets, grouping together responses
as soon as they overlap, and propose, for each group
with enough windows, a window whose coordinates are
the group average. The NMS stage involves grouping
the ‘raw’ bounding boxes into equivalence classes based
on closeness, deleting groups containing fewer than a
threshold number of boxes, and removing any groups
lying too close within another group.

4) NormalizationBolt: In this bolt, the face normal-
ization algorithm explained before is applied to get the
region around the eyes (some examples can be seen in
Figure 5). This bolt also uses shuffle grouping. After-
wards, LBP is applied on the normalized eye glasses
region in order to get the feature sets.

5) HistogramBolt: After labelling an image with the
LBP operator, a histogram of the labelled image fl(x, y)
can be defined as:

Hi =
∑

x,y

I{fl(x, y) = i}, i = 0, ..., n− 1 (1)

where n is the number of different labels produced by
the LBP operator and:

I{A} =
{

1, if A= true
0, otherwise

(2)

For efficient face representation, LBP features should
retain spatial information. Hence, the facial image is
divided into m regions {R0, ...., Rm−1}. In this way, the
basic histogram defined above can be extended into a
spatially enhanced histogram [24], which encodes both
the appearance and the spatial relations of facial regions.
This bolt also uses shuffle grouping.

6) SVMBolt: Support Vector Machine (SVM) is ap-
plied on the classification step. SVM is applied to classify
the extracted feature histograms over the normalized
eyes glasses regions. The output of the SVM classifier

is a two-class classification problem i.e. glasses vs no
glasses. Therefore, different type of glasses (sport glasses,
sunglasses, safety glasses, reading glasses, etc) belong to
the same category. LIBSVM was used for the training
and testing of SVMs [18].

This bolt uses an offline SVM model created using
the Labeled Faces in The Wild (LFW) Database [25].
LFW database is a database originally created to study
the problem of unconstrained face recognition, which
contains 13,233 face images of 5,749 distinct subjects
collected from the web. This database has also recently
been used as benchmark for another attribute recognition
algorithms [26], [27]. In our previous work [14], 3,000
face images (1,500 wearing glasses, 1,500 not wearing
glasses) were used to train a SVM classifier achieving a
98.65% recognition rate. Therefore, this generated model
is used in this bolt.

IV. CONCLUSION AND FUTURE WORK

Big data has made a strong impact in almost every
sector and industry today. In this paper, a real-time Big
Data architecture in order to collect, maintain and analyze
massive volumes of images related with the problem of
automatic glasses detection is proposed.

As commented before, Viola & Jones face detector
typically produces a number of positive responses close
by to the correct detection, and this leads to the need to
have a further non-maximum suppression (NMS) stage to
thin out the multiple responses, and to suppress spurious
responses. Different alternatives are proposed [21], [22],
[23] and should be checked in order to increase both
performance and accuracy of the detections. Therefore,
several tests and comparisons will be performed among
these alternatives.

Deep Learning algorithms extract high-level, complex
abstractions as data representations through a hierarchical
learning process. Complex abstractions are learnt at a
given level based on relatively simpler abstractions for-
mulated in the preceding level in the hierarchy. A key
benefit of Deep Learning is the analysis and learning
of massive amounts of unsupervised data, making it a
valuable tool for Big Data Analytics, where raw data
are largely unlabeled and un-categorized [28]. Therefore,
future work will include Deep Learning algorithms in our
pipeline detection architecture.
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From the architecture point of view, new approaches
will be study. New streaming technologies like Apache
Spark Streaming [29] and Samza [30] provides different
strategies (once-at-time vs micro-batched) for streaming
processing. In addition, hybrid computation models like
Lambda [31] and Kappa [32] architectures could improve
the system by generating dynamic models using unsuper-
vised data.
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Abstract— According to estimates by the World Health 
Organization, about 285 million people suffer from some kind of 
visual disability, of whom 39 million are blind, resulting in 0.7% 
of the world population. Computer vision techniques and image 
analysis can help improve visually-impaired people. In this 
project, a system that allows for facial recognition and detection 
of spoofing adapted to the needs of disabled people is proposed, 
implemented and validated. The architecture has been carefully 
selected and subsequently implemented following an innovative 
facial normalization algorithm in order to increase both the 
recognition rate of facial identification and spoofing detection. 
The information provided to the user is composed by the name of 
the person identified and whether it is real or fake image 
(photograph). This information is provided by means of a text-to-
speech tool. This architecture can be integrated into video door-
phone installations (videointercom  installations), devices with 
reduced computing capabilities or the users´ mobile phones. The 
architecture has been validated in a real environment with both 
real users and printed images achieving very good results.  
 

Keywords— face recognition, spoofing detection, visually-
impaired, system architecture. 

        I. INTRODUCCION 
A CEGUERA es una discapacidad visual que afecta a un 
0.7% de la población mundial. Según las últimas 

estimaciones, casi un millón de personas en España padecen 
algún tipo de discapacidad visual y debido a las enfermedades 
retinianas mencionadas, alrededor de 70.000 personas 
presentan ceguera total. Según estimaciones de la 
Organización Mundial de la Salud (OMS), alrededor de 285 
millones de personas padecen algún tipo de discapacidad 
visual de las cuales 39 millones son ciegas, lo que supone un 
0.7% de la población mundial [1].  

La discapacidad visual afecta de manera desigual a los 
distintos grupos de edad siendo más incisiva en personas 
mayores de 50 años representando el 65% del total (a pesar de 
que este grupo sólo representa el 20% del total de la 
población) [2]. Entre los cambios que se producen en la visión 
a consecuencia de la edad podemos destacar [1]:  

(1) Pérdida de la sensibilidad de la retina a la 
iluminación que origina una necesidad de utilizar 
iluminación más brillante.  

(2) Opacidad del cristalino que ocasiona menor visión y 
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reflejos molestos. 
(3) Elasticidad del cristalino y pérdida de la capacidad 

para enfocar. 
(4) Degeneración del vítreo que provoca la visión de 

manchas. 
(5) Disminución de la capacidad de las conjuntivas y 

glándulas lagrimales para lubricar adecuadamente los 
ojos. 
 

Todo ello provoca que con la edad se pierda parte de la 
capacidad visual y se desarrollen patologías como pueden ser 
las cataratas, el glaucoma, la degeneración macular, 
afecciones parpebrales o la sequedad de los ojos [1].  

Además, las estimaciones apuntan a un mayor 
envejecimiento de la población en Europa. En la Unión 
Europea (UE), se estima que la población mayor de 65 años y 
susceptible de padecer algunas de las principales patologías de 
ceguera aumente del 17.4% actual al 29% en 2050 [1]. La 
situación de la ceguera en España es muy parecida a la que 
encontramos en Europa o en otros países desarrollados; se 
prevé que en el futuro ésta aumente como consecuencia del 
incremento de distintos factores de riesgo como el 
envejecimiento de la población o el aumento en prevalencia de 
la diabetes. 

Actualmente la tasa de personas mayores de 65 años en 
España se sitúa en torno a 17%, muy parecida a la tasa media 
registrada en Europa que es del 17.4% [3]. Sin embargo, se 
estima que en el futuro España será uno de los países con 
mayores retos para enfrentar el envejecimiento de su 
población, ya que está previsto que para el año 2050, el 33% 
de las personas serán mayores de 65 años, 4 puntos 
porcentuales por arriba de la media de la Unión Europea que 
se situará en el 29% [3]. La prevalencia de diabetes en España 
se sitúa también por encima de la UE [4]. 

Las tecnologías de la información y la comunicación (TIC) 
suponen una gran oportunidad en el desarrollo de nuevos 
sistemas y soluciones que permitan en líneas generales 
aumentar la calidad de vida de las personas con discapacidad 
visual. En este sentido, la visión por computador puede ser de 
gran ayuda para mejorar el día a día de estas personas. En 
concreto, el análisis facial puede servir para extraer 
información muy útil y relevante con el objetivo de ayudar a 
las personas con discapacidad visual en varias de sus tareas 
diarias dotándoles de un mayor grado de autonomía y 
seguridad.  

El reconocimiento facial ha recibido muchas mejoras en los 
últimos años y hoy en día se acerca a la perfección. Los 
avances en el reconocimiento facial no han sido ajenos a las 
personas con discapacidad. Por ejemplo, recientemente se ha 
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presentado un bastón inteligente para ciegos que utiliza 
reconocimiento facial [5]. El bastón viene equipado con un 
sistema de reconocimiento facial, GPS y Bluetooth. Al divisar 
la cara de cualquier conocido o amigo cuya foto está 
almacenada en la tarjeta SD del bastón, este vibrará y dará, a 
través de un auricular Bluetooth, las instrucciones necesarias 
para llegar hasta esta persona. El sistema funciona con 
cualquier persona que se encuentre a 10 metros o menos. 
Además, gracias al GPS, el usuario recibirá instrucciones para 
llegar a donde quiera, como con cualquier navegador GPS. 

Sin embargo, además de realizar la tarea de 
reconocimiento, hoy en día los sistemas biométricos tienen 
que lidiar con otro tipo de problemas, como el spoofing. En 
términos de seguridad de redes, este término hace referencia al 
uso de técnicas a través de las cuales un atacante, 
generalmente con usos maliciosos, se hace pasar por una 
entidad distinta a través de la falsificación de los datos en una 
comunicación.  

Los sistemas de reconocimiento facial son vulnerables a los 
ataques de tipo spoofing. Esto puede ocurrir cuando una 
persona presenta una fotografía de la persona deseada a la 
cámara en lugar de la suya propia. Esto presenta un gran 
problema, pues es relativamente fácil y sencillo hacerse con 
una fotografía para ser usado a posteriori. Creemos que este es 
un tema realmente importante en las personas que presentan 
discapacidad visual. 

Basado en las premisas anteriores, el objetivo del presente 
artículo es el de proponer, construir y validar una arquitectura 
basada en reconocimiento facial y sistema anti-spoofing que 
pueda ser integrado tanto en un videoportero como una 
aplicación móvil. De esta manera, se quiere dotar a los ciegos 
y disminuidos visuales de un instrumento o herramienta que le 
permita en un último fin mejorar la calidad de vida y aumente 
tanto su seguridad como la sensación de la misma en su hogar 
o cuando tenga interacciones con otras personas.  La 
arquitectura propuesta se ha validado con usuarios reales y en 
un entorno real simulando las mismas condiciones que se 
podrían dar tanto en las imágenes capturadas por un 
videoportero como las imágenes capturadas por una persona 
con discapacidad visual por medio de su dispositivo móvil.  
Las contribuciones se comentan a continuación:  

En primer lugar se propone un algoritmo para la 
normalización de la cara del usuario robusto en cuanto a 
rotaciones y desajustes en el algoritmo de detección facial. 
Está demostrado que un algoritmo robusto de normalización 
puede aumentar considerablemente la tasa de acierto en un 
algoritmo de detección facial.  

En segundo lugar se propone usar un algoritmo de 
detección de spoofing con el objetivo de aumentar la 
seguridad del sistema facial a reconocer. Para ello el algoritmo 
se basa en el análisis de texturas pues este tipo de algoritmos 
han presentado una gran alta tasa de acierto con la ventaja de 
haber aplicado el algoritmo de normalización de la cara en el 
paso previo.  

En tercer lugar se ha diseñado e implementado una 
arquitectura que está especialmente pensada para ser ejecutada 
en dispositivos con reducidas capacidades de cómputo. El 

algoritmo ha sido diseñado e implementado en C++ y ha sido 
portado a la plataforma Android mediante JNI para la 
comunicación con los algoritmos de visión artificial.  

Por último comentar que la arquitectura se complementa 
con una herramienta de "text to speech" para que la persona 
con discapacidad obtenga la información final del sistema: de 
quien se trata y si se trata efectivamente de una persona real o 
por el contrario se trata de una falsificación. 

II. ESTADO DEL ARTE 

A.  Reconocimiento facial orientado a la discapacidad visual 
El problema del reconocimiento facial adaptado a las 

personas con discapacidad visual ha sido investigado en sus 
diferentes formas. A continuación se resumen los trabajos más 
importantes, indicando para cada uno de ellos las 
características más importantes que han ido motivando el 
desarrollo de la arquitectura aquí propuesta.   

En [6] se presenta un sistema de reconocimiento facial en 
dispositivos móviles para discapacitados visuales, pero se 
centra principalmente en reuniones con lo que aspectos como 
el campo visual capturado por el dispositivo móvil centran 
gran parte de la temática. En [7] se desarrolló un sistema de 
reconocimiento facial basado en Local Binary Pattern (LBP) 
[8]. Compararon este descriptor con otras alternativas (Local 
Ternary Pattern [9] o Histogram of Gradients [10]) y llegaron 
a la conclusión que el rendimiento de LBP es un poco 
superior, su coste computacional es menor y la representación 
de la información es más compacta.  Y como se ha comentado 
anteriormente, en [5] se ha desarrollado un sistema de 
reconocimiento facial integrado en un bastón.  

En ninguno de estos métodos se lleva a cabo la detección de 
spoofing, haciendo que el sistema tenga una vulnerabilidad 
alta ante este tipo de ataques. Creemos que es un punto muy 
importante sobre todo en personas con discapacidad visual. 
Además, ninguna de las alternativas antes comentadas está 
orientada a los videoporteros.  

B.  Detección de Spoofing 
Como en ninguno de los casos anteriores se ha estudiado la 

detección de spoofing para ayudar a personas con 
discapacidad visual, procederemos a comentar los resultados 
más significativos en lo que a la detección de spoofing se 
refiere.  

Existen muchos métodos diferentes para la detección de 
spoofing. Sin embargo, uno de los factores clave en una 
aplicación que debe funcionar en tiempo real y en un 
dispositivo embebido es que el método sea 
computacionalmente ligero. La mayoría de los algoritmos 
propuestos o bien son muy complejos y por tanto no son aptos 
para entornos reales, o bien no usan imágenes convencionales 
(por ejemplo multi-espectrales o termográficas) [11]. Los 
algoritmos basados en el análisis de micro-texturas ofrecen un 
buen resultado con un coste computacional relativamente bajo. 
En [11], se ha aplicado el algoritmo LBP a la detección de 
spoofing aplicando dicho operador a diferentes escalas. En 
[12], se analizan también diversas variantes del operador LBP 
para la detección de spoofing. En [13], también aplican el 
operador LBP junto con Máquinas de Soporte Vectorial 
(SVM) para  la detección de spoofing. Tanto en [12] como en 
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[13], utilizan una división de la región facial en 9 regiones 
(3x3 regiones), pues comentan que es el número de divisiones 
que mejores resultados ha generado. Después aplican el 
operador LBP en cada una de las regiones y concatenan el 
histograma generado. Este factor será tenido en cuenta en 
nuestra arquitectura a la hora de generar el histograma LBP. 

III. METODOLOGÍA 
 A continuación se comentan las principales fases del 
algoritmo. En los siguientes puntos de esta sección se irán 
detallando. Los principales pasos del algoritmo se pueden ver 
en la Fig. 1.  

En primer lugar, este trabajo empieza con la localización de 
la cara de la persona en la imagen. Para esta tarea se usa un 
algoritmo basado en Viola & Jones [14], pero ampliado y 
modificado para lograr un algoritmo más robusto.  

En segundo lugar y una vez localizada la cara en la imagen, 
un pre-procesamiento es necesario para lidiar con la pose, 
rotación e imprecisiones que provienen de la detección facial 
previa. Es por ello que se aplica un algoritmo de 
normalización facial. Nosotros hemos propuesto previamente 
este algoritmo de normalización facial para la detección 
robusta de gafas en personas en imágenes reales [15]. 
También lo hemos usado para la obtención de variables 
fisiológicas (frecuencia cardiaca y frecuencia respiratoria) 
obteniendo en ambos casos muy buenos resultados [16].  

Una vez la región facial ha sido normalizada, LBP se 
emplea para obtener el conjunto de características que 
describirán la cara. Con el foco puesto en la complejidad 
computacional del algoritmo, el conjunto de características 
extraídas mediante el operador LBP ha sido cuidadosamente 
seleccionado, pues está produciendo muy buenos resultados 
tanto en la detección facial como en la detección de spoofing. 
Es por ello, que una vez extraído el conjunto de características 
faciales mediante el operador LBP, éste sirve como entrada en 
la etapa de clasificación a dos máquinas de soporte vectorial 
(SVM). SVM se aplica para clasificar el histograma obtenido 
de la región normalizada de la cara. La salida de los dos 
clasificadores SVM es por un lado la identificación facial y si 
dicha detección se corresponde con una falsificación o por el 
contrario es una cara real. SVMs son una técnica muy usada 
para la clasificación de los datos y ha sido propuesta  en 
muchas ocasiones con temas relacionados con las tareas de 
reconocimiento de patrones, como por ejemplo 
reconocimiento facial [17]. Se usó LIBSVM para las tareas de 
entrenamiento y testeo de SVMs [18]. 
El sistema ha sido validado en un entorno real por medio de 
una aplicación desarrollada para la plataforma Android 
mediante llamadas JNI a los algoritmos de visión por 
computador que están desarrollados enteramente en C++. El 
motivo de desarrollar los algoritmos de visión por computador 
en C++ es debido a que es un lenguaje altamente compatible y 
recomendado para ser ejecutado en dispositivos con reducidas 
capacidades de cómputo.  

La arquitectura ha sido desarrollada y validada en un 
videoportero y también se han portado los algoritmos al 
dispositivo móvil de una persona con discapacidad visual. 
Para validar la arquitectura en un videoportero ésta ha sido 
desarrollada meticulosamente teniendo en cuenta las 
posiciones, orientaciones y condiciones que presentan los 

videoporteros con el objetivo de que la captura de imágenes 
para validar el sistema fueran lo más fidedignas posibles a un 
entorno real. El entorno seleccionado para validar el sistema 
se encuentra a la puerta del Centro Tecnológico donde 
realizamos nuestra actividad investigadora.  

Por otro lado, para validar la arquitectura en una aplicación 
móvil, la aplicación fue desarrollada teniendo en cuenta las 
características y recomendaciones propuestas por otros 
autores, además de características que faciliten el encontrar la 
cara del usuario para permitir tomar las fotografías de la 
persona con la que está interactuando la persona con 
discapacidad visual. 

 
Figura 1.  Principales pasos del algoritmo propuesto para la identificación 
facial, detección de spoofing y conversión a voz de la información agregada. 

A.  Detección facial 
El detector facial propuesto por Viola & Jones [14] es 

comúnmente usado para realizar el seguimiento de la cara a lo 
largo del tiempo. Este detector presenta buenos  resultados 
cuando la cara está prácticamente frontal, sin embargo, no 
puede lidiar cuando se presentan rotaciones a partir de 45 
grados tanto en el eje vertical como en el eje horizontal. Es 
además un detector facial, es decir, no realiza el seguimiento 
de la cara a lo largo del tiempo (no es el algoritmo más 
adecuado para hacer el seguimiento o tracking facial). 
Además, es común que se encuentren falsos positivos o 
múltiples detecciones solapadas ante una misma cara por la 
forma que tiene de proceder dicho algoritmo. Por lo tanto, es 
necesario un algoritmo robusto para realizar un seguimiento 
de la cara a lo largo del tiempo. Con el objetivo de solucionar 
las dificultades anteriormente comentadas, se propone 
combinar tres detectores faciales en el primer frame o cuando 
se pierde una cara y se está buscando una nueva aparición. 
Cada detector está basado en el algoritmo de Viola & Jones 
antes comentado. De esta manera, se entrenan tres detectores: 
un detector frontal, un detector del perfil izquierdo y un 
detector del perfil derecho.  

El resultado de aplicar el algoritmo de Viola & Jones a una 
imagen se corresponde con detecciones faciales en forma de 
rectángulos. En caso de que varios de los detectores faciales 
detecten una cara, la mínima región que recoge a ambos 
rectángulos es creada. El siguiente paso del algoritmo es el 
que trata en profundad estas posibles detecciones. 

B.  Seguimiento y normalización facial 
El siguiente paso se corresponde con el seguimiento de la cara 
(tracking) y la normalización de la región facial. El algoritmo 
de Viola & Jones solamente encuentra las posiciones de las 
caras en la imagen que se corresponden con rectángulos. Esto 
no es suficientemente preciso, pues se pueden incluir en el 
rectángulo de detección píxeles que no se corresponden con 
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región facial, sobre todo en las esquinas del rectángulo. Por lo 
tanto, un algoritmo de normalización es necesario.  

Es bastante común en algoritmos de procesamiento facial 
usar un detector de piel para construir un mapa de piel que 
después servirá para normalizar la región facial [19]. Sin 
embargo, estos detectores no son muy robustos a los cambios 
de iluminación. También es muy común el uso de la técnica 
Active Appearance Model (AAM) [20] para detectar los 
principales puntos característicos de la cara. Sin embargo, un 
detector basado en AAM no es muy robusto, sobre todo en 
imágenes con baja resolución [21]. 

Es por ello que en la presente publicación, se propone: (1) 
un algoritmo de normalización facial y (2) un algoritmo de 
seguimiento facial para solucionar los problemas antes 
comentados.  

El algoritmo de normalización facial es necesario para lidiar 
con la pose, rotación, escala e  inexactitudes de la cara 
localizada. Este algoritmo está basado en el algoritmo 
propuesto en [15] pero modificado para obtener toda la región 
facial necesaria para después proceder tanto al reconocimiento 
facial como a la detección de spoofing. A continuación se 
resumen los principales puntos del algoritmo de 
normalización. 
    1)  Algoritmo de normalización facial 
 

 
Figura 2.  El algoritmo de normalización tiene en cuenta la rotación y realiza 
una corrección y normalización de la región facial. 

A continuación se comentan los principales pasos del 
algoritmo. Una vez que la cara ha sido detectada, se aplica un 
detector robusto de características faciales basado en 
“Deformable Parts Models” (DPM) [21]. La salida del 
detector se corresponde con estimaciones de localizaciones 
para un conjunto de puntos característicos en la imagen: 
esquinas de los ojos, esquinas de la boca y nariz. Con el 
objetivo de calcular el ángulo de desviación de la cara, se 
calcula una recta de regresión que utiliza los cuatro puntos de 
los ojos. Esto puede verse en la Fig. 2. A continuación las 
caras son rotadas y alineadas de manera que los ojos siempre 
se encuentran en las mismas coordenadas en la imagen final. 
A continuación se calcula la región facial por encima y por 
debajo de los ojos, para que únicamente información relevante 
se procese en las etapas siguientes del algoritmo. Mediante 
este algoritmo de normalización hemos comprobado que la 
tasa de reconocimiento puede incrementarse 
significativamente. Aplicándolo al caso de reconocimiento de 
gafas por ejemplo, hemos obtenido una mejora del 1.55%. 
Como se ha comentado anteriormente, todos los detalles del 
algoritmo pueden verse en [15], aquí únicamente se muestran 
de manera resumida. 

    2)  Algoritmo de seguimiento facial 
Para realizar el seguimiento de las caras a lo largo del 

tiempo, se emplea un algoritmo de tracking muy robusto y 
recién publicado que está obteniendo muy buenos resultados 
[22]. Para el primer frame se emplea un rectángulo que 
envuelve el conjunto de características faciales devuelto por el 
detector. En caso de haber varias caras, se realiza el 
seguimiento de la cara que ocupe mayor espacio en la imagen, 
ya que se supone que es la principal. Dicho algoritmo de 
tracking realiza el seguimiento a lo largo del tiempo. La salida 
del algoritmo de tracking se utiliza después en el resto de 
frames y se aplica el algoritmo de normalización antes 
comentado. 

C.  Extracción de características mediante LBP 
En primer lugar comentaremos en qué consiste el operador 
LBP y en segundo lugar comentaremos como se ha aplicado 
dicho operador para la extracción de las características faciales 
tanto para la identificación facial como para la detección de 
spoofing.  
 
    1)  Operador LBP y mejoras incorporadas a dicho 
operador 
El operador Local Binary Pattern (LBP) [23] es un tipo de 
operador que se suele utilizar para temas de clasificación. Es 
un operador muy potente en todo lo relacionado con el tema 
de clasificación de texturas. Dicho operador fue introducido 
en 1996 como un método para sintetizar la estructura del nivel 
de grises en imágenes. Dicho operador tiene en cuenta un 
vecindario local de píxeles alrededor de un píxel central. A 
continuación umbraliza los píxeles del vecindario con el valor 
del píxel central y usa el resultado como un número en binario 
como descriptor para ese vecindario y así sucesivamente para 
toda la imagen. Fue originalmente propuesto para un 
vecindario de 3x3, con 8 bits para codificar los valores 
binarios, puesto que son precisamente 8 los píxeles vecinos. 
Formalmente el operador LBP presenta la siguiente forma: 
,௖ݔ)ܲܤܮ  (௖ݕ =  ෍ 2௣଻

௣ୀ଴ ൫݃௣ݏ − ݃௖൯                                           (1) 

 donde en este caso p recorre los 8 vecinos con respecto al 
píxel central c,gc  y gp son los valores del nivel de gris en c y p 
y:  (ݔ)ݏ =  ቄ1, ≤ ݔ ݅ݏ 00,  (2)                                                           ݋ݏܽܿ ݋ݎݐ݋ ݊݁
 
El proceso de codificación del operador original se ilustra en 
la Fig. 3. 

 
Figura 3.  Operador LBP original (básico). 

El operador fue posteriormente extendido para incorporar 
vecindarios de píxeles de diferentes tamaños, haciendo por 
tanto posible lidiar con las texturas a diferentes escalas [24]. 
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Este hecho se denota por (P,R) donde P representa el número 
de puntos de muestreo (es decir el número de vecinos equi-
espaciados alrededor del píxel central) y R representa el radio 
del vecindario. Cuando las posiciones de los puntos de 
muestreo no se corresponden con posiciones enteras en la 
imagen, se utiliza la técnica de interpolación bilineal. En la 
Fig. 4 se puede ver un ejemplo de un radio circular del tipo 
(8,2). La implementación de este LBP circular (LBPP,R) toma 
la siguiente forma: 
 

 
   

Figura 4.  El operador circular (8,2). Los valores de los píxeles son 
bilinealmente interpolados siempre que el punto de muestreo no coincida en el 
centro de un píxel. 

ܤܮ ௉ܲ,ோ(ݔ௖, (௖ݕ =  ෍ 2௣௉ିଵ
௣ୀ଴ ൫݃௣ݏ − ݃௖൯                                       (3) 

Otra extensión al operador original define como los patrones 
uniformes [24]. Un patrón LBP es uniforme cuando contiene 
como mucho dos transiciones a nivel de bit de 0 a 1 o 
viceversa visto como una cadena circular de bits cara uno de 
los patrones. Por ejemplo, los patrones 00000000, 00011110 
and 10000011 son uniformes. El concepto de uniformidad es 
un concepto muy importante en la metodología de LBP, pues 
representa información estructural de primitivas como pueden 
ser los bordes o las esquinas en la imagen. A pesar de que 
únicamente hay 58 patrones uniformes de los 256 posibles 
patrones considerando un vecindario de 8 píxeles, cerca del 
90% de los patrones en la región facial son uniformes. Es por 
ello que los patrones uniformes se pueden usar para reducir 
considerablemente la dimensionalidad de los datos manejados 
sin perder excesiva información. Para referirse a los patrones 
uniformes, se usa la siguiente notación: ܤܮ ௉ܲ,ோ௨ଶ . 
 
    2)  Extracción de características mediante el operador LBP 
para identificación facial y detección de spoofing 

Con el objetivo de conseguir un algoritmo eficiente, robusto 
y computacionalmente ligero, se investigaron qué diferentes 
descriptores y operadores se podrían aplicar para representar 
de manera eficiente la región facial. Tras realizar una profunda 
investigación, analizar el estado del arte y hacer unas pruebas 
preliminares, se llegó a la conclusión que el operador LBP 
produce resultados excelentes tanto en el reconocimiento 
facial como en la detección de spoofing. Además, es un 
operador computacionalmente ligero. Por último y no por ello 
menos importante, sólo se computa una vez el operador, pues 
la información extraída de la región facial por medio del 
operador LBP se comparte por ambos módulos. 
Después de etiquetar la imagen aplicándole el operador LBP, 
un histograma de esta imagen etiquetada fl(x,y) se puede 
definir como: 

௜ܪ =  ෍ ௫,௬ܫ ሼ ௟݂(ݔ, =(ݕ ݅ሽ, ݅ = 0, … , ݊ − 1                                 (4) 

donde n representa el número de valores diferentes producidos 
por el operador LBP y: ܫ ሼܣሽ =   ൜ 1, ܣ ݅ݏ = ,0݋ݎ݁݀ܽ݀ݎ݁ݒ  (5)                                                           ݋ݏܽܿ ݋ݎݐ݋ ݊݁
Para una representación eficiente de la información facial, las 
características extraídas mediante el operador LBP deberían 
disponer de información espacial. Es por ello que la imagen se 
ha dividido en m regiones {R0,R1, ... , Rm-1}. De esta manera, 
el histograma básico descrito arriba puede extenderse en lo 
que se conoce como un "histograma mejorado espacialmente" 
[8], el cual es capaz de codificar tanto la apariencia y las 
relaciones espaciales de las distintas regiones faciales. Este 
nuevo histograma se define como: ܪ௜,௝ =  ෍ ௫,௬ܫ ሼ ௟݂(ݔ, =(ݕ ݅ሽܫሼ(ݔ, (ݕ ∈ ௝ܴൟ                                     (6) 

donde i=0,....,n-1, j=0,...,m-1. El histograma por tanto sirve 
para describir la región normalizada de la cara teniendo en 
cuenta tres niveles de localidad: las etiquetas del histograma 
contienen información sobre los patrones a nivel de píxel, 
estas etiquetas son tenidas en cuenta para crear histogramas en 
regiones y en un último nivel, todos estos histogramas se 
concatenan para conseguir un histograma global. 

D.  Agregador información y generación de audio 
Con el objetivo de minimizar la cantidad de información 

que se le proporciona al usuario y que ésta sea lo más 
fidedigna posible,  los resultados se proporcionan al usuario al 
analizar un conjunto N de frames determinados. Por lo tanto, 
el sistema analiza los últimos N frames y en de que el 
algoritmo de tracking detecte la presencia de una cara, el 
sistema proporciona al usuario la información correspondiente 
a la detección facial y al sistema de spoofing.  

Tras realizar varias pruebas y también tras analizar varias 
publicaciones [7], se ha llegado a la conclusión que un número 
reducido de frames (N = 5) es suficiente para minimizar la 
cantidad de información proporcionada al usuario y además, 
proporcionarle una información rápida,  precisa y fiable al 
usuario.  

Para el caso de uso de la aplicación móvil (ver Sección V), 
se proporciona además, información acústica acerca del estado 
del tracking  con el objetivo de ayudar al usuario a “encontrar” 
a la persona que está hablando.  

Para el caso del videoportero (ver Sección V) esto no es 
necesario, pues la detección facial del sistema no depende de 
la persona con discapacidad visual y no suele haber problemas 
para localizar y hacer el seguimiento de la cara en las 
imágenes capturadas por el videoportero.  

IV. IMPLEMENTACIÓN 
El sistema aquí propuesto ha sido desarrollado en C++ y 

haciendo uso de la librería de OpenCV. OpenCV (Open 
Source Computer Vision Library) es una biblioteca de visión 
por computador multiplataforma, publicada bajo la licencia 
BSD que permite ser usada tanto para uso académico como 
comercial. Incluye más de 500 algoritmos. La última versión 
estable es la 2.4.11 que es la que ha sido usada en la 
implementación del sistema.   
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Como herramienta para entrenar los modelos para el 
reconocimiento facial y detección de spoofing basados en 
SVM se hizo uso de la librería LibSVM [18].  

El sistema ha sido construido de manera modular. Cada uno 
de los módulos que componen el sistema son los descritos 
anteriormente (ver Sección Metodología).  Tanto la 
modularidad como el hecho de que el sistema estuviera 
desarrollado enteramente en C++ permitieron adaptar la el 
sistema a dos casos de uso diferentes.  

Por un lado el sistema se adaptó para el caso de uso de los 
videoporteros.  

El segundo caso de uso fue el de portar el sistema y los 
algoritmos a la plataforma Android para desarrollar una 
aplicación móvil que sirviera a las personas con discapacidad 
visual en su interacción diaria con otras personas.  

A continuación comentamos de manera sucinta ambas 
implementaciones y en la Sección Casos de Estudio se 
comentan los resultados y detalles para cada uno de los dos 
casos de estudio. 

A.  Implementación en caso de uso de los videoporteros 
 En un primer lugar, el sistema se implementó bajo el 
sistema operativo Windows, haciendo uso de la librería 
OpenCV antes comentada y enteramente en C++. El objetivo 
es el de desarrollar una aplicación que pueda ser incluida en 
un videoportero. Puesto que el lenguaje C++ es uno de los 
más portables y con mejores rendimientos en cuanto a 
capacidad y velocidad de computación, la implementación 
desarrollada es perfectamente portable a un dispositivo 
embebido sin realizar apenas modificaciones al sistema.  

B.  Implementación en caso de uso de aplicación móvil 
Dada la modularidad del sistema, el siguiente paso fue portar 
los algoritmos de visión por computador a la plataforma 
Android usando el framework JNI. Es un framework que 
permite que partes de la aplicación en Android se comuniquen 
con los algoritmos de visión artificial cuya implementación 
seguiría estando en C++. De esta manera el sistema no 
perdería excesivamente en rendimiento.  

El objetivo de portar los algoritmos a la plataforma Android 
fue el de construir una aplicación para los dispositivos móviles 
que pudiera realizar la autenticación facial y la detección de 
spoofing orientada a gente con discapacidad visual. De esta 
manera, la aplicación ayudaría a estas personas a sus 
interacciones diarias con otra gente. 

V. CASOS DE ESTUDIO Y RESULTADOS OBTENIDOS 
 En esta Sección se muestran dos casos de estudio, donde la 
herramienta desarrollada sirve de soporte para la creación de 
dos aplicaciones diferentes.  

En la primera de ellas, se comentan los detalles para adaptar 
el sistema a la identificación facial y detección de spoofing en 
un videoportero, teniendo en cuenta las características que 
esto implica. 

En segundo lugar, se portaron los algoritmos construidos a 
la plataforma Android con el objetivo de construir una 
aplicación móvil que sirviera como soporte a las personas con 
discapacidad visual en su interacción con otras personas. 

A.  Caso de estudio 1: videoportero 
 En primer lugar, con el objetivo de validar el sistema en un 
entorno lo más realista posible, se decidió realizar las pruebas 
a la entrada del centro tecnológico donde realizamos nuestra 
actividad investigadora. Además, otro factor que ha sido 
tenido en cuenta para una correcta validación del sistema, fue 
la ubicación y tipo de la cámara a instalar. Las imágenes 
capturadas tienen que ser lo más realistas posibles pues son las 
que sirven tanto para entrenar como para validar el sistema. 
Para ello, se realizó un estudio en el que se recogieron dos 
factores principales: altura del videoportero, distancia a la que 
se suelen ubicar las personas (ver Fig. 5). 

 

 
Figura 5.  Alcance visual (posición y distancia) habituales de los usuarios 
respecto del videoportero 

Como se puede apreciar, los usuarios se suelen colocar a una 
distancia de unos 0.5 metros. El videoportero ha sido colocado 
a una altura de unos 1.53m. 

Puesto que el histograma LBP es calculado sobre cada 
división en la imagen y posteriormente concatenado, un 
número de divisiones pequeño consigue un histograma más 
pequeño pero tiene el inconveniente de que se pierde 
información espacial.  

Es por ello que se realizaron diversas pruebas con el 
objetivo de ver el número de divisiones que mejores 
resultados aportaba tanto al reconocimiento facial como a la 
detección de spoofing así como otros parámetros del operador 
LBP. La mejor configuración de parámetros fue ଼ܲܤܮ ,ଵ௨ଶ 
(patrones uniformes, R = 1, P = 8) con SVM usando un kernel 
del tipo RBF, que está en consonancia con otras 
investigaciones relacionadas [12],[13],[25]. Un diagrama 
donde se muestra el proceso puede verse en la Fig. 6.  

Para establecer los parámetros del algoritmo se hicieron uso 
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de las bases de datos de imágenes más comunes para la 
comparación de los algoritmos correspondientes al 
reconocimiento facial y a la detección de spoofing a partir de 
imágenes: Labeled Faces in the Wild (LFW) [26] y NUAA 
Photograph Imposter Dabase [27]. 

Con el objetivo de validar la arquitectura desarrollada, se 
instaló el prototipo a la entrada del Centro Tecnológico donde 
realizamos nuestra labor investigadora. Para ello se tuvieron 
en cuenta los detalles llevados a cabo por otros estudios, el 
alcance visual (posición y distancia) habituales de los usuarios 
respecto del videoportero.  

Con esta configuración, lo habitual es que la cara detectada 
en la imagen tenga una resolución de unos 64x64 píxeles 
aproximadamente. Es por ello que las pruebas realizadas con 
las imágenes de las bases de datos antes comentadas se 
redimensionen a dicha resolución una vez la cara ha sido 
detectada (ver Fig. 6). 
 

 
Figura 6.  La imagen original (a) se convierte a escala de grises y se detectan 
los puntos característicos (b).  A continuación se rota para alinearla en función 
del ángulo (c). Después obtenemos la región normalizada (64x64) de la cara 
(d). Aplicamos 3x3 divisiones a la región facial (e) y construimos la imagen ଼ܲܤܮ ,ଵ௨ଶ (f). Se construye el histograma dadas estas regiones para formar el 
vector de características (g). Por último se clasifica este vector usando ambos 
clasificadores (h) para obtener las respuestas finales (i). 

Una vez seleccionados los parámetros del algoritmo, se 
hicieron pruebas durante 5 días consecutivos  y con diferentes 
condiciones de iluminación (por la mañana y por la tarde). 
Cabe decir, que aunque la entrada del edificio no recibe luz 
directa es un sitio bastante iluminado. En total se realizaron 
pruebas con 25 usuarios.  
 

 

Figura 7.  Para las pruebas se seleccionó un Lenovo ThinkPad X200 Tablet 
que se posicionó encima del videoportero con la webcam en la parte inferior 
del mismo. Se puede ver un detalle de la imagen capturada. 

Consideramos este número como un número suficiente de 
personas con las que más a menudo interaccione una persona 
con discapacidad visual (familiares, amigos más próximos, 
etc).  La disposición del equipo y su ubicación puede verse en 
la imagen de la Fig. 7.  

Para llevar a cabo las pruebas se seleccionó un Lenovo 
ThinkPad X200. Para la captura de imágenes se utilizó la 
webcam incorporada al equipo cuya resolución es de 640x480 
píxeles. 

Para probar el sistema de spoofing, se imprimieron 
fotografías de cada uno de los 25 usuarios. Para cada usuario 
se validaron ambos algoritmos (reconocimiento facial y 
detección de spoofing). Para ello el usuario se debe situar 
delante del videoportero. Con el objetivo de que el algoritmo 
obtenga una buena detección facial, el sistema de tracking 
facial procesa frames hasta que localiza uno donde las 
características faciales detectadas estén simétricas (dentro de 
unos umbrales). De esta manera garantizamos que la detección 
es frontal y en condiciones para que los algoritmos operen con 
propiedad.  

En caso de que el algoritmo de tracking facial no detecte 
una detección frontal por el mecanismo antes comentado, se le 
proporciona al usuario un comando de voz para que se sitúe 
frontalmente al videoportero.  A continuación se resume en 
forma de tabla los principales resultados a los que se ha 
llegado.  
 
TABLA I. RESULTADOS VIDEOPORTERO EN ENTORNO REAL. 
 

ALGORITMOS D = 1 D = 2 D = 3 D = 4 D = 5 
RECONOCIMIENTO 

FACIAL 
97% 98% 97% 94% 97% 

DETECCIÓN 
SPOOFING 

86% 86% 89% 84% 90% 

Como se desprende de los resultados, el reconocimiento facial 
presenta unos resultados bastante buenos. El sistema de 
detección de spoofing presenta unos resultados algo peores, 
pero aún así son unos resultados bastante buenos. Cabe 
destacar en el cuarto día de pruebas (D = 4) el tiempo fue 
bastante soleado. Creemos pudo afectar al rendimiento de los 
algoritmos.  

B.  Caso de estudio 2: Aplicación móvil 
Con el objetivo de sacar el máximo partido a la 

arquitectura, se decidió portar los algoritmos a la plataforma 
Android. De esta manera, el usuario con discapacidad visual 
dispone de una herramienta portable y usable para sus 
interacciones. 

En caso de la aplicación móvil se han tenido en cuenta 
diversos factores que no ha sido necesario contemplar en el 
caso de uso expuesto anteriormente y que se comentan a 
continuación. En este caso, es necesario tener en cuenta que el 
dispositivo móvil y por tanto las imágenes capturadas son 
tomadas por personas con discapacidad y como consecuencia, 
muchas imágenes pueden presentar ruido, desenfoque, 
borrosidad y diferentes condiciones de iluminación. En 
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segundo lugar, es necesario aportar al usuario información 
auditiva acerca del estado de la aplicación: si ha detectado a 
una persona, si ha perdido el tracking de dicha persona, si la 
ha conseguido identificar y por último si la identificación ha 
sido real con el objetivo de proporcionarle un “feedback” con 
el estado de la aplicación, pero sin abrumarle con un exceso de 
información innecesaria.  

El principal punto a tratar es que la persona con 
discapacidad visual no sabe a donde está enfocando su 
dispositivo. Para solucionar este factor, proponemos dos 
medidas: (1) guía del estado del tracking por medio de pitidos 
sonoros; y (2) analizar varios frames antes de predecir un 
resultado. A continuación comentamos los dos puntos.  

En el primero de ellos, en caso de que el usuario de la 
aplicación detecte una cara, se producirá un pitido. De esta 
manera, el usuario mantendrá el móvil en esa posición para 
“mantener” el tracking y que el algoritmo pueda funcionar 
correctamente.   

Si se pierde el tracking antes de que el algoritmo haya 
terminado, se producirán dos pitidos que indicarán al usuario 
que el algoritmo ha finalizado sin concluir una respuesta. En 
cambio, si el algoritmo consigue dar una respuesta al usuario 
es que ha procesado un número suficiente de frames N, que se 
corresponde con el segundo de los puntos indicado antes. Tras 
realizar varias pruebas y consultar la bibliografía relacionada, 
se ha establecido que el número de frames N que se deben 
procesar antes de proporcionar un resultado es de N = 5. Se ha 
establecido este valor con el objetivo de: (1) proporcionar 
unos resultados más robustos; y (2) proporcionar un feedback 
rápido para mejorar la fluidez en la interacción. Esto mejorará 
los resultados en los casos en los que las imágenes estén 
borrosas o presenten ruido. 

Por lo tanto para cada uno de los clasificadores 
(identificador facial y spoofing) se obtienen, para cada imagen 
procesada tanto el identificador de la clase predicha como el 
valor de confidencia para esa clase.  

Es por ello que para un determinado número de frames N, 
antes de obtener el valor final, se calcula la clase ganadora, y 
por tanto el valor a predecir en función de éstos valores de 
confidencia. 

A continuación se adjunta una tabla donde se recogen los 
tiempos de ejecución del algoritmo. Para ello se han 
seleccionado dispositivos móviles y tablets de gama 
media/baja que disponemos en nuestro laboratorio, pues el 
objetivo del sistema es que los algoritmos se ejecuten en 
dispositivos con baja potencia computacional. 
 
TABLA II. TIEMPOS DE EJECUCIÓN PARA VARIOS DISPOSITIVOS 
DE GAMA MEDIA/BAJA. 
 

DISPOSITIVO 
MOVIL 

FPS TPO 
EJECUCIÓN 

SEC PARA N=5 

TPO DE 
EJECUCIÓN 
ACEPTABLE 

HTC DESIRE X 1.82 2.75 SI 
LG OPTIMUS L2 1.86 2.69 SI 

WOXTER (TABLET) 0.88 5.68 NO 
SAMSUNG GALAXY Y 0.76 658 NO 

 
 Actualmente se está usando el valor promedio de los valores 

de confidencia, aunque el sistema podría contemplar otras 
alternativas. Entendemos que un tiempo superior a 3 segundos 
representaría un tiempo inaceptable para un correcto 
funcionamiento de la aplicación móvil.  

Hay que recordar que la aplicación tiene como objetivo 
ayudar a mejorar a las personas con discapacidad visual en su 
interacción. Mantener durante más de 3 segundos el móvil en 
una posición más o menos fija es complicado para un usuario 
con estas características. Los dos modelos que cumplen estas 
restricciones son dos modelos que tienen unas 
especificaciones similares. Son móviles con un procesador de 
más o menos 1Ghz de doble núcleo y unos 768MB de 
memoria RAM. En la actualidad prácticamente cualquier 
móvil duplica en prestaciones a los dispositivos antes 
comentados. Es por ello que creemos que la aplicación puede 
ser perfectamente usable en cuanto a características y 
requerimientos técnicos.  

A modo de ejemplo, la aplicación fue instalada en una 
tablet Edison 2 3G Quad Core y tiene un rendimiento de unos 
4.33fps. Esto significa que en poco más de 1 segundo, el 
usuario tiene el resultado requerido.  

En la imagen 8 se puede ver la captura de pantalla de varias 
ejecuciones que se corresponden con imágenes reales (parte 
izquierda de la imagen) y con fotografías  (parte derecha de la 
imagen).  

 

Figura 8.  Capturas de pantalla de la aplicación móvil. Parte izquierda: 
imágenes reales. Parte derecha: imágenes impresas (no reales). 

VI. CONCLUSIONES 
En el presente trabajo hemos presentado una arquitectura 

para la identificación facial y detección de spoofing orientado 
a las personas con discapacidad visual. La arquitectura ha sido 
diseñada y desarrollada con el objetivo de conseguir un 
resultado robusto y computacionalmente ligero que pudiera 
ser embebido en elementos con una capacidad de cómputo 
moderada, como pudiera ser un videoportero o el dispositivo 
móvil ambos de personas con discapacidad visual.  

El sistema ha sido probado y validado en entornos y 
condiciones reales obteniendo unos resultados muy 
satisfactorios. Además comentar que se han tenido en cuenta 
conclusiones y elementos clave obtenidos de otras 
publicaciones relevantes con el objetivo de obtener unos 
resultados más robustos y que la arquitectura final fuera lo 
más usable y adaptada a las personas con discapacidad visual. 
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Como trabajo futuro comentar dos aspectos principalmente. 
Uno de ellos es mejorar el sistema para hacerlo más robusto 
ante diferentes condiciones de iluminación. En [9] se comenta 
un algoritmo de pre-procesamiento para mejorar el 
reconocimiento facial cuando las condiciones de iluminación 
son adversas.  Habría que ver cómo influye dicha etapa de pre-
procesamiento en el algoritmo de detección de spoofing, pues 
podría disminuir las texturas en las imágenes faciales que 
hacen diferenciar una imagen real de otra falsa. El segundo de 
los factores a mejorar radica en mejorar la tasa de 
reconocimiento en lo que al algoritmo de detección de 
spoofing se refiere.  

En conclusión, creemos que las personas con discapacidad 
visual pueden verse beneficiadas por la presente solución con 
el objetivo final de mejorar su calidad de vida. 
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Abstract: Driver distraction, defined as the diversion of attention away from activities critical for safe
driving toward a competing activity, is increasingly recognized as a significant source of injuries and
fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information
systems is critical because they induce visual, biomechanical and cognitive distraction and may affect
driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred
for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers
and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected
types in video-based algorithms. Many distraction detection systems only use a single visual cue and
therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover,
the combination of these visual cues is a key and challenging aspect in the development of robust
distraction detection systems. These visual cues can be extracted mainly by using face monitoring
systems but they should be completed with more visual cues (e.g., hands or body information)
or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms
should be included in an embedded device or system inside a car. This is not a trivial task and several
requirements must be taken into account: reliability, real-time performance, low cost, small size,
low power consumption, flexibility and short time-to-market. The key points for the development and
implementation of sensors to carry out the detection of distraction will also be reviewed. This paper
shows a review of the role of computer vision technology applied to the development of monitoring
systems to detect distraction. Some key points considered as both future work and challenges ahead
yet to be solved will also be addressed.

Keywords: driver distraction detection; visual-based sensors; image processing

1. Introduction

According to the most recent published World Health Organization (WHO) report, it was
estimated that, in 2013, 1.25 million people were killed on the roads worldwide, making road traffic
injuries a leading cause of death globally [1]. Most of these deaths happened in low- and middle-income
countries, where rapid economic growth has been accompanied by an increased motorization and
therefore, road traffic injuries. In addition to deaths on the roads, up to 50 million people incur
non-fatal injuries each year as a result of road traffic crashes, while there are additional indirect health
consequences associated with this growing epidemic. Road traffic injuries are currently estimated to
be the ninth leading cause of death across all age groups globally, and are predicted to become the
seventh leading cause of death by 2030 [1].
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Distracted driving is a serious and growing threat to road safety [1]. Collisions caused by
distracted driving have captured the attention of the US Government and professional medical
organizations during the last years [2]. The prevalence and identification as a contributing factor
in crashes is seen as an epidemic of American roadways, in words of Ray LaHood, when he was US
Secretary of Transportation in 2012 [3]. There is not an exact figure regarding statistics about accidents
caused by inattention (and its subtypes) since studies are made in different places, different time
frames and therefore, different conditions. The studies referenced below show both the different
statistics about inattention in general and those recorded when produced by distraction and fatigue
in particular. These authors have estimated that distraction and inattention account for somewhere
between 25% and 75% of all crashes and near crashes [4–8].

The trend towards increasing the use of in-vehicle information systems (IVISs) is critical [9]
because they induce visual, manual and cognitive distraction [10] and may affect driving performance
in qualitatively different ways [11]. Additionally, the advancement and prevalence of personal
communication devices has exacerbated the problem during these last years [12]. All these factors
can lead to the increment of the number of tasks subordinate to driving activity. These tasks,
namely secondary tasks, which may lead to distraction [13], include eating, drinking, the act of taking
something or tuning the radio or the use of cell phones and other technologies. The secondary tasks that
take drivers’ eyes off the forward roadway [14,15] reduce visual scan [16] and increase cognitive load
may be particularly dangerous [13]. For example, the use of cell phones while driving, according to
naturalistic studies [17], causes thousands of fatalities in the United States every year [18,19].

The purpose of this paper is the analysis of the state-of-the-art regarding the detection of drivers’
distraction. The scope of the paper can be seen in Figure 1 and is commented as follows. The main
methods for face detection, face tracking and detection of facial landmarks are summarized in
Section 2 because they are a key component in many of the video-based inattention monitoring
systems. In Sections 3–5, the main algorithms for biomechanical, visual and cognitive distraction
detection are reviewed, respectively. Additionally, in Section 6, there are some algorithms detecting
mixed types of distraction and, hence, are also reviewed. The relationship between facial expressions
and distraction is also explored in Section 7. The key points for the development and implementation
of sensors to carry out the detection of distraction will be considered in Section 8. In Section 9, the key
ones to test and train driving monitoring systems are summarized. Privacy issues related to camera
sensors are commented in Section 10. Lastly, conclusions, future aspects and challenges ahead will be
considered in Section 11.

With the objective of introducing the scope and limitations of this review, some key aspects have
been briefly introduced as follows. Driver distraction is just one form of inattention, which occurs
when drivers divert their attention away from the driving task to focus on another activity. Therefore,
a “complete” solution should consider all aspects of inattention. At least, the system should detect
both distraction and drowsiness as the main contributing factors in crashes and near-crashes. As stated
before, in this work, only distraction algorithms are summarized but one must not forget that
other forms of inattention should be taken into account. Moreover, the use of on-board sensors
already available in the vehicle to analyze driver behaviour is a low-cost and powerful alternative
to the vision-based monitoring systems [20,21]. However, these systems should not be treated like
different alternatives, because they can be used together (fusioned) in order to obtain indicators for
monitoring [22]. Hence, for the sake of completeness, in this paper review only “purely” vision-based
monitoring systems have been reviewed.

One of the challenges in decreasing the prevalence of distracted drivers is that many of them report
that they believe they can drive safely while distracted [23]. However, for example, in connection
with the use of mobile phones while driving, there is a great deal of evidence interacting with
mobile devices, such as sending messages or engaging in conversations, which can impair driving
performance because this interaction can create distraction. Moreover, a recent research showed that
phone notifications alone significantly disrupted performance, even when drivers did not directly
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interact with a mobile device during the task [24]. Another study suggests that people in general
can reduce both inattention and hyperactivity symptoms simply by silencing the smartphones and
avoiding notifications [25]. Therefore, it is clear that drivers should not use and notice the presence
of the smartphones inside the car while driving. It should be pointed out that distraction generation
is a very complex process and is scarcely addressed here. We recommend some research papers that
focused on driver distraction generation: Angell et al. [26] focused on the process of cognitive load
in naturalistic driving; Liang et al. [27] addressed the adaptive behaviour of the driver under task
engagement and their results on visual, cognitive and combined distraction; Caird analyzed the effects
of texting on driving [28]. In the context of intelligent vehicles, Ohn et al. [29] highlights the role of
humans by means of computer vision techniques.

Driver distraction 
detection

Biomechanical 
distraction detection

Visual distraction 
detection

Cognitive distraction 
detection

face 
processing

image 
analysis

pattern 
recognition

supervised 
learning

Feature extraction

Classification
semi - 
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classification 
rules

Taxonomy 

privacy issuesporting vision-
based sensors
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vision-based 

sensors 

Conclusions Challenges 
ahead

Figure 1. Scope of the present work.

1.1. Taxonomy

Both distraction and inattention have been inconsistently defined and the relationship between
them remains unclear [30]. The use of different, and sometimes inconsistent, definitions of driver
distraction can create a number of problems for researchers and road safety professionals [31].
Inconsistent definitions across studies can make the comparison of research findings difficult or
impossible, can also lead to different interpretations of crash data and, therefore, to conclude
different estimates of the role of distraction in crashes. This problem can be further seen in these
recent works [32–35]. Many definitions have been proposed in order to define distraction [5,7,8,31].
Regan et al. [35] proposed a taxonomy of both driver distraction and inattention in which distraction
is conceptualized as just one of several factors that may give rise to inattention. They concluded that
driver inattention means “insufficient or no attention to activities critical for safe driving”. They defined
driver distraction as “the diversion of attention away from activities critical for safe driving toward a competing
activity, which may result in insufficient or no attention to activities critical for safe driving”. The definition
proposed here is almost identical to that coined for driver distraction by Lee et al. [31].

It is acknowledged that the taxonomy proposed by Reagan et al. [35] suffers from “hindsight bias”,
that is, the forms of driver inattention proposed are derived from studies of crashes and critical
incidents in which judgements have been made after the fact about whether or not a driver was



Sensors 2016, 16, 1805 4 of 44

attentive to an activity critical for safe driving [35]. Driving consists of a variety of sub-tasks and it
may not be possible to attend to all at the same time. Determining which sub-task is more important
(and the driver, thus, should attend to) can often only be determined after the fact (i.e., after a
crash or incident occurred) and, hence, this attribution of inattention is somewhat arbitrary [36].
Additionally, the dynamics of distraction [37], which identifies breakdowns on interruption as an
important contributor to distraction should also be considered as part of this taxonomy, and hence,
timing and context have implications on the algorithm design that should be taken into account.

1.2. Methodology

Papers addressed in this review are within the topic of distraction detection using vision-based
systems. The search and review strategy is described below. A comprehensive review of the English
language scientific literature was performed. It encompassed the period from 1 January 1980 to
31 August 2016. The following databases were used: EBSCO, ResearchGate, ScienceDirect, Scopus,
Pubmed, Google Scholar and Web of Knowledge. Search terms related to driver distraction
were employed combining all of them: driver, visual, cognitive, manual, biomechanicall, vision,
vision-based, impairment, distraction, distractions, review, task, tasks, inattention, performance, phone,
sms, vehicle, problem, looking, face, head, pose, glasses, illumination, self-driving, tracking, sensors,
image, traffic, safety, facts, privacy, issues, porting, taxonomy. Many items were returned from the
search criteria shown before. These were, then, reviewed using the following criteria. Exclusion criteria
were obviously non-relevant papers or from medical, electronic, networking, marketing and patent
topics. Only publications from peer-reviewed English language journals were considered for inclusion.
Additionally, reviewed papers were ordered by the number of references in order to include all
relevant papers. Finally, in order to get the latest published papers, search filters were applied for this
purpose. Search filters were applied to get publications only from years 2015 and 2016. References and
bibliographies from the selected papers identified were examined to determine potentially additional
papers. A total of approximately 1500 publications were revised in the review process.

2. Face and Facial Landmarks Detection

A common face processing scheme in many inattention monitoring systems, which can be seen in
Figure 2, includes the following steps:

• Face detection and head tracking. In many cases a face detection algorithm is used as a face
tracking one. In other cases, a face detection algorithm is used as an input for a more robust face
tracking algorithm. When the tracking is lost, a face detection call is usually involved (that is why
in Figure 2 these steps are placed inside the same external orange box).

• Localization of facial features (e.g., eyes). Facial landmarks localization is usually performed,
but it should be noted that, in some cases, no specific landmarks are localized. So, in such
cases, estimation of specific cues are extracted based on anthropometric measures from both face
and head.

Face detection Face tracking Facial landmarks
localization

Further
processing to

detect distraction

Figure 2. Common steps in most distraction monitoring systems.

2.1. Face Detection

Viola-Jones [38] have made object detection practically feasible in real world applications,
which contains three main ideas that make possible to build and run in real time: the integral image,
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classifier learning with AdaBoost, and the attentional cascade structure [39]. This framework is used
to create state-of-the-art detectors (e.g., face detector [40]), available, for example, in Opencv library.
However, this framework turned out to be really time-consuming [41]. Moreover, cascade detectors
work well on frontal faces but sometimes, they fail to detect profile or partially occluded faces.

One possible solution is to use the standard approach for human detection [42], which can also be
used for face detection [39]. This approach is based on the Histogram of Oriented Gradients (HOG),
which is a feature descriptor used in computer vision and image processing for the purpose of object
detection. This approach can be trained with less images and faster [43]. Deep Learning approaches
can also be used for face detection. For example, in [44], a deep learning approach, called DP2MFD,
is used. DP2MFD detects faces at multiples scales, poses and occlusion by integrating deep pyramid
features with Deformable Parts Models (DPMs). Experiments were carried out on four publicly
available unconstrained face detection datasets, which demonstrated the effectiveness of the approach.
However, this face detector was tested on a machine with 4 cores, 12 GB RAM, 1.6 GHz processing
speed and it took about 26 s. Consequently, complex features may provide better discrimination power
than Haar-like features for the face detection task. However, they generally increase the computational
cost [44].

Some modifications to the Viola-Jones algorithm have been proposed [45,46] to speed up the
algorithm. For example, in [45], different optimization techniques to speed up the Viola-Jones detector
for embedded smart camera applications have been discussed. In their paper, skin colour information
is integrated with the Viola-Jones detector in order to reduce the computation time. PICO (Pixel
Intensity Comparison-based Object detection) is another modification of the standard Viola-Jones
object detection framework, which scans the image with a cascade of binary classifiers at all reasonable
positions and scales [46]. This algorithm can achieve competitive results at high processing speed. This
is especially evident on devices with limited hardware support for floating point operations. PICO
outperforms the other two OpenCV detectors in terms of accuracy and processing speed.

Since driver face monitoring system should work in all light conditions, lighting and camera
selection is one of the most important stage in the design of the system. Lighting devices not only
should provide enough light in environment, but they also should not hurt his/her eyes. For example,
learning-based methods (e.g., Viola-Jones algorithm or PICO) can also be used for face detection in
Infrared (IR) images [47].

Position of the camera inside the car is another key factor in the detection rate. For example,
in [48], if the camera is installed under the front mirror of the car, face detection has 85% accuracy.
But if it is installed on the dashboard, face detection reaches up to 93%. This is because they used the
Viola-Jones face detector, which is trained to distinguish faces that are tilted up to about 45◦ out of
plane (towards a profile view) and up to about 15◦ in plane. Therefore, if the camera is installed on
the dashboard, the captured images will contain frontal or near-frontal faces. In [49], the camera was
placed over the steering wheel column for two reasons: a) it facilitates the estimation of gaze angles,
such as pitch, which is relevant for detecting distraction, and b) from a production point of view, it is
convenient to integrate a camera into the dashboard. On the downside, when the wheel is turning,
there will be some frames in which the drivers face may be occluded by the steering wheel. However,
the driver is seldom very sleepy or inattentive to traffic while turning the steering wheel.

2.2. Face Tracking

Head pose estimation can be defined as the ability to infer the orientation of a person’s head
relative to the view of a camera and different studies have reported statistics showing consistent range
of head motion [50], which (see Figure 3) can be decomposed in:

• Saggital flexion/extension, i.e., forward to backward movement of the neck usually from −60◦ to
70◦, which can be characterized by pitch angle.

• Axial rotation, i.e., right to left rotation of the head usually from −80◦ to 75◦, which can be
characterized by yaw angle.
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• Lateral bending, i.e., right to left bending of the neck usually from −41◦ to 36◦, which can be
characterized by roll angle.

pitchroll

yaw

Figure 3. Head pose can be decomposed in pitch, yaw and roll angles.

Many vision-based algorithms for pose estimation have shown good performance when the
head is near frontal, which is 95% of the time. But it is during those 5% of the time when interesting
events, which are critical for safety, will occur [51]. Furthermore, as face orientation while driving is
normally frontal, if the driver faces in other directions for a long period of time, this is probably due to
fatigue or inattention [52]. Hence, a key component for a monitoring system based on face tracking
is the ability to robustly and continuously operate even during large head movements. However,
face tracking remains a challenging vision problem and, hence, a system for a continuous estimation
of head movement is needed. On the other hand, as many head tracking algorithms have shown good
performance when the head is near frontal, it can be concluded that the driver is looking away when
tracking is unavailable. This information could be an alternative approach instead of adding more
cameras to increase the range of the tracker.

Accordingly, numerous research works and publications have been trying to perform face tracking
using a single camera and they are discussed as follows. Head pose estimation methods based on
geometric approach using facial landmark and its 3D correspondences [49,53–56] can provide a good
estimation and operate in real-time. For example, in [53], 3D pose estimation is achieved based on
the position of the eyes and the mouth. A similar approach is proposed in [54], where only three
points (eye centers and the middle point between the nostrils) are used to estimate continuous head
orientation and gaze direction. Very closed to this approach, in [55], at least four prominent facial
features are extracted from the face. After that, their correspondence on a 3D generic-face model is
used to estimate head orientation. Oyini et al. [56] proposed the visual analysis of head position using
a single camera aligning and scaling the 3D head model of the face according to the position and
distance between the two eyes of the face in the 2D image. Another interesting approach recently
published is [49], where a 3D head pose estimation system is proposed. This system is based on the
49 tracked 2D facial landmarks from Supervised Descent Method (SDM) tracker [57].

Other options include the combination of information [58–60], using for example,
several classifiers [58,59] or combining 2D and 3D algorithms [60]. Asthana et al. [58] developed a
system able to handle 3D pose variations up to ±45◦ in yaw and ±30◦ in pitch angles combining
four different face detectors based on Viola-Jones framework. The drawback of this approach is that
it requires four classifiers in order to track the face so it increases the execution time and memory
requirements. In [59], the system consists of three interconnected modules, which detects drivers’
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head, provides initial estimates of head pose, and continuously tracks its position and orientation
in six degrees of freedom. Pelaez et al. [60], combined 2D and 3D algorithms to provide head pose
estimation and regions of interest identification based on 3D information from a range imaging camera.

Alternatively, more than a camera can be used to implement the tracking [51,61–63], that is,
a distributed camera system is commonly used, where two or more cameras can be located inside the
car cockpit. Following this line of research, in [61], they proposed a distributed camera framework
for gaze estimation using head pose dynamics based on the algorithm proposed in [51]. They predict
three gaze zones: right, front and left. In [51], a continuous head movement estimator (CoHMEt) is
proposed, which independently tracks the head in each camera, and their outputs are further analyzed
to choose the best perspective and corresponding head pose. When tracking is lost, due to either the
loss of facial point detection or the rejection of the estimated points, reinitialization is performed using
a scoring criterion. In [62], they also used a two-camera system to overcome challenges in head pose
estimation, which allows for continuous tracking even under large head movements, as proposed
in [51]. Therefore, following the setup of [51] , a two-camera system can provide a simple solution in
order to improve tracking during large head movements. Two cameras are also used in [63] for head
pose estimation. Head pose is tracked over a wide operational range in the yaw rotation angle using
both camera perspectives.

For a quantitative evaluation over the algorithms the Mean Absolute Error (MAE) is commonly
used. Best results for the different algorithms can be seen in Table 1, where different databases are
used. For example, in [49,56] the public database of Boston University (BU) is used to evaluate the
performance of the proposed head pose estimation scheme. Some other algorithms used naturalistic
on-road data set [59]. Moreover, some algorithms achieving good performance did not indicate any
database [60]. LISA-P Head Pose database [55] introduces head pose data from on-road daytime and
nighttime drivers of different age, race and gender, with continuous ground truth measurements
and manual annotation of facial features. Therefore, this database can be used to compare head
pose algorithms and head behaviour studies. The LISA-P Head Pose Database consists of 14 video
sequences of drivers in on-road driving environment in natural and spontaneous conditions. The video
sequences were collected at a frame rate of 30 frames per second, with a 640 × 480 pixel resolution.

Table 1. Mean Absolute Error (MAE) (in degrees) of face tracking algorithms comparison working in an
automobile environment.

Algorithm Roll(◦) Yaw(◦) Pitch(◦)

La Cascia et al. [64] 9.8 4.7 2.4
Oyini et al. [56] average results 1 camera 5.3 3.9 5.2

Oyini et al. [56] uniform illumination 1 camera 4.8 3.8 3.9
Oyini et al. [56] varying illumination 1 camera 5.3 5.1 6.3

Vicente et al. [49] 1 camera 3.2 4.3 6.2
Pelaez et al. [60] 1 Kinect device 2.7 3.8 2.5

Murphy et al. [59] 1 camera 2.4 4.7 3.4
Tawari et al. [51] (MPS + POS) 1 camera 3.0 8.2 7.6
Tawari et al. [51] (MPS + POS) 2 cameras 3.8 7.0 8.6
Tawari et al. [51] (MPS + POS) 3 cameras 3.5 5.9 9.0
Tawari et al. [51] (CLM + POS) 1 camera 3.4 6.9 9.3
Tawari et al. [51] (CLM + POS) 2 cameras 3.6 5.7 8.8
Tawari et al. [51] (CLM + POS) 3 cameras 2.7 5.5 8.5

Based on the results from Table 1, in [56], the MAE decreased by an average of 1.3◦ due to
illumination variations. In [51], the best performance of 3.9% failure rate, which is the percentage of
the time that the system output is unreliable, is achieved with the three-camera view compared with
that of over 15% for the single view, which is a significant improvement.
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2.3. Location of Facial Features

The detection of facial features (also called landmarks) is an essential part of many face monitoring
systems. The problem of the precise and robust detection of facial landmarks has drawn a lot of
attention during this decade. State-of-the-art methods include tree models [65,66], DPM [67], SDM [57],
explicit shape regression [68] or learning local binary features [69]. A comprehensive survey of facial
feature point detection can be seen here [70]. All the above listed research suffers more or less from a
lack of verification and performance analysis with a realistic variation in lighting conditions. Therefore,
further research should be performed in order to adapt these algorithms to the traffic research in
general and to the drivers’ monitoring systems in particular. Difficulties for proper detection of drivers’
facial features are mainly due to the non-uniformity of light sources, asymmetric shades on their face
and eye regions, or rapid changes in light intensity during real-world driving due to shadows caused
by buildings, bridges, trees, or, for example, when entering or leaving a tunnel [71].

Eyes, as one of the most salient facial features reflecting individuals’ affective states and focus
of attention [72], have become one of the most remarkable information sources in face analysis.
Eye tracking serves as the first step in order to get glance behaviour, which is of most interest because
it is a good indicator of the direction of the driver’s attention [73]. Glance behaviour can be used to
detect both visual and cognitive distraction [74]. It has also been used by many studies as an indicator
of distraction while driving [75] and has been evaluated in numerous ways [73]. Therefore, both eye
detection and tracking form the basis for further analysis to get glance behaviour, which can be used
for both cognitive and visual distraction.

Eye tracking data is typically captured through the use of a vehicle instrumented with an in-vehicle
eye tracker system. On one hand, complex systems consist of single or multiple cameras directed
at the driver’s face. As the number of face cameras increases, so does the ability of the system to
capture larger and more dramatic head movements of the driver. On the other hand, simpler systems
consisting of one or two cameras are usually less expensive and easier to install than more complex
systems. For example, in [76], a comparison of eye tracking systems with one and three cameras using
Smart Eye technology [77] is performed. The system uses a single standard camera of VGA resolution
together with IR flash illuminators. The three-camera system used is the Smart Eye Pro [77], which has
similar properties as the one-camera system, but it also facilitates gaze direction in full 3D.

Eye detection is required before eye region processing. Eye detection methods can be divided into
two general categories: (1) methods based on imaging in IR spectrum; and (2) feature-based methods.
A literature survey on robust and efficient eye localization in real-life scenarios can be seen in [72],
and a review on eye localization in car environment can be seen in [78].

Methods based on imaging in IR spectrum, which are commonly called “hardware-based”
approaches, rely on IR illuminators to generate the bright pupil effect to driver head pose and gaze
estimation. These methods use two ring-type IR light-emitting diodes: one located near the camera
optical axis and the other located far from it. This approach is often used to detect visual distraction.
In contrast to these methods, in [79], the authors use a progressive camera and only one on-axis
lighting source [80]. In this situation, the camera always produces images with bright pupils and image
processing techniques are applied to detect pupils. Based on thresholding techniques, the possible
pupils can be selected. An appearance model, trained using Principal Component Analysis (PCA)
and Support Vector Machine (SVM), is exploited to verify the final pupils. To increase the robustness
against eyeglasses, the Generalized Symmetry Transform (GST) is incorporated achieving a recognition
rate of 99.4% and 88.3% for users not wearing and wearing eyeglasses, respectively.

Regarding feature-based methods, different techniques are commonly applied. Image binarization [81],
projection [82,83], face anthropometric properties of the face [84], individual classifiers [85] or particle
filtering [86] can be used to detect driver’s eyes. For example, in [86], an algorithm for eyes tracking
based on particle filtering is proposed. Their method works with a low-cost IR camera device at a
low frame rate. They used a single particle filter to track both eyes at the same time. Evaluation was
carried out in a driving simulator with five users achieving an average accuracy of 93.25%. In [85],
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two individual classifiers based on Haar-like features, one for the head and another for both eyes,
were used. They tested face and eye detection in their research vehicle in daylight conditions achieving
a hit rate of 97.2% for eye detection and a false alarmn of 4.6%.

All in all, the task of accurate eye localization is challenging due to the high degree of eyes
appearance variability: facial expression variations, occlusion, pose, lighting and other imaging
conditions and quality [72], are frequently encountered in car environments. Another problem that is
scarcely addressed in the literature is that, in strong sunlight, the driver tends to squint, which makes,
even more difficult to track the eyes. To mitigate these deficiencies, different approaches can be adopted.
Sigari et al. [82] proposed to extract symptoms of hypo-vigilance based on eye-region processing but
without explicit eye detection stage. Flores et al. [84] proposed a combination of algorithms in order to
deal with illumination conditions for both day and night. Rezaei et al. [71] used a methodology to
enhance the accuracy, performance and effectiveness of Haar-like classifiers, especially for complicated
lighting conditions. These authors also proposed ASSAM [87], which is based on the asymmetric
properties of the driver’s face due to illumination variations. A good solution is also to use a “divide
and conquer” strategy to handle different variations at different stages [72].

3. Biomechanical Distraction

In connection with biomechanical detection and recognition using computer vision techniques,
we can find two approaches. The first one involves hands secondary tasks recognition involving hands
action, while the second one is based on hands tracking and information.

3.1. Secondary Tasks Involving Biomechanical Distraction

Zhao et al. [88–91] proposed different maching learning approaches to detect predefined
driving postures, where four predefined postures were considered: (1) grasping the steering wheel;
(2) operating the shift lever; (3) eating; and (4) talking on a cellular phone, which are recorded from the
passenger seat, that is, from the right profile view of the driver. Yan et al. [92] proposed a combination
of the Motion History Image (MHI) and POHG, and the application of Random Forest (RF) classifier for
driving actions recognition. Trying to improve the accuracy of the aforementioned approach, the same
authors included a Convolutional Neural Network (CNN) [93], which was tested over three datasets
covering four driving postures: (1) normal driving; (2) responding to a cell phone call; (3) eating;
and (4) smoking. For fair comparison, Yan et al. [93] re-implemented aforementioned state-of-the-art
approaches [88–91] and carried out experiments on other two popular vision descriptor approaches
(PHOG [94] and SIFT [95]). Classification accuracy of all of these methods can be seen in Table 2
evaluated on the Southeast University (SEU) driving posture dataset [88].

In connection with secondary tasks recognition, different computer vision algorithms have been
proposed in order to detect cell phone usage of the driver while driving [96–100]. High recognition
rates are usually obtained (from 86.19% to 95%) using very different approaches. Computer vision
techniques seem to be the best approach for this task, whose results can be seen in Table 3, compared to
other non-computer vision algorithms relying on inertial sensors of the mobile phone [101]. Best results
are obtained by the algorithm proposed by Xu et al. [99], which consists of two stages: first, the frontal
windshield region localization using DPM; next, they utilized Fisher vectors (FV) representation to
classify the driver’s side of the windshield into cell phone usage violation and non-violation classes.
The proposed method achieved about 95% accuracy with a dataset of more than 100 images with
drivers in a variety of challenging poses with or without cell phones.

It can be concluded that many different computer vision and machine learning techniques
can be used to recognize predefined postures involving hand gestures. The CNN model offered
a better performance than other approaches but with some limitations. The algorithm needs high
computational resources making difficult to be applied in some conditions with common hardware
architecture (e.g., embedded systems). Moreover, training a CNN needs a large amount of data,
which is also difficult to obtain in some scenarios.
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Table 2. Classification accuracy evaluated on the Southeast University (SEU) driving posture
dataset [88].

Algorithm Features Classifier Average Accuracy (%)

Zhao et al. [88]
Homomorphic filtering,

skin-like regions segmentation
and Contourlet Transform (CT)

RF 90.63

Zhao et al. [89]
Geronimo-Hardin-Massopust

(GHM) multiwavelet transform Multiwavelet Transform 89.23

Zhao et al. [90]

Histogram-based feature
description by Pyramid

Histogram of Oriented Gradients
(PHOG) and spatial scale-based

feature description

Perceptron classifiers 94.20

Zhao et al. [91]

Homomorphic filter, skin-like
regions segmentation, canny

edge detection, connected regions
detection, small connected

regions deletion and spatial
scale ratio calculation

Bayes classifier 95.11

Bosch et al. approach [94] PHOG SVM 91.56

Lowe et al. approach [95] SIFT SVM 96.12

Yan et al. [93] CNN 99.78

Table 3. Computer vision algorithms to detect cell phone usage. High recognition rates are usually
obtained using very different approaches.

Algorithm Features Classifier Recognition Rate (%)

Zhang et al. [96]
Features from the

driver’s face,
mouth and hand

Hidden Conditional Random
Fields (HCRF) 91.20

Artan et al. [97]

Image descriptors
extracted from a
region of interest
around the face

SVM 86.19

Berri et al. [98]
Percentage of the

Hand and Moment
of Inertia

FV 91.57

Xu et al. [99] DPM FV 95

Seshadri et al. [100]
Raw pixels and
HOG features

Real AdaBoost,
SVM, RF 93.86

3.2. Hands Information

Hand detection is a challenging problem as human hands are highly deformable and are also
exposed to different illumination conditions [102]. One approach for object detection relies on a
sliding-window, where a model is learned based on positive samples (i.e., hands in different poses)
of fixed size and negative samples with no hands. A classifier is then used to learn a classification rule.
In order to detect hands at different scales, this scheme can be applied on hand images at different
sizes. But a sliding window-based approach trained on hand instances was shown to be prone to false
positive detection rates [103]. A recent common approach to improve the results is the assumption
that hands can only be found in a small and predefined set of regions [103,104].

As opposed to training a model for hand shape or appearance and running a sliding window
detector, two different approaches are analyzed in [103] taking into account three activity classes:
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(1) two hands on the wheel; (2) hands on the instrument panel and (3) hand on the gear shift.
The motion-cue-based hand approach uses temporal accumulated edges in order to maintain the
most reliable and relevant information motion and then, it is fitted with ellipses in order to produce
the location of the hands. The static-cue-based approach uses features in each frame in order to learn
a hand presence model for each of the three regions and a second-stage classifier (SVM) produces
the final activity classification. Martin et al. [104] also constraint the problem of hands detection to
a number of regions of interest. They used HOG at different scales. Afterwards, a SVM is used to
learn a hand presence in each of the three regions and ‘two hands on the wheel’ model for the wheel
region. A similar approach is proposed in [102], training a linear SVM model for each region using a
different set of descriptors.Ohn et al. [62] incorporated hand gestures in order to study preparatory
motions before a maneuver had been performed, training a hand detector using fast feature pyramids.
Gradient and colour channels are extracted for each patch image. They used CIE-LUV colour channels
because they worked better compared to RGB and HSV. Afterwards, an AdaBoost classifier was
applied in order to learn the features from the hands and finally, they trained a SVM-based detector
using HOG features to differentiate the left hand from the right one. Later on, Ohn et al. [105] also
explored the use of a pyramidal representation for each region of interest using HOG finding that edge
features are particularly successful in the task of hands detection.

In order to compare these algorithms, a dataset of synchronized RGB and depth videos collected
in an operating vehicle was proposed [106]. The CVRR-HANDS 3D dataset was designed in order to
study natural human activity under difficult settings (background, illumination, occlusion) containing
three subsets: (1) hand localization; (2) hand and objects localization; and (3) 19 hand gestures for
occupant-vehicle interaction. Five regions of interest were considered: (1) wheel; (2) lap; (3) hand rest;
(4) gear; and (5) instrument panel. Recognition rates from some of these previous algorithms using
this database can be seen in Table 4.

Table 4. Hands recognition in different regions inside the car using CVRR-HANDS 3D dataset [106].

Algorithm Features Classifier Regions Recognition Rate (%)

Ohn et al. [106] RGB data SVM 5 52.1
Ohn et al. [106] RGB combined with depth data SVM 5 69.4

Martin et al. [104] Hands cues SVM 3 83
Martin et al. [104] Hands and head cues SVM 3 91

Ohn et al. [105] Hands cues SVM 3 90
Ohn et al. [105] Hands and head cues SVM 3 94

Summarizing, a common approach is to recognize if the hands are positioned in one of the
established areas (wheel, gearbox and so on) and to track them over time. It could be considered that
the steering wheel is the critical area because it is where hands should remain most of the time while
driving. If hands remained in a non-critical zone for a certain period of time, which could be different
for each of the non-critical areas, an alarm would be created to warn drivers to lay their hands in the
correct position.

Hand Disambiguation

There is another interesting problem to solve related to hands detection that needs further research:
hand disambiguation [107]. Once hands are detected, it is crucial to ensure that the hands belong to
the driver. Both hand disambiguation and hand activity detection should be studied and considered
together in order to infer final, clear and unambiguous results.

4. Visual Distraction

Visual distraction is often related to the on-board presence of electronic devices such as mobile
phones, navigation or multimedia systems, requiring active control from the driver. It can also be
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related to the presence of salient visual information away from the road causing spontaneous off-road
eye glances and momentary rotation of the head. A 2006 report on the results of a 100-car field
experiment [4] showed that almost 80% of all crashes and 65% of all near-crashes involved drivers
looking away from the forward roadway just prior to the incident.

Engagements in visually distracting activities divert drivers’ attention from the road and cause
occasional lapses, such as imprecise control of the vehicle [108], missed events [28], and increasing
reaction times [108]. Visual time sharing between the driving task and a secondary task reveals that the
glance frequency to in-car devices is correlated to the task duration, but the average glance duration
does not change with task time or glance frequency [109]. Drivers do not usually increase the glance
duration for more difficult or longer tasks but rather increase the accumulated visual time sharing
duration by increasing the number of glances away from the road [110]. As both single long glances
and accumulated glance duration have been found to be detrimental for safety [110–112], a driver
distraction detection algorithm based on visual behaviour should take both glance duration and
repeated glances into account [113].

One one hand, high-resolution cameras placed throughout the cabin are needed to view the
driver’s eyes from all head positions and at all times. Several economic and technical challenges
of integrating and calibrating multiple cameras should be tackled to achieve this. Technically,
eye orientation cannot always be measured in vehicular environments because eye region can be
occluded by (1) sunlight reflections on eyeglasses; (2) the eye blink of the driver; (3) a large head
rotation; (4) sunglasses; (5) wearing some kind of mascaras; (6) direct sunlight; (7) hats, caps, scarves;
or (8) varying real world illumination conditions.

On the other hand, many security systems do not require such detailed gaze direction but they
need coarse gaze direction to reduce false warnings [114,115]. For example, forward collision warning
(FCW) systems need not only exterior observations but interior observations of the driver’s attention
as well to reduce false warnings (distracting and bothering the driver), that is, coarse gaze direction
can be used in order to control the timing of warning emission when the system detects that the driver
is not facing forwards.

Taking into account that errors in facial feature detection greatly affect gaze estimation [116],
many researchers have measured coarse gaze direction by using only head orientation with the
assumption that coarse gaze direction can be approximated by head orientation [117]. Head pose
is a strong indicator of a driver’s field of view and his/her focus of attention [59]. It is intrinsically
linked to visual gaze estimation, which is the ability to characterize the direction in which a person
is looking [118]. However, it also should be noted that drivers use a time-sharing strategy when
engaged in a visual-manual task where the gaze is constantly shifted between the secondary task
and the driving scene for short intervals of time [119] and often position the head in between the two
involved gaze targets and only uses the eyes to quickly move between the two targets. In this situation,
a face tracking algorithm would recognize this as a distracted situation based on head position, but the
driver is constantly looking the road ahead. Therefore, in an ideal situation, both driver gaze tracking
and eyes-off-road should be detected together [49].

In short, visual distraction can be categorized into two main approaches as it can be seen in
Figure 4. In the first approach, which can be called “coarse”, researchers measured the coarse gaze
direction and the focus of attention by using only head orientation with the assumption that the coarse
gaze direction can be approximated by the head orientation. In the second approach, which can be
called “fine”, researchers considered both head and eye orientation in order to estimate detailed and
local gaze direction.

Moreover, considering its operating principles, visual distraction systems can be grouped in two
main categories: hardware- and software-based methods. Additionally, some systems can combine
these two approaches and therefore, a third category can also be considered, as seen in Figure 4.
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Figure 4. Visual distraction algorithms categorization.

4.1. Hardware-Based Methods to Extract Gaze Direction

Hardware-based approaches to head pose and gaze estimation rely on Near Infrared (NIR)
illuminators to generate the bright pupil effect. These methods use two ring-type IR light-emitting
diodes: one located near the camera’s optical axis and the other located far from it [120–126]. The light
source near the camera optical axis makes a bright pupil image caused by the red-eye effect, and the
other light source makes a normal dark pupil image. The pupil was, then, easily localized by using
the difference between bright and dark pupil images. Ji et al. used the size, shape, and intensity
of pupils, as well as the distance between the left and right pupil, to estimate the head orientation.
Specifically, the authors used the pupil-glint displacement to estimate nine discrete gaze zones [121,122],
a geometric disposition of the IR LEDs similar to that of Morimoto et al. [120] and two Charge Coupled
Device (CCD) cameras embedded on the dashboard of the vehicle. In connection with the CCD
cameras, the first one is a narrow angle camera, focusing on the driver’s eyes to monitor eyelid
movement while the second one is a wide angle camera focusing on his/her head to track and monitor
head movement. Based on this work, Gu et al. [124] proposed a combination of the Kalman filtering
with the head motion to predict the features localization and used Gabor wavelet in order to detect
the eyes constrained to the vicinity of predicted location. Another existent approach proposed by
Batista et al. used dual Purkinje images to estimate a driver’s discrete gaze direction [125]. A rough
estimation of the head-eye gaze was described based on the position of the pupils. The shape of the
face is modeled with an ellipse and the 3D face pose is recovered from a single image assuming a
ratio of the major and minor axes obtained through anthropometric face statistics. In this method,
further research is necessary in order to improve the accuracy of the face orientation estimation,
which is highly dependent on the image face ellipse detection.

The aforementioned NIR illumination systems work particularly well at night. The major
advantage of these methods is the exact and rapid localization of the pupil. However, performance can
drop dramatically due to the contamination introduced by external light sources [126,127]. In addition,
during daytime, sunlight is usually far stronger than NIR light sources and hence, the red-eye effect
may not occur. Moreover, these methods could not work with drivers wearing glasses because the
lenses create large specular reflections and scatter NIR illumination [127–129]. While the contamination
due to artificial lights can easily be filtered with a narrow band pass filter, sunlight contamination will
still exist [126]. Furthermore, such systems are vulnerable to eye occlusion caused by head rotation
and blinking [114].
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4.2. Software-Based Methods to Extract Gaze Direction

Combining facial feature locations with statistical elliptical face modelling, Batista et al. [83]
presented a framework to determine the gaze of a driver. To determine the gaze of the face, an elliptical
face modelling was used taking the eye’s pupil locations to constraint the shape, size and location
of the ellipse. The proposed solution can measure yaw head rotation over [−30◦, +30◦] interval and
pitch head rotation over [−20◦, +20◦] interval.

Furthermore, despite the technical challenges of integrating multiple cameras, Bergasa et al. [130]
proposed a a subspace-based tracker based on head pose estimation using two cameras. More specifically,
the initialization phase was performed using the Viola and Jones algorithm [40] and a 3D model of the
face was constructed and tracked. In this work, head pose algorithm, which was the base for visual
distraction estimation, could track the face correctly up to [−40◦, +40◦].

A limitation of the software-based methods is the fact that they cannot often be applied at
night [126,131]. This has motivated some researchers to use active illumination based on IR LEDs,
exploiting the bright pupil effect, which constitutes the basis of these systems [126,131] (explained in
previous section), or combine both methods, which can be seen in the next section.

4.3. Hardware- and Software-Based Methods to Extract Gaze Direction

Lee et al. [114] proposed a system for both day and night conditions. A vision-based real-time gaze
zone estimator based on a driver’s head orientation composed of yaw and pitch is proposed. The authors
focused on estimating a driver’s gaze zone on the basis of his/her head orientation, which is essential
in determining a driver’s inattention level. For night conditions, additional illumination to capture the
driver’s facial image was provided. The face detection rate was higher than 99% for both daytime
and nightime.

The use of face salient points to track the head was introduced by Jimenez et al. [132], instead of
attempting to directly find the eyes using object recognition methods or the analysis of image intensities
around the eyes. The camera was modified to include an 850 nm band-pass filter lens covering both the
image sensor and the IR LEDs in order: (a) to improve the rejection of external sources of IR radiation
and reduce changes in illumination and (b) to facilitate the detection of the pupils, because the retina is
highly reflective of the NIR illumination of the LEDs. An advantage of salient points tracking is that
the approach is more robust to the eyes occlusion whenever they occur, due to the driver’s head or
body motion.

Later on, the same authors extended their prior work in order to improve non-invasive systems
for sensing a driver’s state of alert [133]. They used a kinematic model of the driver’s motion and a
grid of salient points tracked using the Lukas-Kanade optical flow method [132]. The advantage of
this approach is that it does not require one to directly detect the eyes, and therefore, if the eyes are
occluded or not visible from the camera when the head turns, the system does not loose the tracking of
the eyes or the face, because it relies on the grid of salient points and the knowledge of the driver’s
motion model. Experiments involving fifteen people showed the effectiveness of the approach with
a correct eyes detection rate of 99.41% on average. It should be noted that this work is focused on
sensing the drivers’ state of alert, which is calculated measuring the percentage of eyelid closure over
time (PERCLOS), and it is not focused on distraction detection.

Eyes Off the Road (EOR) detection system is proposed in [49]. The system collects videos from
a CCD camera installed on the steering wheel column and tracks facial features. Using a 3D head
model, the system estimates the head pose and gaze direction. For night time operation, the system
requires an IR illumination. The proposed system does not suffer from the common drawbacks of
NIR based systems [121,122,125], because it does not rely on the bright pupil effect. The system works
reliably with drivers of different ethnicities wearing different types of glasses. However, if the driver
is wearing sunglasses, it is not possible to robustly detect the pupil. Thus, to produce a reliable EOR
estimation in this situation, only head pose angles are taken into account.
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Cyganek et al. [134] proposed a setup of two cameras operating in the visible and near infra-red
spectra for monitoring inattention. In each case (visible and IR) two cascade of classifiers are used.
The first one is used for the detection of the eye regions and the other for the verification stage.

Murphy-Chutorian et al. used Local Gradient Orientation (LGO) and Support Vector Regression
(SVR) to estimate the driver’s continuous yaw and pitch [135]. They used head pose information
extracted from a LGO and SVR to recognize drivers’ awareness. The algorithm was further developed
in [59] by introducing a head tracking module built upon 3D motion estimation and a mesh model of
the driver’s head. There is a general weakness here as the tracking module may easily diverge from
face shapes that are highly different to the given mesh model.

4.4. Driver Distraction Algorithms Based on Gaze Direction

In these previous Sections 4.1–4.3, gaze direction is extracted using different methods. The next
step is to detect distraction using gaze direction regardless of the type of method used to extract this
information, and hence, is commented as follows.

Many software-based methods have been proposed in order to detect visual distraction, many
of which, rely on “course” information extracted from visual cues [114,136–139]. Hattori et al. [136]
introduced a FCW system using drivers’ behavioural information. Their system determines distraction
when it detects that the driver is not looking straight ahead. Following this approximation, an Android
app [137] has been developed to detect and alert drivers of dangerous driving conditions and
behaviour. Images from the front camera of the mobile phone are scanned to find the relative position
of the driver’s face. By means of a trained model [38] four face related categories were detected:
(1) no face is present; (2) facing forwards, towards the road; (3) facing to the left and (4) facing to the
right. Another related system is proposed by Flores et al. [138] where, in order to detect distraction,
if the system detects that the face position is not frontal, an alarm cue is issued to alert the driver
of a danger situation. Lee et al. [114] proposed a vision-based real-time gaze zone estimator based
on a driver’s head orientation composed of yaw and pitch. This algorithm is based on normalized
histograms of horizontal and vertical edge projections combined with an ellipsoidal face model and
a SVM classifier for gaze estimation. In the same research line but in a more elaborated fashion,
Yuging et al. [139] used machine vision techniques to monitor the driver’s state. The face detection
algorithm is based on detection of facial parts. Afterwards, the facial rotation angle is calculated based
on the analysis of the driver’s head rotation angles. When the angle of facial orientation is not in a
reasonable range and lasts for a relatively long time, it can be thought that the driver is distracted and
warning information will be provided.

Additionally, other software-based approaches rely on “fine” information considering both head
and eye orientation in order to estimate distraction [83,130,140,141]. Pohl et al. [140] focused on
estimating the driver’s visual distraction level using head pose and eye gaze information with the
assumption that the visual distraction level is non-linear: visual distraction increased with time
(the driver looked away from the road scene) but nearly instantaneously decreased (the driver
re-focused on the road scene). Based on the pose and eye signals, they established their algorithm
for visual distraction detection. Firstly, they used a Distraction Calculation (DC) to compute the
instantaneous distraction level. Secondly, a Distraction Decision-Maker (DDM) determined whether
the current distraction level represented a potentially distracted driver. However, to increase the
robustness of the method, also the robustness of the eye and head tracking device to adverse lighting
conditions has to be improved.

Bergasa et al. [126] presented a hardware- and software-based approach for monitoring driver
vigilance. It is based on a hardware system, for real time acquisition of driver’s images using an active
IR illuminator and a software implementation for real time pupil tracking, ocular measures and face
pose estimation is proposed. Finally, driver’s vigilance level is determined from the fusion of the
measured parameters into a fuzzy system. The authors yielded an accuracy percentage close to 100%
both at night and for users not wearing glasses. However, the performance of the system decreases
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during daytime, especially in bright days, and at the moment, the system does not work with drivers
wearing glasses [126].

Recently, Lee et al. [141] evaluated four different vision-based algorithms for distraction under
different driving conditions. These algorithms were chosen for their ability to distinguish between
distracted and non-distracted states using eye-tracking data [141]. The resulting four algorithms,
summarized in Table 5, are commented next:

1. Eyes off forward roadway (EOFR) estimates distraction based on the cumulative glances away
from the road within a 6-s window [7].

2. Risky Visual Scanning Pattern (RVSP) estimates distraction by combining the current glance and
the cumulative glance durations [142].

3. “AttenD” estimates distraction associated with three categories of glances (glances to the forward
roadway, glances necessary for safe driving (i.e., at the speedometer or mirrors), and glances not
related to driving), and it uses a buffer to represent the amount of road information the driver
possesses [143–145].

4. Multi distraction detection (MDD) estimates both visual distraction using the percent of glances
to the middle of the road and long glances away from the road, and cognitive distraction by
means of the concentration of the gaze on the middle of the road. The implemented algorithm
was modified from Victor et al. [146] to include additional sensor inputs (head and seat sensors)
and adjust the thresholds for the algorithm variables to improve robustness with potential loss
of tracking.

Table 5. AUC comparisons by algorithm across tasks.

Task
Algorithm

RVSP EOFR AttenD MDD

Arrows 0.67 0.75 0.71 0.87
Bug 0.78 0.87 0.80 0.86

Considering the results of the ROC curves, AUC values, accuracy and precision, it is apparent that
a trade-off exists between ensuring distraction detection and avoiding false alarms, which complicates
determining the most promising algorithm. More specifically, the MDD algorithm showed the best
performance across all evaluation metrics (accuracy, precision, AUC). Although the EOFR algorithm
had promising AUC values, the AttenD algorithm often yielded better accuracy and precision.
Additionally, the RVSP algorithm consistently yielded the lowest values for both accuracy and
precision, but yielded a slightly higher AUC value than AttenD. All of the algorithms succeeded
in detecting distraction well above chance detection (AUC = 0.5). The performance of the algorithms
varied by task, with little difference in performance for the looking and reaching task (bug) but more
stark differences for the looking and touching (arrows). The AUC for each task for each algorithm is
provided in Table 5.

5. Cognitive Distraction

Cognitive distraction is a critical area of concern with regard to driver distraction, particularly
as related to tasks of listening and conversing, but also, as related to spontaneously occurring
processes like daydreaming or becoming lost in thought, which may occur really often on long
drives. The term “cognitive load” can be defined as any workload imposed on a driver’s cognitive
processes [26]. There are several types (and subtypes) of scenarios where cognitive load may occur
during (see Figure 5), and therefore, affect driving. For further information, the reader may refer to [26].
These include:
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1. Cognitive load imposed by secondary tasks undertaken while driving.
2. Cognitive load associated with the driver’s internal activity.
3. Cognitive load arising from the driving task itself.

Cognitive load from
secondary tasks

Cognitive load from
activity internal to

the driver

Cognitive load from
driving task

Language-
generation

tasks

Language-
comprehension

tasks

Memory tasks

Other tasks

Daydreaming or
mind-wandering

Thinking or
being lost in

thought

Planning
activities

Mentally solving
daily life
problems

Planning a
route or stops

on a trip

Situation
awareness

(road & traffic)

Resolving
response
conflicts

Attention
shifting

Figure 5. Classification of main types and subtypes of cognitive load while driving.

5.1. Behavioral and Physiological Indicators of Cognitive Load

The research literature documents several types of measures associated with periods of cognitive
load. Secondary tasks imposing cognitive load lead to: (1) a high percentage of glances on the forward
road and; (2) unusually long glances on the forward road. These two metrics together have been found
to be uniquely indicative of cognitive loads [110,147]. Moreover, a narrowing of the spatial extent of
scanning [147] is also produced, which is reflected in slightly fewer glances to locations where the
mirrors, the speedometer and the areas peripheral to the road centre are located [26,148]. As a result,
cognitive load may cause an increasing gaze concentration towards the middle of the road [11].

An eye-gaze pattern could be used to differentiate the action of only driving from driving under
the influence of any cognitive task [147]. Drivers under cognitive distraction had fewer saccades per
unit time, which was consistent with less exploration of the driving environment [149]. Saccades may
be a valuable index of mental workload [150]. In fact, the standard deviations of both eye and head
movement could be suitable for detecting cognitive distraction causing gaze concentration and slow
saccades when drivers are looking forward [151]. A higher blink rate and a shrink in visual searching
range were observed when the driver was cognitively distracted [152]. Kircher et al. [144] indicated
the percentage of time the driver spent observing the road ahead, which is called the percentage road
center (PRC) of gaze direction, was more than 92% under cognitive distraction in a field study.

Therefore, both glance and blink measures can be used to detect cognitive distraction. For example,
He et al. [153] have observed that mind-wandering has effects on glance patterns and blink rates
similar to those observed in periods of cognitive secondary task load. During mind-wandering, there is
also an increasing concentration of gaze on the forward road with concomitant narrowing of scanning,
longer glances on the forward road, and changes in blink rate [26]. Results from [154] suggested
that performance data and oculomotor scanning behavior may allow the detection of drivers’ mind
wandering episodes before they are recognized by the driver himself/herself, potentially providing
interventions to detect inattentiveness and alert drivers. Blink rate seems to be a promising indicator of
cognitive processing [27]. However, there are measurement issues that may affect how successfully it
can be applied in discriminating different types of task loading during driving. For example, there are
some questions left about whether it offers sufficient sensitivity when extracted from real world data
acquired from a complex task like driving wherein there are inherent temporal variations in driving
task load [26,27].
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Physiological measures can also be used to detect cognitive load. The average value of pupil
diameter is suitably used as a physiological feature for detection of cognitive distraction [155].
When cognitive loads such as arithmetic or conversation were imposed to the subjects, dilation of
pupils occurred by acceleration of the sympathetic nerve, resulting in an increase of diameter of
pupils [156]. The average value of pupil diameter caused by cognitive loads, such as arithmetic,
increased by 13.1% compared with ordinary driving [156]. The tests were performed in a driver
simulator in controlled settings. Further experiments are required in a naturalistic setting. Moreover,
additional works highlighted the difficulty in estimating cognitive load using pupil diameter during a
dialogue task [157] or in different lighting conditions [158].

The same limitation applies to other physiological measures, as Heart Rate (HR), which tends
to increase as cognitive task load raises [159]. The traditional method to quantify these physiological
measures is by wearing physiological sensors. However, HR measurements can be acquired using
computer vision techniques, and consequently, special care has been taken reviewing HR information.
Additionally, it is considered a good indicator of fatigue, stress and cognitive load.

By means of the use of HR information the cognitive state of a driver can be monitored [160]
in controlled settings. Changes in HR have been noted during certain driving tasks [161]. Similarly,
Apparies et al. [162] showed that HR and Heart Rate Variability (HRV) may serve as early indicators of
fatigue. In general, HRV specifically measures mental workload, while HR measures physical one [163].
HRV analysis is a strong indicator of mental stress or workload caused by driving tasks [162,164,165].
Experiments carried out in a driving simulator by Zhao et al. [166] found that human heart rates
violently fluctuate during a mental stress situation. Ostlund et al. [167] and Miller et al. [165] identified
both HR and HRV as promising indicators of the driver’s stress level, by increasing HR and decreasing
HRV [165,167]. Physiological measures, such as HR and skin conductance level, tend to increase as
cognitive task load increases [159].

There are some research works able to extract HR and HRV from face video images in real time
from human faces [168–170]. Eulerian Video Magnification framework [171] can be also used to obtain
human pulse from a video sequence [172]. In [173], the authors described an approach offering a
non-invasive, non-contact means of cardiac monitoring. Once the HRV time series are extracted,
feature generation, feature selection and classification should be performed. The conventional method
that uses Fast Fourier Transform (FFT) analysis on HRV is 2-min long. In [174], a new method
developed by using wavelet-based feature and SVM for classification uses only 1-min HRV signals.
Moreover, this method increases accuracy, sensitivity and specificity compared to FFT-based results.

Therefore, concerning cardiovascular measures, they have been reported to be sensitive to mental
workload changes and both HR and HRV are widely adopted mental workload measures because
they are easy to use and provide fundamental information about the autonomic nervous system [175].
Most methods [168–170] enable low-cost, non-contact cardiovascular activity monitoring using regular
RGB cameras by analyzing minute skin color changes caused by periodic blood flow. Nevertheless,
for automotive applications, these methods can encounter difficulties under different illumination
conditions [176]. In [176], the authors proposed an artifact reduction method, which is caused by
lighting variation. Another option is to use an IR-based camera system suitable for automotive
applications [177].

To conclude this section, the use of physiological parameters can be used to monitor the cognitive
state of the driver. Many of these parameters have been described in controlled settings, but further
experiments are required to validate their capability in naturalistic conditions. The main algorithms in
this matter are included in the next section.

5.2. Algorithms

Zhang et al. [178] used a decision tree approach to estimate drivers’ cognitive workload from
eye gaze-related features and driving performance. Liang, Reyes, et al. [179] showed that the SVM
models can also detect cognitive distraction. The model’s accuracy and sensitivity increased with
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window size, suggesting that using longer periods to summarize the data made the distraction
signal easier for the models to detect. The conclusion was that the best models were obtained using
40-s window size. Additionally, Liang, Lee, et al. [180] also used Bayesian Network (BN) models
and found that they could identify cognitive load reliably for simulator data, and also found that
Dynamic Bayesian Networks (DBNs), which considered time dependencies of driver’s behaviour,
gave a better performance than static BN models. This fact suggests that time-dependent relationship
is critical in estimating the cognitive state of the driver. However, to train DBN models, longer training
sequences are necessary to obtain more accurate and sensitive models. The results obtained in [180]
using BNs, which stated that window size did not affect model performance, clearly conflict with
those of Liang et al. [179], which found that larger window sizes improved the detection of cognitive
distraction, although another data mining method, SVM, was applied in that study. An additional
work from Liang et al. [181] compared SVMs, SBNs, and DBNs in detecting cognitive distraction
using the best parameter settings from the same dataset used in the previous two studies [179,180].
DBNs produced the most accurate and sensitive models compared to SBN and SVM. Based on
the comparisons of SVMs and BNs, Liang et al. [27,182,183] used a hierarchical layered algorithm,
which incorporated both a DBN and a supervised clustering algorithm, to identify feature behaviors
when drivers were in different cognitive states. This layered algorithm includes a DBN algorithm
at the higher level to model the time-dependent relationship of driver behavior and a supervised
clustering algorithm at the lower level to identify feature behaviors. The layered algorithm overcomes
the disadvantages of DBNs and significantly improves computational efficiency in training and
prediction. Miyaji et al. [184] proposed an approach to detect eye and head movement tracked via
standard deviation and categorized features for pattern recognition by using AdaBoost method to
detect distraction. The authors compared the performance achieved by both SVM and AdaBoost in
estimating cognitive workload, finding that AdaBoost could achieve higher accuracy. Additionally,
Miyaji et al. [156] introduced a mixed method by applying a SVM and an AdaBoost classifier for
three parameters: (1) heart rate; (2) visual information (standard deviation of both gaze and head
rotation angles) and (3) pupil diameter to assess the level of the driver’s vigilance. Recently, a new
machine learning tool, Extreme Learning Machine (ELM) [185,186]), has gained much attention due
to its simple structure, high generalization capability, and fast computational speed. For example,
in [187], ELM and SVM were applied to detect drivers’ workload using eye movement, as well as eye
movement combined with driving performance data. The results suggested that both methods can
detect drivers’ workload at high accuracy, but ELM outperformed SVM in most cases.

The results of all the works mentioned so far can be summarized in Table 6. Common features
include the use of eye gaze-related features, driving performance, pupil diameter features and HR.
It should also be noted that very good results can be obtained using only eye gaze-related features.
Additionally, many supervised machine learning techniques have been proposed so far: decision trees,
SVM, BN, DBN, AdaBoost or ELM.

All these distraction detection systems are based on supervised learning, meaning that the training
of such systems need to be “supervised” by human experts by providing a target set for training
data containing distraction status. The supervised learning paradigm is only suitable for early stage
research and may not be suitable for implementation in real driving cases because of the huge cost and
difficulty of creating a target distraction status set, which would require additional subjective ratings
by the driver [115], post-processing by the experimentalists [56], or additional computation based
on data from other sources [179]. For example, in a recent study [188], labeling drivers’ distraction
state involves the development of Graphical User Interface (GUI), the training of external evaluators,
and the actual labeling time, which is approximately 21.5 h of manpower (43 min per one of the
30 evaluator) to label the entire video segments. For naturalistic driving, where the driver voluntarily
decides which tasks to perform at any time, the labeling process can become infeasible. On the other
hand, data without known distraction states (unlabeled data) can be collected readily, e.g., from drivers’
naturalistic driving records.



Sensors 2016, 16, 1805 20 of 44

Table 6. Supervised algorithms for cognitive distraction detection.

Algorithm Features Classifier Accuracy (%)

Zhang et al. [178]
Eye gaze-related features
and driving performance Decistion Tree 81

Zhang et al. [178] Eye gaze-related features Decistion Tree 80

Zhang et al. [178] Pupil-diameter features Decistion Tree 61

Zhang et al. [178] Driving performance Decistion Tree 60

Liang, Reyes, et al. [179]
Eye gaze-related features
and driving performance SVM 83.15

Liang, Reyes, et al. [179] Eye gaze-related features SVM 81.38

Liang, Reyes, et al. [179] driving performance SVM 54.37

Liang, Lee, et al. [180]
Eye gaze-related features

and driving performance data DBNs 80.1

Miyaji et al. [156]
Heart rate, Eye gaze-related
features and pupil diameter AdaBoost 91.5

Miyaji et al. [156] Eye gaze-related features SVM 77.1 (arithmetic task)

Miyaji et al. [156] Eye gaze-related features SVM 84.2 (conversation task)

Miyaji et al. [156] Eye gaze-related features AdaBoost 81.6 (arithmetic task)

Miyaji et al. [156] Eye gaze-related features AdaBoost 86.1 (conversation task)

Yang et al. [187]
Eye gaze-related features

and driving performance data ELM 87.0

Yang et al. [187]
Eye gaze-related features

and driving performance data SVM 82.9

With the purpose of tackle these deficiencies, Unsupervised and Semi-Supervised algorithms can
be used. For example, in [12], Semi-Supervised Extreme Learning Machine (SS-ELM) is proposed for
drivers’ distraction detection. SS-ELM outperformed supervised ELM in both accuracy and model
sensitivity, suggesting that the proposed semi-supervised detection system can extract information
from unlabeled data effectively to improve the performance. SS-ELM based detection system has the
potential of improving accuracy and alleviating the cost of adapting distraction detection systems to
new drivers, and thus, more promising for real world applications. However, several points are unclear
from these preliminary results [12] further explored in [189], where the Semi-Supervised Learning
(SSL) paradigm is introduced to real time detection of distraction based on eye and head movements.

In [189], two graph-based SSL methods were compared with supervised learning methods.
These algorithms are detailed as follows. Laplacian Support Vector Machine (LapSVM), which is an
extension of SVMs to SSL under manifold regularization framework [190], and SS-ELM were compared
with three supervised learning methods (static BN with Supervised Clustering (SBN-SC) [180,183],
ELM and SVM) and one low-density-separation-based method (Transductive SVM (TSVM) [191]).
To capture realistic eye and head movements patterns, data from an on-road experiment were used.
By utilizing unlabeled data, the graph-based semi-supervised methods reduced the labeling cost and
improved the detection accuracy. The highest accuracy of 97.2% and G-mean of 0.959 were achieved by
SS-ELM. The benefits of using SSL methods increased with the size of unlabeled data set showing that
by exploring the data structure without actually labeling them, extra information to improve models
performance can be obtained.

It is worth noting that cognitive distraction detection is only performed in “laboratory settings”
and not in real conditions. In real life situations, when the driver is under cognitive load
(e.g., mind wandering): (1) he is alone and does not interact with anybody; (2) he is also the only
one who can decide whether or not to activate the attentional processing of distractive thoughts [192];
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and (3) drivers are likely to be performing multiple tasks at the same time (e.g., talking on the mobile
phone and listening to music). Moreover, there are two main limitations intrinsic to laboratory-based
studies. First of all, most of these studies require that the execution of predefined tasks last for no
more than some minutes. In our opinion, such experiments make it very difficult, if not impossible,
to infer, for instance, the long-term effectiveness of for example, warning signals, monotonous driving
(in general, real driving), on the basis of the results of experiments that are typically so short;
And secondly, the drivers are abnormally vigilant to the driving task because they are being
observed [193]. In connection with this point, the use of physiological parameters, which form
the basis for cognitive distraction detection, have also been extracted in controlled settings and not in
real conditions.

6. Mixing Types of Distraction

There are some algorithms trying to detect mixing types of distraction, whose results can be seen
in Table 7. In [194], facial features are extracted to detect both visual and cognitive distractions.
Binary classifiers (normal vs distracted) are built for visual and cognitive distraction detection.
Gaze and Action Units (AU) features are useful in order to detect visual distractions, while AU features
are particularly important for cognitive distractions. It should be pointed out that the cognitive tasks
considered in this study are closely related to talking activities.

Table 7. Mixing types of distraction detection algorithms.

Algorithm Features Classifier Average Accuracy (%)

Li et al. [194] AU and head pose
LDC (visual distraction) and
SVM (cognitive distraction) 80.8 (LDC), 73.8 (SVM)

Craye et al. [195]

eye behaviour, arm position,
head orientation and facial

expressions using both
color and depth images

Adaboot and HMM 89.84 (Adaboot), 89.64 (HMM)

Liu et al. [196] Head and eye movements SVM, ELM and CR-ELM
85.65 (SVM), 85.98 (ELM),

86.95 (CR-ELM)

Ragab et al. [197]

arm position, eye closure,
eye gaze, facial expressions

and head orientation
using depth images

Adaboost, HMM, RF,
SVM, CRF, NN

82.9 (RF—type of
distraction detection),

90 (RF—distraction detection)

Liu et al. [196] applied Cluster Regularized Extreme Learning Machine (CR-ELM) for detecting
mixing types of distraction. Compared with the traditional ELM, CR-ELM introduces an additional
regularization term penalizing large covariance of training data within the same clusters in the output
space. CR-ELM, ELM and SVM were compared to predict mixing types of distraction. They simulated
the mixing types of distraction by combining two types of distracting driving activities (a visual task
and a cognitive one). CR-ELM showed lower error rate on most of the 11 subjects (see Table 7).

There are other approaches trying to merge both RGB and depth images to get the features
to be used by the algorithms [195,197]. Craye et al. [195] extracted features from face and body
using both color and depth images in order to build a distraction system, which is composed of four
sub-modules: eye behaviour (gaze and blinking), arm position, head orientation and facial expressions.
The information from these modules are merged together using two different classification techniques:
Adaboost classifier and Hidden Markov Model (HMM). A set of video sequences was collected to test
the system. Five distractive tasks were recorded and manually labelled for training and evaluation.
HMM outperforms Adaboost for most drivers. Finally, a vision-based driver distraction is investigated
using several machine learning techniques in [197]. IR and Kinect cameras were used in this system,
where five visual cues were calculated: arm position, eye closure, eye gaze, facial expressions and
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head orientation. These cues were fed into a classifier, such as Adaboost, HMM, RF, SVM, Conditional
Random Field (CRF) or NN, in order to detect and recognize the type of distraction.

7. The Relationship between Facial Expressions and Distraction

Facial expressions can be described at different levels [198]. A widely used description is Facial
Action Coding System (FACS) [199], which is a human-observer-based system developed to capture
subtle changes in facial expressions. With FACS, these expressions are decomposed into one or more
AUs [200]. AU recognition and detection have attracted much attention recently [201]. Meanwhile,
psychophysical studies indicate that basic emotions have corresponding universal facial expressions
across all cultures [202]. This is reflected by most current facial expression recognition systems
attempting to recognize a set of prototypic emotional expressions including disgust, fear, joy, surprise,
sadness and anger [201], which can be helpful in predicting driving behaviour [203].

Therefore, in this work, main facial expression works in the driving environment are described in
accordance with the two aforementioned levels (FACS and prototypic emotional expressions) and how
they are related with distraction.

On one hand, in connection with FACS and distraction while driving, the reference work is the
one proposed by Li et al. [194]. The authors performed the analysis of driver’s facial features under
cognitive and visual distractions. In addition to the obvious facial movement associated with secondary
tasks such as talking, they hypothesized that facial expression can play an important role in cognitive
distraction detection. They studied the top five features (from a total of 186 features) to predict both
cognitive and visual distraction. For cognitive distraction, the most important features to consider
are: (1) head yaw; (2) Lip Corner Depressor (AU15); (3) Lip Puckerer (AU18); (4) Lip Tightener (AU23)
and (5) head roll. For visual distraction, the most important features to consider are: (1) Lip Tightener
(AU23); (2) jaw drop (AU26); (3) head yaw; (4) Lip Suck (AU28) and (5) Blink (AU45). The results
indicated that gaze and AU features are useful for detecting visual distractions, while AU features
are particularly important for cognitive distractions. It should be pointed out that since the cognitive
tasks considered in this study are closely related to talking activities, their future work will include the
analysis of other cognitive tasks (e.g., thinking or solving math problems).

On the other hand, in connection with prototypic emotional expressions, there are some works
trying to study how these emotions affect behaviour.

The relationship between emotion and cognition is complex, but it is widely accepted that
human performance is altered when a person is in any emotional state. It is really important to fully
understand the impact of emotion on driving performance because, for example, roadways are lined
with billboard advertisements and messages containing a lot of different emotional information.
Moreover, the distracting effects of emotions may come in other forms, such as cell phone,
passenger conversations, radio information or texting information [204]. For example, Chan et al. [204]
conducted a study to examine the potential for distraction from emotional information presented on
roadside billboards. The findings in this study showed that emotional distraction: (a) can seriously
modulate attention and decision-making abilities and have adverse impacts on driving behavior
for several reasons and (b) can impact driving performance by reorienting attention away from the
primary driving task towards the emotional content and negatively influence the decision-making
process. In another study with a similar line of work, Chan et al. [205] showed that emotion-related
auditory distraction can modulate attention to differentially influence driving performance. Specifically,
negative distractions reduced lateral control and slowed driving speeds compared to positive and
neutral distractions.

Some studies have shown that drivers who are more likely to become angry (e.g., those with high
trait anger rates) tend to engage in more aggressive behavior on the road, which can result in negative
outcomes such as crashes [206]. Moreover, anger negatively influences several driving performance
and risky behaviors such as infractions, lane deviations, speed, and collisions [207].
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In conclusion, aggressiveness and anger are emotional states that extremely influence driving
behaviour and increase the risk of accident. However, a too low level of activation (e.g., resulting from
emotional states like sadness) also leads to reduced attention and distraction as well as prolonged
reaction time and, therefore, lowers driving performance [208]. On this basis, research and experience
have demonstrated that being in a good mood is the best precondition for safe driving and that
happy drivers produce fewer accidents [209]. In other words, happy drivers are better drivers [208,210].
Facial expression and emotion recognition can be used in advanced car safety systems, which, on one
hand, can identify hazardous emotional drivers’ states that can lead to distraction and, on the other,
can provide tailored (according to each state and associated hazards) suggestions and warnings to the
driver [211].

8. Sensors

Once the algorithms for distraction detection have been designed and implemented, the next step
is to port them to an embedded device or system to be executed inside the car. However, porting a
vision-based algorithm is not a straightforward step and some key factors should be taken into account.
Furthermore, there is not a standard implementation platform, so different alternatives have been
proposed by both the scientific community and the industry.

8.1. Porting a Vision Algorithm to an Embedded Automotive System

The implementation of computer vision applications in automotive environments is not
straightforward because several requirements must be taken into account: reliability [212,213],
real-time performance [213–215], low-cost [216–219], spatial constraints [217,219], low power
consumption [220], flexibility [219], rapid prototyping [215,221], design requirements [217] and
short time to market [217]. Therefore, there must be a trade-off among these design requisites [217].
Moreover, there is not a commonly accepted hardware and software platform, so different solutions
have been proposed by the industry and the scientific community. Last but not least, some driver
distraction guidelines and test procedures for all applications to be used while driving should be
considered [222], and so should ADAs.

One approach can rely on the use of microprocessors, which incorporates the functions
of a computer’s central processing unit (CPU) on a single integrated circuit (IC). For example,
in [223], a vision-based system for monitoring the loss of attention, tested under day and night
driving conditions, is proposed. The algorithm was cross-validated using brain signals and finally,
implemented on a Single Board Computer (SBC). Another example is presented in [224], where a
vehicle was equipped with a USB camera connected to the system in order to track the driver’s eyes
for fatigue detection.

A similar approach is the use of digital signal processors (DSPs) [225], which can perform
multiplications and additions in a single cycle and have parallel processing capabilities. DSPs have
been used in image and audio signal processing when the use of microcontrollers was not
enough. These processors were used in [215], where an optimized vision library approach for
embedded systems was presented. VLIB is a software library that accelerates computer vision
applications for high-performance embedded systems. By significantly speeding up pixel-intensive
operations, the library provides more headroom for innovative algorithms, and enables processing
of more channels at higher resolutions. Authors optimized the library for the Texas Instruments
C64x/C64x+ DSP cores. Karuppusamy et al. [226] proposed an embedded implementation of facial
landmarks detection based on both Viola-Jones face detector and facial landmarks detection using
extended Active Shape Model (ASM) [227]. However, DSPs imply a much higher cost compared with
other options such as field-programmable gate arrays (FPGAs) [228].

Another option is to use hardware implementation, since it can achieve a much better
computational performance, where two types are commonly used namely, FPGA and ASIC. A FPGA
is an integrated circuit designed to be configured by a customer or a designer after manufacture.
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FPGAs take advantage of high speed operations, especially for parallelizable operations achieving
good performance in face monitoring applications [229–232]. For example, several well-known
algorithms have been used and optimized for this field of application, such as: (a) spatial and temporal
filtering, motion detection and optical flow analysis [229] or (b) gray scale projection, edge detection
with Prewitt operator and complexity functions [230]. Additionally, the use of Application-Specific
Integrated Circuits (ASIC), which is an IC customized for a particular use rather than intended for
general-purpose use, has also been considered [233]. FPGAs have an important advantage over ASICs:
they are reconfigurable, which gives them some of the flexibility of software. ASICs are only used for
high volume manufacturing and long series due to higher initial engineering cost.

Developing the whole application in hardware is a cumbersome task, so hybrid solutions have
appeared combining both software and hardware implementations. The work in [234] describes a
System on a Chip (SOC) designed to support a family of vision algorithms. However, this system
uses an ASIC, so it cannot be completely reconfigured. This important drawback makes impossible
to update the device. A generic embedded hardware and software architecture was proposed to
design and evaluate ADAS vision applications [221]. Although the system is useful to test some vision
applications, the performance obtained in the case study showed that the system is not powerful
enough to run more complex applications including I/Os management, vehicle communications or
more demanding vision applications. In [219], a reconfigurable embedded vision system reaching the
requirements of ADAS applications is presented. A SOC, which is formed by an FPGA with a dual core
ARM, is prepared to be easily reconfigured. A lane departure warning system was implemented in the
case study obtaining a good computational performance. The obtained computational time allows the
system to include another more complex vision algorithm running in parallel. In [235], they proposed
an approach to predict performances of image processing algorithms on different computing units of a
given heterogeneous SOC.

Despite the fact that in recent years some authors have been trying to propose some architectures
in order to achieve some key factors in embedded ADAS systems inside a vehicle [219,221,235],
these efforts do not seem to be sufficient to reach the requirements stated before. The use of
microprocessors in embedded computer vision-based systems has experienced a significant growth
in recent years. Moreover, current premium cars implement more than 90 Electronic Control Units
(ECU) with close to 1 Gigabyte embedded software code [236]. In 2018, 30% of the overall vehicle
cost is predicted to stem from vehicle electronics [237]. The independence of different applications
(with different criticality levels) running on the same platform must be made evident. Therefore,
the development of embedded automotive systems has become quite complex. To that end, the use of
standards and frameworks is indispensable.

8.2. Commercial Sensors

8.2.1. Smart Eye

The Smart Eye [77] system is a well-suited head and gaze tracking method for the demanding
environment of a vehicle cabin and flexible to cope with most research projects. It consists of a
multi-camera system running on a single PC and on a single algorithm. The system is scalable
from 2 up to 8 cameras allowing 360◦ head and eye tracking. A typical configuration inside a vehicle
cabin is composed of four cameras with two IR lightings, located on the dashboard on either side
of the steering wheel. Smart Eye offers a sampling rate of 60 Hz (up to 8 cameras) or 120 Hz (up to
4 cameras). The field of view, depending on the number of cameras, is in the range of 90◦–360◦.
The data output includes over 145 values covering, among others, gaze, eyelid, pupilometry and head
tracking, raw and filtered gaze, blinks, fixations and saccades. Smart Eye has been used in several
driver assistance and inattention systems, such as [76,143–145,238].
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8.2.2. EyeAlert

EyeAlert [239], cited in several publications [128,240], has been conceived to detect driver
inattention using computer vision and to generate a warning signal in case of dangerous situation.
The EyeAlert system focuses entirely on the driver’s alertness levels or inattention to the road ahead,
regardless of the time of the day or the weather conditions. Three models are available:

• EyeAlert EA410 detects both distracted and fatigue driving. The EA410 has a highly integrated IR
camera, a computer, an image processing unit and an alarm. The EA410 technology is protected
by over ten patents. The system will also respond in case the driver does not focus on driving.

• EyeAlert EA430 with GPS detects both distracted and fatigue driving. Moreover, a minimum speed
threshold is programmed into the internal GPS to prevent false alarms in urban environments.

• EyeAlert EA450 with Data detects both distracted and fatigue driving. Additionally, minimum speed
threshold, sensitivity, volume and data can be remotely programmed. The minimum speed and
sensitivity controls allow the reduction of false alarms in highway and urban environments.

8.2.3. Seeing Machines

Seeing Machines [241] builds image-processing technology that tracks the movement of a person’s
eyes, face, head, and facial expressions. It monitors fatigue and distraction events in real-time and uses
IR technology to provide fatigue and distraction monitoring at any time of the day. The system can
also combine multiple camera sensors to detect a wider range of movements. The Seeing Machines’
system continuously measures operator eye and eyelid behaviour to determine the onset of fatigue and
micro sleeps and delivers real-time detection and alerts.The system has been used in many different
driver assistance and inattention systems [11,142,151,156,242–244].

8.2.4. Visage Technologies AB

Visage Technologies AB [245] provides a state-of-the-art commercial head tracker based on
feature-point detection and tracking of the nose boundary and eye regions. Visage SDK finds and
tracks the face and facial features, including gaze direction, in video sequences in real time. It provides
pupil coordinates, 3D gaze direction as well as (with a calibration step) screen-space gaze point.
Visage Technologies also features support for embedded systems like FPGA and IR light tracking for
poor lighting conditions.

8.2.5. Delphi Electronics Driver Status Monitor

Delphi Electronics, a major automotive electronics manufacturer, developed a single camera
Driver Status Monitor (DSM) [246]. By detecting and tracking the driver’s facial features, the system
analyzes eye-closures and head pose to infer his/her fatigue or distraction. This information is used to
warn the driver and to modulate the actions of other safety systems. The system includes the use of
NIR illumination, an embedded processing unit, as well as the camera (resolution of 640 × 480 pixels).

8.2.6. Tobii Technologies

Tobii Technologies develops Tobii’s eye-tracking technology for integration into volume products
such as computers, computer games, virtual reality and cars. The Tobii platform consists of two-camera
sensors, placed at different angles, and operating at IR frequencies to eliminate interference from
external light. The system can distinguish whether the driver’s eyes are open or closed or if the driver
has turned his/her head. The sensors work even when the driver is wearing glasses or sunglasses.
By observing the specifics of eyelid closure, in combination with eye gaze patterns, an active safety
system powered by Tobii’s eye tracking sensor can reliably detect if a driver is falling asleep and warns
him/her properly. Moreover, Tobbi Technologies provides the Tobii EyeChip, which is a dedicated eye
tracking SOC ASIC.
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8.2.7. SensoMotoric Instruments

SensoMotoric Instruments GmbH (SMI) [247] is a German company, whose eye tracking solutions
can measure head position and orientation, gaze direction, eyelid opening, and pupil position and
diameter. Eye trackers use a sampling rate of 120 Hz for head pose and gaze measurement, 120 Hz
for eyelid closure and blink measurement, and 60 Hz for combined gaze, head pose, and eyelid
measurement. It also provides PERCLOS information for drowsiness detection. It is a computer-based
system and needs user calibration. In [248], SensoMotoric was used to recognize the pupil in each
image in order to measure horizontal and vertical eye movements.

8.2.8. Automobile Manufacturers

Nissan introduces its new Driver Attention Alert system with the 2016 Nissan Maxima, which was
unveiled at the New York International Auto Show [249]. The automaker has highlighted that
the new system will be able to detect drowsy and inattentive driving and it will alert the driver
about the situation by giving visual and audible warning. Ford’s Driver Alert [250] seems only to
detect drowsiness but not distraction. The Driver Alert system comprises a small forward-facing
camera connected to an on-board computer. The camera is mounted on the back of the rear view
mirror and is trained to identify lane markings on both sides of the vehicle. When the vehicle is on
the move, the computer looks at the road ahead and predicts where the car should be positioned
relative to the lane markings. Then, it measures where the vehicle actually is and, if the difference
is significant, the system issues a warning. The Saab Driver Attention Warning System [251] detects
visual inattention and drowsy driving. The system uses two miniature IR cameras integrated with
Smart Eye technology [77] to accurately estimate head pose, gaze, and eyelid status. When a driver’s
gaze is not located inside the primary attention zone (which covers the central part of the frontal
windshield) for a predefined period, an alarm is triggered. Toyota has equipped their luxury Lexus
models with their Driver Monitoring System [252]. The system permanently monitors the movement
of the driver’s head when looking from side to side using a NIR camera installed at the top of the
steering wheel column. The system is integrated into Toyota’s pre-crash system, which warns the
driver when a collision is likely to happen. In 2007, Volvo Cars introduced Driver Alert Control to alert
tired and non-concentrating drivers [253,254]. Based on the idea that the technology for monitoring
eyes is not yet sufficiently mature and human behavior varies from one person to another, Volvo Cars
developed the system based on car progress on the road. It is reported that Driver Alert Control
monitors the car movements and assesses whether the vehicle is driven in a controlled or uncontrolled
way. More recently, a Hyundai concept car (the Hyundai HCD-14) incorporates Tobbi Technologies to
track the eyes [255].

9. Simulated vs. Real Environment to Test and Train Driving Monitoring Systems

The development of the computer vision algorithm only represents one part of all the cycle of
the product design. One of the hardest tasks is to validate the whole system with the wide variety of
driving scenarios [256]. In order to complete the whole “process development” of the vision-based
ADAS, some key points are presented.

In order to monitor both the driver and his/her driving behaviour, several hardware and software
algorithms are being developed, but they are tested mostly in simulated environments instead of in
real driving ones. This is due to the danger of testing inattention in real driving environments [21].
Experimental control, efficiency, safety, and ease of data collection are the main advantages of using
simulators [257,258]. Some researches have validated that driving simulators can create driving
environment relatively similar to road experiments [259–261]. However, some considerations should
be taken into account since simulators can produce inconsistent, contradictory and conflicting
results. For example, low-fidelity simulators may evoke unrealistic driving behavior and, therefore,
produce invalid research outcomes. One common issue is that real danger and the real consequences
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of actions do not occur in a driving simulator, giving rise to a false sense of safety, responsibility,
or competence [262]. Moreover, simulator sickness symptoms may undermine training effectiveness
and negatively affect the usability of simulators [262].

A study on distraction in both simulated and real environment was conducted in [11] and it was
found out that the driver’s physiological activity showed significant difference. Engstorm et al. [11]
stated that physiological workload and steering activity were both higher under real driving conditions
compared to simulated environments. In [257], the authors compared the impact of a narrower lane
using both a simulator and real data, showing that the speed was higher in the simulated roads,
consistent with other studies. In [263], controlled driving yielded more frequent and longer eye glances
than the simulated driving setting, while driving errors were more common in simulated driving.
In [167], the driver’s heart rate changed significantly while performing the visual task in real-word
driving relative to a baseline condition, suggesting that visual task performance in real driving was
more stressful.

After the system is properly validated in a driver simulator, it should be validated in real
conditions as well, because various factors including light variations and noise can also affect the
driver’s attention. The application on a real moving vehicle presents new challenges like changing
backgrounds and sudden variations of lighting [264]. Moreover, a useful system should guarantee
real time performance and quick adaptability to a variable set of users and to natural movements
performed during driving [264]. Thus, it is necessary to make simulated environments appear more
realistic [203].

To conclude, in most previous studies, independent evaluations using different equipment
and conditions (mainly simulated environments) resulted in time-consuming and redundant efforts.
Moreover, inconsistency in the algorithm performance metrics makes it difficult to compare algorithms.
Hence, the only way to compare most algorithms and systems is the metrics provided by each author
when comparing their values, but with scarce information about the used images and conditions.
Public data sets covering simulated and real driving environments should be released in the near
future, as stated by some authors previously [203].

10. Privacy Issues Related to Camera Sensors

Although there is a widespread agreement for intelligent vehicles to improve safety, the study
of driver behaviour to design and evaluate intelligent vehicles requires large amounts of naturalistic
driving data [265]. However, in current literature, there is a lack of publicly available naturalistic
driving data largely due to concerns over individual privacy. It also should be noted that a
real-time visual-based distraction detection system does not have to save the video stream. Therefore,
privacy issues are mostly relevant in research works were video feed is collected and stored to be
studied at a later stage, for example in the large naturalistic studies conducted in the US.

Typical protection of the individuals’ privacy in a video sequence is commonly referred as
“de-identification” [266]. Although this fact will help protect the identities of individual drivers,
it impedes the purpose of sensorizing vehicles to control both drivers and their behaviour. In an ideal
situation, a de-identification algorithm would protect the identity of drivers while preserving sufficient
details to infer their behaviour (e.g., eye gaze, head pose or hand activity) [265].

Martin et al. [265,267] proposed the use of de-identification filters to protect the privacy of drivers
while preserving sufficient details to infer their behaviour. Following this idea, a de-identification filter
preserving only the mouth region can be used for monitoring yawning or talking and a de-identification
filter preserving eye regions can be used for detecting fatigue or gaze direction, which is precisely
proposed by Martin et al. [265,267]. More specifically, the authors implemented and compared
de-identification filters made up of a combination of preserving eye regions for fine gaze estimation,
superimposing head pose encoded face masks for providing spatial context and replacing background
with black pixels for ensuring privacy protection. A two-part study revealed that human facial
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recognition experiment had a success rate well below the chance while gaze zone estimation accuracy
disclosed 65%, 71% and 85% for One-Eye, Two-Eyes and Mask with Two-Eyes, respectively.

Fernando et al. [268] proposed to use video de-identification in the automobile environment using
personalized Facial Action Transfer (FAT), which has recently attracted a lot of attention in computer
vision due to its diverse applications in the movie industry, computer games, and privacy protection.
The goal of FAT is to “clone” the facial actions from the videos of a person (source) to another one
(target) following a two-step approach. In the first step, their method transfers the shape of the source
person to the target subject using the triangle-based deformation transfer method.In the second step,
it generates the appearance of the target person using a personalized mapping from shape changes
to appearance changes. In this approach video de-identification is used to pursue two objectives:
(1) to remove person-specific facial features and (2) to preserve head pose, gaze and facial expression.

11. General Discussion and Challenges Ahead

The main visual-based approaches reviewed in this paper are summarized in Table 8 according to
some key factors.

A major finding emerging from two recent research works reveals that just-driving baselines may,
in fact, not be “just driving” [26,269], containing a considerable amount of cognitive activity in the form
of daydreaming and lost-in-thought activity. Moreover, eye-gaze patterns are somewhat idiosyncratic
when visual scanning is disrupted by cognitive workload [27]. Additionally, “look-but-failed-to-see”
impairment under cognitive workload is an obvious detriment to traffic safety. For example,
Strayer et al. [270] found that recognition memory for objects in the driving environment was reduced
by 50% when the driver was talking on a handsfree cell phone, inducing failures of visual attention
during driving. Indeed, visual, manual and cognitive distraction often occur simultaneously while
driving (e.g., texting while driving and other cell-phone reading and writing activities). Therefore,
the estimates of crash risk based on comparisons of activities to just-driving baselines may need to be
reconsidered in light of the possible finding that just-driving baselines may contain the aforementioned
frequent cognitive activity. As a result, for example, secondary tasks effects while driving should be
revised [269]. Accordingly, as detecting driver distraction depends on how distraction changes his/her
behavior compared to normal driving without distraction, periods with minimal or no cognitive
activity should be identified in order to train the distraction detection algorithms.

Additionally, computer vision techniques can be used, not only for extracting information
inside the car, but also for extracting information outside the car, such as traffic, road hazards,
external conditions of the road ahead, intersections, or even position regarding other cars. The final
step should be the correlation between the driver’s understanding and the traffic context. One of
the first works trying to fuse “out” information (visual lane analysis) and “in” information (driver
monitoring) is the one proposed by Apostoloff et al. [271], pointing out the benefits of this
approach. Indeed, visual lane analysis can be used for “higher-order tasks”, which are defined by
interacting with other modules in a complex driver assistance system (e.g., understanding the driver’s
attentiveness—distraction—to the lane-keeping task [272]). Hirayama et al [273] focused on temporal
relationships between the driver’s eye gaze and the peripheral vehicles behaviour. In particular,
they concluded that the timing when a driver gazes towards the overtaking event under cognitive
distraction is later than that under the neutral state. Therefore, they showed that the temporal
factor, that is, timing, of a reaction is important for understanding the state by focusing on cognitive
distraction in a car-driving situation. Additionally, Rezaei et al. [87] proposed a system correlating
the driver’s head pose to road hazards (vehicle detection and distance estimation) by analyzing both
simultaneously. Ohn et al. [274] proposed a framework for early detection of driving maneuvers using
cues from the driver, the environment and the vehicle. Tawari et al. [275] provided early detection of
driver distraction by continuously monitoring driver and surround traffic situation. Martin et al. [276]
focused on intersections and studied the interaction of head, eyes and hands as the driver approaches
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a stop-controlled intersection. In this line work of research, Jain et al. [277] deal with the problem of
anticipating driving maneuvers a few seconds before the driver performs them.

Table 8. Summary of visual-based approaches to detect different types of driver distraction.

Approach Distraction Detection Approaches Real Conditions Operation

Manual Visual Cognitive Daytime Nighttime

Zhao et al. [88] 4 8 8 8 4 8

Zhao et al. [89] 4 8 8 8 4 8

Zhao et al. [90] 4 8 8 8 4 8

Zhao et al. [91] 4 8 8 8 4 8

Bosch et al. [94] 4 8 8 8 4 8

Lowe et al. [95] 4 8 8 8 4 8

Yan et al. [92] 4 8 8 8 4 8

Yan et al. [93] 4 8 8 8 4 8

Zhang et al. [96] 4 8 8 8 4 8

Artan et al. [97] 4 8 8 4 4 4

Berri et al. [98] 4 8 8 4 4 8

Xu et al. [99] 4 8 8 4 4 4

Seshadri et al. [100] 4 8 8 4 4 8

Ohn et al. [106] 4 8 8 4 4 8

Martin et al. [104] 4 8 8 4 4 8

Ohn et al. [105] 4 8 8 4 4 8

Morimoto et al. [120] 8 4 8 4 8 4

Ji et al. [121] 8 4 8 4 8 4

Ji et al. [122] 8 4 8 4 8 4

Ji et al. [123] 8 4 8 4 8 4

Gu et al. [124] 8 4 8 4 8 4

Batista el al. [125] 8 4 8 4 8 4

Bergasa et al. [126] 8 4 8 4 4 4

Lee et al. [114] 8 4 8 4 4 4

Vicente et al. [49] 8 4 8 4 4 4

Cyganek et al. [134] 8 4 8 4 4 4

Donmez et al. [142] 8 4 8 8 4 8

Klauer et al. [7] 8 4 8 4 4 4

Kircher et al. [143] 8 4 8 4 4 4

Kircher et al. [144] 8 4 8 4 4 4

Kircher et al. [145] 8 4 8 4 4 4

Victor et al. [146] 8 4 8 4 4 8

Zhang et al. [178] 8 8 4 8 4 8

Liang et al. [179] 8 8 4 8 4 8

Liang et al. [180] 8 8 4 8 4 8

Liang et al. [181] 8 8 4 8 4 8

Liang et al. [27] 8 8 4 8 4 8

Liang et al. [182] 8 8 4 8 4 8

Liang et al. [183] 8 8 4 8 4 8

Miyaji et al. [184] 8 8 4 8 4 8

Miyaji et al. [156] 8 8 4 8 4 8

Yang et al. [187] 8 8 4 8 4 8

Li et al. [194] 8 4 4 8 4 8

Craye et al. [195] 4 4 8 8 4 8

Liu et al. [196] 8 4 4 8 4 8

Ragab et al. [197] 4 4 8 8 4 8

There are many factors that can modulate distraction. For example, as discussed in Section 7,
emotional information can modulate attention and decision-making abilities. Additionally, numerous studies
link highly aroused stress states with impaired decision-making capabilities [278], decreased situational
awareness [279], and degraded performance, which could impair driving ability [280]. Another driver
state, often responsible for traffic violations and even road accidents that can lead to distraction,
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is confusion or irritation, as it is related to loss of self-control and, therefore, loss of vehicle control,
which can be provoked by non-intuitive user interfaces or defective navigation systems as well as
by complex traffic conditions, mistakable signs and complicated routing. Moreover, the amount
of information that needs to be processed simultaneously during driving is a source of confusion
especially for older people [281], who have slower perception and reaction times. Just like stress,
confusion or irritation leads to impairment of driving capabilities including driver’s perception,
attention, decision making, and strategic planning. Nervousness corresponds to a level of arousal
above the “normal” one, which best suits to the driving task [211]. It is an affective state with negative
impact both on decision-making process and strategic planning. Nervousness can be induced by a
variety of reasons either directly related to the driving task like novice drivers or by other factors like
personal/physical conditions [211].

The system should be validated, firstly, in a driver simulator and afterwards, in real
conditions, where various factors including variations in lighting and noise can also affect both
the driver’s attention and the performance of the developed algorithms. Therefore, public data sets
covering simulated and real driving environments should be released. The driver’s physiological
responses could be different in a driver simulator from those in real conditions [11,167,257,263].
Hence, while developing an inattention detection system, the simulated environment must be a
perfect replica of the real environment. However, they are normally used in research and simulated
scenarios, but not in real ones, due to the problems of vision systems working in outdoor environments
(lighting changes, sudden movements, etc.). Moreover, they do not work properly with users wearing
glasses and may need high computational requirements.

Data-driven applications will require large amount of labeled images for both training and testing
the system. Both manual data reduction and labeling of data are time-consuming and they are also
subject to interpretation of the reductionist. Therefore, to deal with this problem, two approaches
are emerging from the literature: (1) unsupervised or semi-supervised learning and (2) automatic
data reduction. For example, in connection with the first approach, Liu et al. [189] commented the
benefits of SSL methods. Specifically, the explained the benefits of using SSL increased with the size
of unlabeled data set showing that by exploring the data structure without actually labeling them,
extra information to improve models performance can be obtained. On the other hand, there has been
a hype in data reduction using vehicle dynamics and looking outside on large scale naturalistic driving
data [282–284], and looking in at the driver [285].

In many distraction detection systems, the use of commercial sensors is usually
performed [77,239,241,245–247]. We understand that the reason from this is twofold: these systems
are well-established solutions offering both head and gaze tracking in the car environment and the
efforts of the investigation can be focused to detect and predict distraction from the outputs from these
commercial sensors instead of developing a new sensor from the very beginning. These commercial
sensors can operate using one camera [239,245–247], two cameras [241] or even up to 8 cameras [77]
placed all over the vehicle cabin. What we find missing is some research works trying to compare
these commercial sensors in order to highlight the pros and cons of each one. Also, missing from the
literature is the comparison between a new sensor and a commercial one trying to offer a competitive
solution from the sake of the research community.
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Resumen

De acuerdo con un reciente estudio publicado por la Organización Mundial de la Salud (OMS), se estima que 1.25 millones
de personas mueren como resultado de accidentes de tráfico. De todos ellos, muchos son provocados por lo que se conoce como
inatención, cuyos principales factores contribuyentes son tanto la distracción como la somnolencia. En lı́neas generales, se calcula
que la inatención ocasiona entre el 25 % y el 75 % de los accidentes y casi-accidentes. A causa de estas cifras y sus consecuencias se
ha convertido en un campo ampliamente estudiado por la comunidad investigadora, donde diferentes estudios y soluciones han sido
propuestos, pudiendo destacar los métodos basados en visión por computador como uno de los más prometedores para la detección
robusta de estos eventos de inatención. El objetivo del presente artı́culo es el de proponer, construir y validar una arquitectura
especialmente diseñada para operar en entornos vehiculares basada en el análisis de caracterı́sticas visuales mediante el empleo
de técnicas de visión por computador y aprendizaje automático para la detección tanto de la distracción como de la somnolencia
en los conductores. El sistema se ha validado, en primer lugar, con bases de datos de referencia testeando los diferentes módulos
que la componen. En concreto, se detecta la presencia o ausencia del conductor con una precisión del 100 %, 90.56 %, 88.96 %
por medio de un marcador ubicado en el reposacabezas del conductor, por medio del operador LBP, o por medio del operador
CS-LBP, respectivamente. En lo que respecta a la validación mediante la base de datos CEW para la detección del estado de
los ojos, se obtiene una precisión de 93.39 % y de 91.84 % utilizando una nueva aproximación basada en LBP (LBP RO) y otra
basada en el operador CS-LBP (CS-LBP RO). Tras la realización de varios experimentos para ubicar la cámara en el lugar más
adecuado, se posicionó la misma en el salpicadero, pudiendo aumentar la precisión en la detección de la región facial de un 86.88 %
a un 96.46 %. Las pruebas en entornos reales se realizaron durante varios dı́as recogiendo condiciones lumı́nicas muy diferentes
durante las horas diurnas involucrando a 16 conductores, los cuales realizaron diversas actividades para reproducir sı́ntomas de
distracción y somnolencia. Dependiendo del tipo de actividad y su duración, se obtuvieron diferentes resultados. De manera general
y considerando de forma conjunta todas las actividades se obtiene una tasa media de detección del 93.11 %.

Palabras Clave:
Detección distracción y somnolencia, Visión por computador, Percepción y reconocimiento, Aprendizaje automático,
Monitorización y supervisión

1. Introducción

La conducción es una actividad que requiere un alto grado
de concentración por parte de la persona que la realiza, ya que
un pequeño descuido es suficiente para sufrir un accidente con
las consiguientes pérdidas materiales y/o humanas. De acuerdo
al más reciente estudio publicado por la Organización Mundial
de la Salud (OMS) en 2013, se estimó que 1.25 millones de per-
sonas mueren como resultado de accidentes de tráfico y entre

∗Autor en correspondencia.
Correos electrónicos: alberto.fernandez@grupotsk.com (Alberto

Fernández Villán), rusamentiaga@uniovi.es (Rubén Usamentiaga
Fernández), rcasado@lsi.uniovi.es (Rubén Casado Tejedor)

20 y 50 millones más sufren accidentes sin perder la vida pero
pudiendo derivar en dolencias crónicas (Organization (2016)).
Todas estas muertes y accidentes no sólo afectan de manera di-
recta a los familiares de las vı́ctimas, sino que, además, tienen
un alto coste sobre los presupuestos de los gobiernos, que se
estima entre un 3 y un 5 % del producto interior bruto (Peden
et al. (2016)).

De todos estos accidentes, muchos son provocados por lo
que se conoce como inatención. Este término engloba diferen-
tes estados del conductor, como pueden ser la distracción y la
somnolencia, siendo precisamente éstos los que más fatalidades
ocasionan. Existen muchas publicaciones e investigaciones que
intentan poner cifras que indiquen la cantidad producida por la



A. Fernández et al. / RIAI: Revista Iberoamericana de Automática e Informática industrial 00 (2017) 1–22 2

inatención (y sus subtipos), pero no existe una figura exacta so-
bre los accidentes causados por la inatención puesto que todos
estos estudios están realizados en diferentes lugares, diferentes
marcos temporales, y por tanto, en diferentes condiciones. En
lı́neas generales, se calcula que la inatención ocasiona entre el
25 % y el 75 % de los accidentes y casi-accidentes (Talbot et al.
(2013)).

Uno de los trabajos que mejor trata de definir estos con-
ceptos y su relación es el propuesto por Regan et al. (2011), el
cual define una taxonomı́a para la inatención, con sus diferen-
tes subtipos y que la define como ‘insuficiente o no atención a
las actividades crı́ticas para una conducción segura’. En esta
taxonomı́a, a) la somnolencia la engloban en el tipo ‘Conduc-
tor con Atención Restringida’, definida como ‘insuficiente o no
atención a las actividades crı́ticas para una conducción segura
debido a factores biológicos en los que el conductor no es capaz
de procesar la información crı́tica, como por ejemplo, en even-
tos de micro-sueños, parpadeos, o procesos de somnolencia’, y
b) la distracción la engloban en el tipo ‘Conductor con Atención
Desviada’, que la definen como ‘desviación de la atención de
las actividades crı́ticas para una conducción segura’.

En un estudio realizado en 10 paı́ses europeos acerca de la
somnolencia y la conducción, la fatiga incrementa el tiempo de
reacción en un 86 % y es la cuarta causa de muerte en las ca-
rreteras españolas (RACE (2016)). Además, cabe destacar que
el 75 % de los conductores españoles han sufrido episodios de
somnolencia mientras conducı́an, muy superior a la media del
47 % que han admitido este hecho. Además, otro factor impor-
tante a tener en cuenta es que aunque los accidentes producidos
por la somnolencia suelen ser muy graves (vistas las estadı́sti-
cas anteriores de mortalidad), muchos conductores infravalo-
ran esta situación y conducen aunque noten la presencia de sus
sı́ntomas. Bostezos frecuentes, cabeceos, visión borrosa, caı́da
de párpados y esfuerzos por mantener tanto la atención como
los ojos abiertos son signos habituales de somnolencia (RACE
(2016)). Respecto a la distracción, éste es uno de los factores
que más fatalidades ocasiona en España. Por ejemplo, de acuer-
do con la Dirección General de Tráfico (DGT), la distracción es
la primera infracción detectada en los accidentes con vı́ctimas,
con un 13,15 % de los casos (StopChatear (2016)).

Por todo esto, este campo ha sido vastamente explorado por
la comunidad investigadora, donde los diferentes estudios y so-
luciones para luchar contra la inatención se pueden agrupar en
tres grandes grupos.

El primero de ellos se corresponde con los métodos basa-
dos en el comportamiento vehicular. Estos métodos detectan el
estado del conductor analizando constantemente ciertas métri-
cas como pueden ser la posición del coche, los movimientos
del volante, la presión del acelerador o del freno, el cambio de
marchas (entre otros), y si en alguno se sobrepasa un determi-
nado umbral, es probable que el conductor esté somnoliento o
distraı́do (Liu et al. (2009); Forsman et al. (2013); Sahayadhas
et al. (2012)). En lı́neas generales, el principal inconveniente de
estos métodos es que su eficacia depende principalmente de las
caracterı́sticas individuales del vehı́culo, conductor y carretera
(Sahayadhas et al. (2012); Selvakumar et al. (2015); Jo et al.
(2014)). Dentro de los métodos basados en el comportamiento

vehicular, empiezan a desarrollarse alternativas que requieren la
comunicación entre vehı́culos para operar correctamente (Sla-
wiñski et al. (2015)).

El segundo de los grupos se basa en el análisis de varia-
bles fisiológicas, principalmente para la detección de la som-
nolencia. Son métodos muy robustos pues permiten la detec-
ción de la somnolencia en sus fases tempranas con una ba-
ja tasa de falsos positivos (Sahayadhas et al. (2012)). En es-
te grupo destacan los métodos basados en: a) electroencefalo-
grama (EEG), b) electromiograma (EMG), c) electrocardiogra-
ma (ECG), d) electrooculograma (EOG). De entre todos estos
métodos, el más común para la detección de la somnolencia es
EEG, dónde se analizan diferentes bandas de frecuencia (Saha-
yadhas et al. (2012)). Sin embargo, estos métodos requieren
contacto con el conductor para la realización de las medidas, lo
que ocasiona que su implementación en entornos reales no sea
ni lo más adecuado ni lo más práctico (Dasgupta et al. (2013);
Sahayadhas et al. (2012)).

Finalmente, el tercero de los grupos se basa en el análi-
sis de caracterı́sticas visuales que presenta un conductor dis-
traı́do o bajo un estado somnoliento. Un conductor distraı́do
se caracteriza por no mantener la atención puesta en la carre-
tera, por lo que son continuos los movimientos de cabeza ha-
cia ambos lados, sin mantener fija la mirada en la carretera.
En cuanto a la somnolencia, las caracterı́sticas visuales que la
describen son muy variadas, incluyendo movimientos faciales,
parpadeos rápidos y constantes, cabeceos y bostezos frecuen-
tes. Hacer constar que, estas caracterı́sticas visuales de la som-
nolencia aparecen en espacios temporales diferentes y normal-
mente bien definidos (Jo et al. (2014)). De manera especı́fica,
los bostezos ocurren generalmente antes de que el conductor
entre en somnolencia mientras que, normalmente, los cabeceos
ocurren cuando el conductor se duerme. Es por ello que los
métodos basados tanto en los bostezos como en los cabeceos
no son capaces de detectar con exactitud cuando un conductor
está empezando a estar somnoliento. Sin embargo, los méto-
dos basados en obtener información de los ojos pueden detec-
tar con precisión este punto, es decir, son los métodos visua-
les más adecuados para la detección de la somnolencia (Vural
et al. (2007)). Sin embargo, cabe decir que, puesto que existen
esas diferencias temporales entre los distintos signos visuales,
un punto importante puede ser la combinación de varias de es-
tas caracterı́sticas para aumentar la robustez final de la solución
(Jo et al. (2014); Sahayadhas et al. (2012)).

Basado en las premisas anteriores, el objetivo del presen-
te artı́culo es el de proponer, construir y validar una arquitec-
tura basada en el análisis de caracterı́sticas visuales mediante
el empleo de técnicas de visión por computador y aprendiza-
je automático para la detección tanto de la distracción como
de la somnolencia en los conductores. En concreto, se propone
una arquitectura de procesamiento especialmente diseñado pa-
ra operar en entornos vehiculares, con una carga computacional
muy baja y fácilmente integrable en dispositivos con reducidas
capacidades de cómputo y capaz de lidiar con distintas con-
diciones de imágenes muy presentes en este tipo de entornos,
como pueden ser las condiciones lumı́nicas, la resolución de la
imagen y la apariencia y pose del rostro del conductor en la
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imagen.
En resumen, la principal contribución es el hecho de pre-

sentar una solución completamente autónoma para detección
de distracción y somnolencia pues son dos de los tipos en la
inatención que más accidentes ocasionan. Además, dicha so-
lución presenta las siguientes caracterı́sticas: 1) detección au-
tomática de la presencia del conductor en el entorno vehicular
para dirigir el flujo del algoritmo, 2) detección facial adaptada
al entorno vehicular, 3) normalización facial para enfrentarse a
caracterı́sticas de imagen difı́ciles, 4) detección rápida y robusta
de distracción y 5) detección rápida y robusta de somnolencia.

La organización del resto del trabajo es como se expone a
continuación. En la Sección 2 se comentan los principales tra-
bajos relacionados, los cuales sirven como base a la propuesta
aquı́ presentada. A continuación, en la Sección 3 se comenta
la metodologı́a empleada, donde se detallan las principales fa-
ses del sistema acorde con las contribuciones antes comentadas.
En la Sección 4 se comentan los principales puntos en cuanto
a la implementación que puedan servir para replicar el trabajo
aquı́ presentado. En la Sección 5 se comentan los resultados ob-
tenidos, tanto con bases de datos de referencia como su valida-
ción en entornos reales. Por último, en la Sección 6 se comentan
las conclusiones y el trabajo futuro.

2. Estado del arte

Puesto que el presente sistema trata de abordar tanto la dis-
tracción como la somnolencia utilizando técnicas de visión por
computador, expondremos los principales trabajos en este ámbi-
to, distribuidos en tres grupos acorde a su objetivo (distracción,
somnolencia y ambos tipos). Además, extraeremos unas con-
clusiones de trabajos previos, que servirán de base para propo-
ner nuestra arquitectura.

Para la detección de la distracción existen básicamente dos
aproximaciones 1(Fernández et al. (2016)). Por un lado, están
las aproximaciones que detectan la distracción por medio de
cámaras de alta resolución colocadas por toda la cabina del con-
ductor con el objetivo de poder observar los ojos del conductor
independientemente de la posición de la cabeza del conductor.
Existen varios inconvenientes en esta aproximación (Hansen
and Ji (2010)) como son: a) necesidad de calibración periódi-
ca entre las cámaras, b) imposibilidad de captar los ojos con
robustez debido a desviaciones en la cabeza del conductor que
causan oclusión, o c) requerimiento computacional elevado. Sin
embargo, muchos sistemas de ayuda a la conducción no nece-
sitan disponer de la posición exacta de hacia dónde está miran-
do el conductor con precisión, sino que es suficiente con una
aproximación de la misma (Lee et al. (2011)) para, por ejem-
plo, saber si el conductor está mirando al frente o a alguno de
los lados. Estas aproximaciones se basan en que la posición de
la cabeza puede ser suficiente para extraer la información de
hacia dónde está mirando el conductor (Boyraz et al. (2012)).

1En general cuando se habla de distracción sin especificar el tipo, los au-
tores se refieren a distracción visual, aunque también existen otros tipos de
distracción como son la cognitiva y la manual. Ası́ que siempre que se hable de
distracción nos referiremos a distracción visual

Esta aproximación funciona bien porque la pose de la cabeza
es un indicador de hacia dónde tiene puesto el foco de atención
el conductor y, por tanto, hacia donde está mirando (Murphy-
Chutorian and Trivedi (2010)). Siguiendo esta aproximación,
en Hattori et al. (2006) se propone un sistema que determina la
distracción del conductor en caso de que no se detecte una cara
frontal. En esta lı́nea, existen otras publicaciones que se comen-
tan a continuación. You et al. (2013) entrenan varios modelos
para la detección facial, captando varias categorı́as: a) cara no
encontrada, b) cara frontal, c) cara de perfil hacia la derecha, y
d) cara de perfil hacia la izquierda. Otro sistema similar es el
implementado en Flores et al. (2010) donde, con el objetivo de
detectar la distracción, se genera una alerta si se detecta que el
conductor no está mirando de frente.

La mayorı́a de los trabajos para la detección de la somno-
lencia se basan en la obtención, de la manera más robusta po-
sible, de lo que se conoce como PERCLOS (Dinges and Gra-
ce (1998)) - PERcentaje of eye CLOSure - por considerarse la
métrica más aceptada y extendida para la detección de la som-
nolencia (Dong et al. (2011)). Dicha métrica ha sido validada
usando tanto EEG como evaluación subjetiva, por ejemplo, en-
cuestas (Dong et al. (2011)). Con el ojetivo de aumentar esta
robustez, Sigari (2009) propone la extracción de signos de fati-
ga en la parte mitad superior de la región facial del conductor.
Es decir, captan signos de somnolencia de la región facial sin
realizar un preprocesamiento de dicha región. En nuestra solu-
ción se utiliza dicha aproximación para establecer la zona de
la región facial que usaremos para extraer a posteriori los sig-
nos de somnolencia. Otra opción, es combinar información de
otros sensores. Recientemente, López Romero (2016) propone
un sistema para la detección de la somnolencia. Utiliza técnicas
de visión por computador para extraer del rostro información
de somnolencia y se complementa con un sensor de oximetrı́a
para la extracción del pulso, que se coloca alrededor del dedo
de la mano izquierda, lo que hace que el sistema sea intrusivo.

Algunos trabajos intentan extraer tanto la distracción como
la somnolencia. Por ejemplo, en Flores et al. (2011) se detectan
ambos factores de inatención tanto de dı́a como de noche. Para
ello, realizan el seguimiento de los ojos y el rostro para poste-
riormente extraer los ı́ndices de somnolencia y distracción.

Conclusiones de trabajos previos

El hecho de incorporar varias caracterı́sticas permite au-
mentar la robustez de los sistemas para la detección tanto de
distracción como de somnolencia. Para ello, se combinan dife-
rentes técnicas y algoritmos (Jo et al. (2014); Sahayadhas et al.
(2012); Noori and Mikaeili (2016)). A modo de ejemplo, se
puede destacar la reciente publicación de Noori and Mikaeili
(2016), donde abordan la detección de la somnolencia fusio-
nando la información del encefalograma, electrooculograma y
señales de la conducción. Sin embargo, los métodos basados en
visión por computador son una buena alternativa para monito-
rizar al conductor de forma no intrusiva sin que interfiera con
la conducción. Por ello, el objetivo del presente trabajo es el de
proponer una arquitectura basada en diferentes caracterı́sticas
visuales extraı́das mediante procesamiento de imagen y apren-
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dizaje automático para aumentar la robustez del sistema de de-
tección.

Para la detección de la somnolencia el factor clave es la
detección del estado de los ojos de manera robusta. Algunas
aproximaciones para la detección del estado de los ojos en los
conductores se basan en la detección de ciertas caracterı́sticas
que permitan discriminar el estado del ojo. Estos algoritmos se
pueden agrupar en lo que se conoce como ‘métodos basados en
caracterı́sticas’. Ejemplos de este tipo pueden ser la aproxima-
ción del iris por medio de elipses o la obtención del estado de
los ojos contabilizando la distribución de ausencia/presencia de
iris y del blanco ocular en función de si está abierto o cerrado.
Para ello, se suele recurrir a acumular las intensidades de los
pı́xeles tanto en el eje vertical como horizontal de la imagen,
que reciben el nombre de proyecciones. Caracterizando las cur-
vas resultantes, se puede obtener el estado del ojo (Zhang and
Zhang (2006); Devi and Bajaj (2008); Lu et al. (2011)). Otra
aproximación, conocida como ‘métodos basados en aparien-
cia’, se presenta como una alternativa más robusta para la de-
tección de ciertas caracterı́sticas y atributos faciales, entre los
que está el estado de los ojos (Song et al. (2014)), y se basa
en obtener la apariencia mediante operadores robustos como
LBP, wavelets de Gabor o similares (Song et al. (2014)). En lo
que a la detección del estado del ojo se refiere y utilizando los
métodos basados en apariencia, antes comentados, es común el
uso de aproximaciones de aprendizaje automático en la etapa
de clasificación: Redes Neuronales (NN), Máquinas de Sopor-
te Vectorial (SVM), Árboles de Decisión y Adaboost. De todas
éstas, las SVM son las que se comportan de manera más robus-
ta (Song et al. (2014)). Es por ello, que para la aproximación
actual, se usa SVM como herramienta para el aprendizaje au-
tomático en la etapa final de clasificación del estado de los ojos.

Para la detección de la distracción, el factor clave es la de-
tección facial. El algoritmo de Viola & Jones es un algoritmo
que permite la detección facial con alta robustez y que puede
ser ejecutado en tiempo real. Como muestra de su aplicabilidad,
muchos de los sistemas aquı́ comentados para la detección de la
distracción y somnolencia lo usan (Hattori et al. (2006); Sigari
(2009); You et al. (2013); Flores et al. (2010, 2011); Hong and
Qin (2007); López Romero (2016)). Sin embargo, este méto-
do es computacionalmente exigente y no es el más adecuado
para su integración en dispositivos con reducidas capacidades
de cómputo en entorno vehicular. Es por ello que en la presen-
tación actual se usará, validará e integrará en el sistema, una
alternativa más adecuada que el algoritmo de Viola & Jones.

3. Metodologı́a

En esta sección se comentan los puntos principales de la ar-
quitectura desarrollada, cuyo esquema de funcionamiento pue-
de verse en la Figura 1. El funcionamiento del sistema se basa
en tres módulos principales: ‘detección de pose’, ‘detección de
ausencia conductor’ y ‘detección de estado de los ojos’, que
permiten la detección tanto de la distracción como de la som-
nolencia en entornos vehiculares. En primer lugar, se hará una
descripción del flujo de las imágenes y cómo éstas se recogen
en los buffers CABEZA y OJOS, que recogen los estados de la

cabeza y de los ojos, para disparar, en último lugar, las reglas
que permiten detectar tanto la distracción como la somnolencia
respectivamente.

En concreto, el sistema propuesto va capturando imágenes
de la cámara y las va procesando secuencialmente. En primer
lugar, se ejecuta el módulo de ‘detección de pose’, que a partir
de tres detectores faciales (que abreviadamente identificaremos
como frontal, izquierdo y derecho) computacionalmente muy
ligeros, se consigue estimar la orientación de la cabeza del con-
ductor.

El hecho de que ninguno de los detectores faciales consi-
ga detectar la presencia de la cara del conductor es debido a:
1) el conductor no está presente, o 2) la cabeza del conductor
presenta una inclinación o posición excesiva y por tanto refle-
ja una pose que ocasiona que no sea ‘detectable’ por ninguno
de los detectores faciales 2. En este caso, se ejecuta el módulo
‘detección de ausencia del conductor’, que permite discernir si
se está en el caso 1) o caso 2) antes comentados.

En caso de que el módulo de detección de pose detecte la
presencia del conductor, se comprueba si la pose (o detección)
es frontal para determinar el estado de los ojos del conductor
mediante el módulo ‘detección de estado de ojos’. Como se ha
comentado, sólo se detecta el estado de los ojos si la pose es
frontal, pues por pruebas realizadas, no se puede detectar co-
rrectamente (se obtiene un elevado número tanto de falsos po-
sitivos como de falsos negativos) el estado de los ojos si la pose
no es frontal, en cuyo caso la detección facial ha sido ‘pro-
porcionada’ por el detector de perfil izquierdo o derecho. Sin
embargo, este factor no es importante, pues en ese caso, el con-
ductor serı́a clasificado como distraı́do por no estar ‘de frente’
y, por tanto, dicha situación serı́a tenida en cuenta.

Por tanto, para la detección de la somnolencia, se tiene en
cuenta el estado de los ojos del conductor, que se recoge en el
buffer OJOS. El estado de los ojos puede presentar tres estados
(abiertos, cerrados, indefinido), donde el valor indefinido es es-
tablecido cuando la pose no es frontal, y por tanto, no se detecta
el estado de los ojos. Sin embargo, hemos de notar que dicho
caso es tenido en cuenta porque serı́a catalogado como un caso
de distracción al no presentar una pose frontal.

Por otro lado, para la detección de la distracción y en fun-
ción del flujo de ejecución, se tienen en cuenta cinco posibles
estados en el conductor, que se registran en el buffer CABE-
ZA. Estos cinco posibles estados (frontal, izquierda, derecha,
ausencia e inatencion) se obtienen como se comenta a conti-
nuación. Tres de ellos son obtenidos por el módulo ‘detección
de pose’ y se corresponden con las detecciones positivas en los
detectores faciales, identificados en la Figura 1 como CABE-
ZA.resultado, donde CABEZA.resultado = frontal, izquierda,
derecha. Existen dos estados adicionales que son proporcio-
nados por el módulo ‘detección de ausencia conductor’, que
se corresponden con CABEZA.ausencia - obtenido en caso de

2Por las pruebas realizadas cuando los detectores faciales no son capaces de
detectar la cara del conductor (y éste está presente) es debido a que presenta
una pose excesiva por estar distraı́do (por ejemplo buscando algo dentro del
vehı́culo), o por estar demasiado somnoliento y la cabeza presenta una gran
desviación - hecho conocido como ‘cabezadas’



A. Fernández et al. / RIAI: Revista Iberoamericana de Automática e Informática industrial 00 (2017) 1–22 5
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Figura 1: Principales puntos del sistema propuesto

que el conductor no se encuentre en el vehı́culo - y con CABE-
ZA.inatencion - que se corresponde con el caso de que la cabeza
del conductor presenta una pose demasiado excesiva y se pue-
de deber tanto a un estado de distracción como de somnolencia
(por ello se cataloga como inatención, pues es un factor que
engloba a ambos tipos).

A continuación, se proponen y especifican los tres módulos
antes comentados. Los detalles de implementación se especifi-
can en la Sección 4, y en la Sección 5, cuando se validan en
entorno real, se especifican los tamaños de los buffers (CABE-
ZA y OJOS), ası́ como las reglas que permiten caracterizar el
estado del conductor.

3.1. Detección de estado de los ojos

Los principales signos de somnolencia aparecen en los ojos
y, por tanto, se comentarán los puntos del algoritmo implemen-
tado para el cálculo de PERCLOS por ser el indicador visual
más adecuado.

Una vez que la cara ha sido detectada, el siguiente punto
radica en aplicar un detector robusto de caracterı́sticas faciales
basado en ‘Modelos de Partes Deformables’ (DPM) propuesto
por Uřičář et al. (2012). La salida del detector se corresponde
con estimaciones de localizaciones para un conjunto de puntos
caracterı́sticos en la imagen: esquinas de los ojos, esquinas de
la boca y nariz. A continuación, se aplica un algoritmo para que
las caras sean rotadas y alineadas de manera que los ojos siem-
pre se encuentren en las mismas coordenadas en la imagen final.
Para ello, con el objetivo de calcular el ángulo de desviación de

la cara, se calcula una recta de regresión que utiliza los cuatro
puntos de los ojos. Por último, se calcula la región facial por en-
cima y por debajo de los ojos, para que únicamente información
relevante se procese en las etapas siguientes del algoritmo. Para
más detalles de este algoritmo, se puede consultar el Apéndice
B. Pre-procesamiento facial para obtener el estado de los ojos,
donde se describe dicha etapa de pre-procesamiento con mayor
profundidad.

Una vez la región facial a procesar ha sido normalizada, se
aplica un framework especialmente diseñado e implementado
para la normalización de una imagen ante condiciones lumı́ni-
cas adversas (Tan and Triggs (2010)), situaciones muy comunes
en entornos vehiculares. Se trata de un framework computacio-
nalmente muy ligero, pero que permite mejorar considerable-
mente los algoritmos posteriores que se apliquen sobre la región
facial pues dicha región se encuentra normalizada en cuanto a
la iluminación. Son tres las operaciones que se realizan en este
framework: 1) corrección gamma, 2) diferencias gausianas, y c)
ecualización de contraste.

A continuación, se aplican tanto el operador LBP (Ojala
et al. (1996)), como el operador Center-Symmetric Local Bi-
nary Pattern (CS-LBP) (Heikkilä et al. (2009)), que es una mo-
dificación del operador LBP computacionalmente más ligera y
produce prácticamente los mismos resultados. A continuación
se hace una introducción a ambos operadores y para más infor-
mación, se recomienda la lectura del Apéndice C. Operadores
LBP y CS-LBP.

El operador Local Binary Pattern (LBP) (Ojala et al. (1996))
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es uno de los descriptores de texturas más populares. Esto es de-
bido principalmente a varios factores: a) fácil implementación,
b) invariante a cambios monotónicos de iluminación, y c) com-
plejidad computacional baja. Dicho operador fue introducido en
1996 como un método para sintetizar la estructura del nivel de
grises en imágenes. A pesar de que originalmente fue propues-
to para el análisis de texturas, el método LBP se ha propuesto
para muy diversas tareas en lo que a la visión por computador y
el aprendizaje automático se refiere. Relacionado con el proce-
samiento facial, ha sido empleado para muy diversas tareas de
reconocimiento (Losada et al. (2013)), como por ejemplo, re-
conocimiento facial (Ahonen et al. (2006); Villan et al. (2016)),
extracción de variables fisiológicas (Fernández et al. (2015a);
Fernandez et al. (2017)) clasificación de género (Shan (2012)),
clasificación de expresiones faciales (Shan et al. (2009)), clasi-
ficación de la edad (Hadid and Pietikäinen (2013)) e, incluso,
detección de gafas (Fernández et al. (2015b)). Dicho operador
tiene en cuenta un vecindario local de pı́xeles alrededor de un
pı́xel central (Ojala et al. (1996)). Seguidamente, umbraliza los
pı́xeles del vecindario con el valor del pı́xel central y usa el re-
sultado como un número en binario como descriptor para ese
vecindario y ası́ sucesivamente para toda la imagen. Fue ori-
ginalmente propuesto para un vecindario de 8, con 8 bits para
codificar los valores binarios. El operador fue posteriormente
extendido para incorporar vecindarios de pı́xeles de diferentes
tamaños, haciendo por tanto posible lidiar con las texturas a di-
ferentes escalas (Ojala et al. (2002)).

Para una representación facial eficiente, las caracterı́sticas
extraı́das por el operador LBP deben considerar información es-
pacial. Para ello, la imagen se divide en m regiones {R0, ....,Rm−1}
y para cada una de esas regiones, se construye el histograma a
partir de la imagen LBP generada tras aplicar el operador. De
esta manera, el histograma básico se puede extender recibien-
do el nombre de ‘histograma espacial extendido’ (Ahonen et al.
(2006)), codificando tanto la apariencia como las relaciones es-
paciales de las regiones de la cara. El histograma tendrá una
longitud de B = 256 × m, siendo 256, el número de patrones
diferentes que se pueden producir para el operador LBP con 8
vecinos y m, el número de regiones. Existe una variante del ope-
rador LBP, que se conoce como uniforme (Ojala et al. (2002)),
y que reduce el número de patrones de 256 a 59, con lo que el
histograma generado se reduce en dimensionalidad.

Si bien el operador es computacionalmente ligero y fácil
de implementar, puede producir longitudes de histograma bas-
tante grandes si el número de divisiones es considerable, lo
cual, como hemos comprobado en una publicación anterior, tie-
ne influencia directa en el grado de acierto (Fernández et al.
(2015c)). Esto puede tener implicaciones de rendimiento en dis-
positivos con reducidas capacidades de computo al tener que
tratar con estos histogramas. Se propone usar en vez del ope-
rador LBP, una modificación eficiente de este operador para
obtener histogramas mucho más reducidos, pero sin perder po-
der discriminatorio, es decir, manteniendo el rendimiento. Para
ello, se hace uso del operador CS-LBP (Heikkilä et al. (2009)),
una modificación del operador LBP, que es: 1) computacional-
mente más ligero que el operador LBP, 2) más fácil de imple-
mentar que el operador LBP, y 3) produce vectores de carac-

terı́sticas más compactos. Para computar el operador CS-LBP
se comparan pares de pı́xeles opuestos en vez de comparar to-
dos los pı́xeles con el pı́xel central. El operador CS-LBP tam-
bién se emplea para calcular el histograma espacial extendido.
En la Figura 2 se puede ver la diferencia en la forma de compu-
tar ambos operadores. Como se puede ver en esta Figura, el
operador CS-LBP produce 16 patrones diferentes. Si se compa-
ra con los 256 producidos por el operador LBP (ó los 59 pro-
ducidos por la extensión uniforme), se trata de una reducción
considerable. Además, añadiendo el umbral T se aumenta la ro-
bustez en regiones con poco contraste (Heikkilä et al. (2009)).

n5

nc

n3 n1

n7

n0n4

n2

n6 LBP =
s(n0 – nc)20 +
s(n1 – nc)21 +
s(n2 – nc)22 +
s(n3 – nc)23 +
s(n4 – nc)24 +
s(n5 – nc)25 +
s(n6 – nc)26 +
s(n7 – nc)27

Construcción patronesVecindario

CS-LBP =
s(n0 – n4)20 +
s(n1 – n5)21 +
s(n2 – n6)22 +
s(n3 – n7)23

Figura 2: Comparación en la construcción del patrón LBP y CS-LBP para un
vecindario de 8

Una vez construido el histograma (mediante alguno de los
operadores antes comentados), el último paso consiste en apli-
car la etapa de clasificación. Para ello, se hizo uso de las Máqui-
nas de Soporte Vectorial (Support Vector Machines, SVMs).
Por tanto, y a modo de resumen, se calcula el histograma es-
pacial extendido (Ahonen et al. (2006)) de la región de los
ojos (Fernández et al. (2015c)) normalizada respecto a la ilu-
minación (Tan and Triggs (2010)) aplicando tanto los opera-
dores LBP (Ojala et al. (1996)) como CS-LBP (Heikkilä et al.
(2009)). Para clasificar dichos histogramas, se hace uso de la li-
brerı́a LIBSVM (A Library for Support Vector Machines) (Chang
and Lin (2011)).

Se realizaron pruebas preliminares para establecer unos va-
lores iniciales de configuración en los operadores LBP y CS-
LBP. Tras analizar dichas pruebas, se llega a la conclusión de
que, en el caso de LBP, los patrones uniformes LBPu2

P,R arrojan
mejores resultados que otros tipos de patrones LBP. En cuanto
al vecindario, P = 8 y un radio de R = 2 es la configuración que
mejores resultados arroja tanto para LBP como para CS-LBP.

3.2. Módulo detección de pose

Existen muchas aproximaciones para la detección facial en
general y otras, para entorno vehicular en particular. El algo-
ritmo más común y extendido es el algoritmo de Viola & Jo-
nes (Viola and Jones (2004)). Esto es debido, entre otras co-
sas, a que es un algoritmo bastante robusto y también porque
está listo para usarse en librerı́as de visión por computador, co-
mo OpenCV. Si bien es un algoritmo que se puede ejecutar en
tiempo real en un PC, su rendimiento en dispositivos con redu-
cidas capacidades de cómputo se decrementa considerablemen-
te. En este trabajo se propone usar una variante del algoritmo de
Viola & Jones, especialmente pensada para ejecutarse en este
tipo de dispositivos y además, con una tasa de falsos positivos
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menor. Dicho algoritmo recibe el nombre de PICO (Pixel Inten-
sity Comparison-based Object detection Markuš et al. (2014)) y
proporciona resultados comparables a algoritmos de vanguardia
(Li et al. (2015)), pero con un coste computacional muy bajo.
Para poner en perspectiva a este algoritmo, se adjunta la tabla 4,
donde se puede observar el coste computacional comparado con
las implementaciones que ofrece la librerı́a de OpenCV para el
algoritmo de Viola & Jones. Para una descripción más exhaus-
tiva de PICO y su comparación con el algoritmo de Viola &
Jones, se recomienda la lectura del Apéndice D. Comparación
entre los algoritmos de Viola & Jones y PICO.

Siguiendo la aproximación propuesta por Asthana et al. (2011),
en el sistema aquı́ propuesto se hace uso de tres clasificadores.
El detector frontal detecta caras con un ángulo de yaw entre -40
grados y 40 grados, otro detector de perfil izquierdo que detec-
ta caras con un ángulo de yaw entre 30 y 60 y un detector de
perfil derecho que detecta caras con un ángulo de yaw entre -30
y -60 grados. Además, para estos detectores se estima que se
detectan caras entre -30 y 30 grados en el pitch. De manera re-
sumida, mediante estos tres detectores se abarca prácticamente
todo el ángulo yaw, cuyo procesamiento nos darı́a la distrac-
ción. Sin embargo, estos detectores tienen una limitación, que
para la detección de la inatención (somnolencia y distracción)
puede ser una virtud que conviene explotar. Estos detectores no
detectan caras si tienen un pitch excesivo (es lo que se identifica
como CABEZA.inatención). Una cara presenta un ángulo pitch
excesivo sobre todo producto de las tı́picas cabezadas cuando
el conductor está demasiado somnoliento o completamente dis-
traı́do. Estos ángulos se pueden ver de manera esquemática en
la Figura 3.

pitchroll

yaw

Figura 3: La pose se puede descomponer en los ángulos conocidos como roll,
pitch y yaw. El ángulo yaw es especialmente útil para la detección de la distrac-
ción y el ángulo pitch para la somnolencia

3.3. Detección de ausencia del conductor

Este módulo detecta si el conductor se encuentra presen-
te en el habitáculo. Como punto de partida, comentar que este
módulo se ejecuta tras el módulo de obtención de pose en en-
torno vehicular. Mediante el presente módulo y el anterior, se
permite caracterizar la cabeza del usuario en los cinco estados
comentados en la introducción de esta sección: frontal, izquier-
da, derecha, ausencia e inatención). Para la detección de au-
sencia del conductor, se han implementado dos aproximaciones
que se comentan a continuación: a) detección de ausencia de
conductor mediante marcador visual en el asiento del conduc-
tor, y b) detección de ausencia mediante operador CS-LBP y
aprendizaje supervisado.

3.3.1. Detección de ausencia de conductor mediante marca-
dor visual en el asiento del conductor

El primer paso consiste en transformar la imagen del es-
pacio de color RGB al HSV, donde la crominancia y la ilumi-
nación están separados, con lo que establecer umbrales para el
filtrado posterior es más fácil y más robusto. En segundo lugar,
establecemos dichos umbrales para la detección de zonas rojas
en la imagen. Una vez filtrada la imagen, se calculan los con-
tornos que envuelven a dichas zonas. Por último, se filtran por
tamaño y forma los contornos detectados para obtener el mar-
cador circular. De manera más especı́fica en la etapa de filtrado,
se calcula como primer paso el cuadrado mı́nimo que envuelve
al potencial cı́rculo y se considera que el potencial contorno se
trata del marcador, si cumple las cuatro condiciones siguientes:
a) el contorno tiene más de 6 vértices, b) el cociente entre el
ancho y el alto del cuadrado envolvente es aproximadamente
de 1, c) el área del contorno es aproximadamente πr2 (siendo el
radio - r - la mitad del ancho de la envolvente), y d) el área del
contorno tienen un determinado tamaño en pı́xeles. Las pruebas
del algoritmo se pueden ver en la Sección Pruebas. El hecho de
utilizar un marcador, que se ubicarı́a en el reposacabezas del
asiento, permitirı́a no sólo saber si el conductor está presente
o no en su lugar de conducción, sino también realizar aspectos
de calibración y establecer heurı́sticos de manera fácil. A modo
de ejemplo, nos permitirı́a establecer una zona donde buscar la
cara en la imagen, para limitar la búsqueda de la región facial.

3.3.2. Detección de ausencia mediante operadores LPB/CS-
LBP y aprendizaje supervisado

Comentar que esta aproximación surge a raı́z de la imple-
mentación de los operadores LBP y CS-LBP para la obtención
del estado de los ojos. En concreto, el operador CS-LBP fue
propuesto originalmente para describir regiones de interés en
imágenes, donde demostró ser tolerante a cambios de ilumina-
ción, ruido en la imagen y pequeños cambios de perspectiva,
factores bastante frecuentes en el interior de los vehı́culos. Es
por ello que se optó por detectar la ausencia (o presencia) del
conductor mediante la aproximación que se comenta a conti-
nuación. En este caso, se entrena un clasificador para discernir
si el conductor está presente en el vehı́culo o por el contrario el
conductor no está en el mismo. Para ello, se recolectaron imáge-
nes para entrenar el sistema. El procedimiento es muy similar al
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Tabla 1: Tiempo medio requerido para procesar una imagen con resolución de 640x480 pı́xeles

Dispositivo CPU Tiempo [ms]
PICO Viola &Jones (OpenCV) LBP (OpenCV)

PC1 3.4GHz Core i7-2600 2.4 16.9 4.9
PC2 2.53GHz Core 2 Duo P8700 2.8 25.4 6.3

iPhone 5 1.3GHz Apple A6 6.3 175.3 47.3
iPad 2 1GHz ARM Cortex-A9 12.1 347.6 103.5

iPhone 4S 800MHz ARM Cortex-A9 14.7 430.3 129.2

usado para el cálculo de los ojos, lo que cambia es: 1) las imáge-
nes utilizadas para entrenar y validar el sistema, y 2) la región
de la imagen utilizada. Por lo tanto, se calcula el histograma es-
pacial extendido de la región de de interés normalizada respecto
a la iluminación aplicando tanto los operadores LBP como CS-
LBP. Respecto a las imágenes, se recopilaron 1000 imágenes
negativas donde el conductor no está presente y se recopila-
ron 1000 imágenes positivas donde el conductor está presente.
Con el objetivo de reducir el tamaño de la imagen a procesar
y de que el clasificador aprenda mejor las caracterı́sticas que
le permitan discernir las dos clases, se restringe el espacio de
búsqueda (ROI), pero teniendo en cuenta un cierto margen para
facilitar el ‘set up’ inicial de la cámara. Como herramienta de
clasificación se utilizó SVM. Los resultados del algoritmo y las
imágenes utilizadas para entrenar y validar el sistema se pueden
ver en la Sección 5.

4. Implementación

El sistema aquı́ propuesto ha sido desarrollado en C++ y ha-
ciendo uso de la librerı́a de OpenCV - Open Source Computer
Vision Library, que es una biblioteca de visión por computador
multiplataforma, publicada bajo la licencia BSD, que permite
ser usada tanto para uso académico como comercial. Incluye
más de 500 algoritmos. La última versión estable es la 2.4.13,
que es la que ha sido usada en la implementación del sistema.
Como herramienta para entrenar los modelos basados en SVM,
se hizo uso de la librerı́a LibSVM Chang and Lin (2011). El
sistema ha sido construido de manera modular. Cada uno de los
módulos que componen el sistema son los descritos anterior-
mente. Para la detección facial, se hizo uso del framework PI-
CO. Para la detección de los principales puntos faciales, se hizo
uso de la librerı́a Flandmarks. Para la normalización de la ilumi-
nación de la región facial, se hizo uso de la implementación del
algoritmo Tan and Triggs (2010), que requiere únicamente tres
llamadas a tres funciones de la librerı́a OpenCV, que se corres-
ponden con los tres pasos propuestos por el framework para la
normalización de la iluminación. En relación al operador LBP
como del operador, se hizo uso de un algoritmo implementado
en C++ y OpenCV. Para el alineamiento de la región facial, y
posteriormente quedarnos con la región del entorno de los ojos,
se hizo uso también de un algoritmo implementado en C++ y
OpenCV.

En un primer momento, el sistema se implementó bajo el
sistema operativo Windows, haciendo uso de la librerı́a OpenCV
antes comentada y enteramente en C++. De esta manera, se rea-

lizaron los primeros tests y pruebas con bases de datos de refe-
rencia y con imágenes capturadas desde entornos vehiculares.
Dichos tests se corresponden con la subsección ‘Validación de
los módulos que componen el sistema con diferentes bases de
datos’.

Dada la modularidad del sistema, el siguiente paso fue por-
tar los algoritmos de visión por computador a la plataforma An-
droid usando el framework JNI. Es un framework que permite
que partes de la aplicación en Android se comuniquen con los
algoritmos de visión artificial cuya implementación seguirı́a es-
tando en C++. De esta manera, el sistema no perderı́a excesiva-
mente en rendimiento. El objetivo de portar los algoritmos a la
plataforma Android fue el de construir una aplicación para los
dispositivos móviles para validarla y ejecutarla en un entorno
real. Dichos tests se corresponden con la subsección ‘Valida-
ción en entorno real controlado’.

5. Resultados

Para evaluar el sistema actual con rigurosidad, pero sin po-
ner en riesgo la integridad de cualquier persona involucrada en
los experimentos o terceras personas ajenas a los mismos, se
llevaron a cabo dos procedimientos. El primero de ellos fue tes-
tear con bases de datos los diferentes módulos que componen el
sistema y con el segundo, se realizaron diferentes pruebas del
sistema completo en un entorno real controlado. Cabe destacar
que las pruebas realizadas fueron en condiciones diurnas.

Pruebas

pruebas preliminares para: 
a) posición cámara 
b) tamaño buffers y reglas de detección de la inatención 

Validación de los 
módulos con 

diferentes bases de 
datos

Validación en 
entorno real 
controlado

Resultados en la detección
ausencia del conductor

Resultados en el cálculo 
del estado de los ojos

Resultados en relación 
con la detección facial

Eventos de distracción y 
somnolencia con vehículo 

estacionado

Eventos de distracción y 
somnolencia con vehículo 

en movimiento

Figura 4: Organización y estructura de las pruebas realizadas
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(a) Bajo nivel de ruido en la imagen debido a la ilu-
minación (en coche 1)

(b) Medio nivel de ruido en la imagen debido a la
iluminación (en coche 2)

(c) Alto nivel de ruido en la imagen debido a la ilu-
minación (en coche 2)

(d) Resultado para un bajo nivel de ruido debido a la
iluminación

(e) Resultado para un nivel de ruido medio debido a
la iluminación

(f) Resultado para un nivel de ruido alto debido a la
iluminación

Figura 5: Resultados en la detección ausencia del conductor

Todas estas pruebas se resumen en la Figura 4. A continua-
ción, se comentan los dos procedimientos antes introducidos.

5.1. Validación de los módulos que componen el sistema con
diferentes bases de datos

Para la validación tanto de los resultados de ausencia del
conductor por medio de aprendizaje automático y la detección
del estado de los ojos se hace uso de los operadores LBP, CS-
LBP en la etapa de extracción de caracterı́sticas y SVM en la
etapa de clasificación. En los Apéndices C. Operador LBP y
E. Entrenamiento con SVM se pueden ver de manera más de-
tallada aspectos más técnicos y especı́ficos con el objetivo de
reproducir los resultados aquı́ obtenidos.

Resultados en la detección ausencia del conductor. En la
Figura 5 se puede ver de manera gráfica cómo funciona el al-
goritmo para la detección de ausencia del conductor por medio
de un marcador. Pruebas preliminares nos demostraron que el
factor más influyente en este algoritmo eran las diferentes con-
diciones lumı́nicas en el interior vehicular, más que el propio in-
terior propiamente dicho. Las diferentes condiciones lumı́nicas
producen ruido en la imagen, que en la etapa de clasificación
por forma circular es capaz de rechazar, con lo que se puede
discriminar el contorno circular correspondiente al marcador.
Es por ello que sólo se realizaron pruebas en dos vehı́culos, pe-
ro con entornos lumı́nicos muy diferentes. Se realizaron prue-
bas con N = 200 imágenes y en todas ellas se detectó el mar-
cador correctamente. Podemos, por tanto, decir que este simple

algoritmo es capaz de detectar con robustez la presencia o au-
sencia de un conductor por medio de un marcador, alcanzando
una tasa de precisión del 100 %. El marcador mostrado en la
Figura 5 presenta un radio r = 4cm, el cual es suficiente para
su detección en condiciones diurnas. Un tamaño más pequeño
(por ejemplo r = 2cm) podrı́a presentar problemas, sobre todo
cuando existe mucho ruido debido a la iluminación.

Por otro lado, a continuación se comentan las pruebas rea-
lizadas para la detección del conductor por medio de procesa-
miento de imagen y de aprendizaje supervisado. Para entrenar
el algoritmo se recolectaron imágenes positivas (el conductor
está presente) e imágenes negativas (el conductor no está pre-
sente y, por tanto, se ve únicamente el interior del vehı́culo).
Para la recolección de imágenes positivas, se tomaron 1000
imágenes de las siguientes bases de datos: a) YawDD (Abtahi
et al. (2014)), b) RS-DMV (Nuevo et al. (2010)), c) Set 11 (Da-
niluk et al. (2014)), y d) imágenes recogidas para la elabora-
ción de la presente publicación y las diversas pruebas realiza-
das. Como imágenes negativas, se capturaron un total de 1000
imágenes desde el interior de cinco vehı́culos diferentes (200
imágenes de cada uno) para obtener cierta variabilidad, y que
el clasificador no clasificara caracterı́sticas irrelevantes. El da-
taset, por tanto, consta de 2000 imágenes en total.

Como herramienta de clasificación se hizo uso de SVM. Se
realizaron pruebas variando parámetros en los diferentes ope-
radores (LBP y CS-LBP), obteniendo resultados similares en
ambos casos. De manera más especı́fica, la tasa de acierto me-
dia del clasificador basado en el operador LBP fue de 90.56 %,
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Tabla 2: Tasa detección para la detección de la ausencia del conductor utilizan-
do tanto un marcador, como los operadores LBP y CS-LBP

Marcador LBP CS-LBP

100 % 90.56 % 88.96 %

y del 88.96 % utilizando el operador CS-LBP. En la Figura 6
se puede ver la imagen preprocesada que sirve de entrada al
clasificador SVM, donde se puede ver el ROI establecido y el
resultado de aplicar tanto el operador LBP como el CS-LBP. El
ROI seleccionado nos permite, por un lado, que la variabilidad
en la imagen sea ofrecida por la presencia/ausencia del conduc-
tor y no por otros elementos como pueden ser cambios en el
exterior del vehı́culo debido al movimiento o la presencia de
pasajeros. Sin embargo, con objeto de que no requiera de cali-
bración, no hemos establecido una ROI bastante precisa, para
que se pudiera adaptar a diferentes ‘set up’ de cámara.

Los resultados para la detección del conductor se pueden
ver de manera resumida en la Tabla 2. No existe comparación
posible, pues no se han encontrado publicaciones que lleven a
cabo dicha detección.

Resultados en el cálculo del estado de los ojos. Para el
cálculo del estado de los ojos, se hizo uso de la base de datos
CEW (Closed Eyes in The Wild) Song et al. (2014), reciente-
mente propuesta para este propósito. Esta base de datos cons-
tituye una buena base de test, pues contiene imágenes en con-
diciones no controladas, con iluminaciones muy variadas, baja
resolución, diferentes poses o gafas, entre otras. A continua-
ción, se comentan los resultados obtenidos puestos en contexto
con otras aproximaciones, los cuales pueden verse de manera
resumida en la Tabla 3. En la Figura 7 se puede ver un ejemplo

Figura 7: Ilustración de las imagénes de la base de datos CEW

visual de la variabilidad incluida en dicha base de datos.
Los métodos basados en proyecciones, obtienen una tasa

de reconocimiento del 70.1 %, muy lejos de la aproximación
más robusta que propone el uso de una modificación del al-

Tabla 3: Comparativa de rendimiento para la detección del estado de los ojos
en la base de datos CEW y algoritmos state-of-the-art

Aproximación Precisión ( %) Tiempo de ejecu-
ción [ms]

Proyección 70.1 -
Escala de grises + SVM 82.85 0.32
LBP + SVM 91.12 1.96
LTP + SVM 92.94 6.67
Gabor + SVM 91.16 17.65
HOG + SVM 93.10 12.61
MultiHOG + SVM 93.31 19.81
HPOG + SVM 93.13 18.55
MultiHPOG + SVM 93.51 38.47
LBP RO + SVM 93.39 2
CS-LBP RO + SVM 91.84 1

goritmo basado en la computación de Histogramas Orientados
de Gradientes (HOG), originalmente propuesto para la detec-
ción de personas Dalal and Triggs (2005), pero que ha demos-
trado ser robusto para la detección de objetos en general. Di-
cha modificación del algoritmo HOG, que los autores llaman
‘MultiHPHOG’, obtiene una tasa de acierto del 93.51 % Song
et al. (2014). Nuestra aproximación, basada tanto en LBP co-
mo en CS-LBP, obtiene unas tasas de acierto del 93.39 % y
del 91.84 %, respectivamente. Además, la arquitectura aquı́ pro-
puesta tiene dos ventajas principales frente a otras aproximacio-
nes: 1) la tasa de reconocimiento es de las más altas sin llevar a
cabo una localización exhaustiva del ojo, es decir, es suficiente
con detectar de forma más o menos precisa la región de los ojos,
lo que aumenta su robustez frente a otros métodos que requie-
ren localizar el ojo, y 2) es una aproximación computacional-
mente muy ligera. Por poner en contexto la aproximación más
robusta, basada en MultiHPHOG, con tasa de reconocimiento
del 93.51 % (Song et al. (2014)), tiene un tiempo de ejecución
aproximado de unos 40ms. Nuestra aproximación, basada tanto
en LBP (93.39 %) como en CS-LBP (91.84 %), tiene un tiempo
de ejecución aproximado de unos 2ms y 1ms aproximadamente.
Aquı́ es donde entendemos que es la principal diferencia, pues
los algoritmos son unas 20 veces más rápidos, con un ligero
decremento de la efectividad, pero aún ası́, mucho más robus-
tos que la mayorı́a de algoritmos. En la Figura 8 se puede ver
el preprocesamiento y el procesamiento de la imagen para la
aproximación que se usa para la detección de los ojos, donde se
muestran todos los pasos para llevar a cabo dicha detección.

Resultados en relación con la detección facial. Pruebas
realizadas arrojaron que la posición de la cámara juega un pa-
pel fundamental en la detección facial y, por tanto, en la de-
tección posterior tanto de la distracción como la somnolencia.
Es por ello que se realizaron pruebas para determinar la posi-
ción óptima de la cámara sin ocasionar oclusión o distracción
al conductor por su posible ubicación. Las pruebas realizadas
en este punto se incluyen en la subsección siguiente, pues han
sido llevadas a cabo en entorno real.

5.2. Validación en entorno real controlado

La validación en entorno real controlado incluye dos ti-
pos de pruebas: 1) eventos de distracción y somnolencia con el
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(a) Imagen original (b) Resultado de aplicar el operador LBP (Ojala et al.
(2002)) al ROI

(c) Resultado de aplicar el operador CS-LBP (Heik-
kilä et al. (2009)) al ROI

(d) Imagen original (e) Resultado de aplicar el operador LBP (Ojala et al.
(2002)) al ROI

(f) Resultado de aplicar el operador CS-LBP (Heik-
kilä et al. (2009)) al ROI

Figura 6: Descripción gráfica de la detección ausencia del conductor mediante procesamiento de la imagen y aprendizaje supervisado

vehı́culo estacionado y 2) eventos de distracción y somnolencia
con vehı́culo en movimiento en un recorrido preestablecido. En
este sentido, tanto: a) posición de la cámara y b) tamaño de los
buffers CABEZA y OJOS (introducidos en la Sección 3) juegan
un papel fundamental y serán detallados antes de comentar los
resultados de estas pruebas.

Para las pruebas se instaló la aplicación en un dispositivo
móvil. En concreto, las pruebas fueron realizadas con un móvil
de gama media con procesador Qualcomm APQ8064T Snap-
dragon 600 Quad-Core a 1.9 GHz y 2 GB de RAM. El disposi-
tivo tiene instalada la versión Android 4.2.2. y la aplicación en
este dispositivo funciona a unos 10 frames por segundo (fps).

Los vehı́culos usados fueron: Citroen C4, Skoda Fabia RS y
Kia cee’d. Cada vehı́culo fue conducido por las mismas 16 per-
sonas, con una edad media (µ) de 34.5 años desviación estándar
(σ) de 6.65. De esos 16 conductores, 8 de ellos (µ = 34.25, σ =

5.91) eran hombres y los 8 restantes (µ = 34.75, σ = 7.81)
mujeres. A su vez, de los 8 hombres, 4 llevaban gafas en el mo-
mento de las pruebas (µ = 34, σ = 8.22) y 4 no las llevaban
(µ = 34.5, σ = 1.5). En lo que respecta a las 8 mujeres, 4 lleva-
ban gafas (µ = 39.5, σ = 8.29) y 4 no las llevaban (µ = 30, σ =

2.83). Ninguno de los conductores llevaba gafas de sol.
Posición de la cámara. Para ambos tipos de pruebas, se tu-

vo especial cuidado en la ubicación de la cámara. La ubicación
de la misma, y en este caso por tanto, del dispositivo móvil,
tiene un papel fundamental, pues dependiendo de la imagen ad-
quirida, la cabeza del conductor será encontrada de forma más
o menos robusta. Se realizaron pruebas con dos ubicaciones,

que se pueden ver en la Figura 9. En la primera, el dispositivo
móvil se sitúa en el espejo retrovisor, y en la segunda, sobre el
salpicadero, tratando de capturar las imágenes del conductor lo
más frontalmente posible. Respecto a este punto, en la Figura
10 se incluye la posición final escogida, por proporcionar una
detección más robusta de la cabeza del conductor, como se co-
menta de forma más detallada a continuación. Dicha posición,
por tanto, fue tenida en cuenta para la validación en entorno real
controlado y los dos tipos de pruebas antes introducidos.

El hecho de contar con la cámara frente a la cabeza del con-
ductor presenta varias ventajas. La primera de ellas es que el
detector frontal presenta una tasa de reconocimiento mayor. En
la Tabla 4, se presenta el rendimiento de ambas posiciones en lo
que al grado de detección facial se refiere. Para ello, se grabaron
varias secuencias cortas de vı́deo contemplando distintas con-
diciones y el conductor manteniendo una conducción normal,
comprobando los retrovisores en caso necesario o cambiando
de marchas, pero sin mostrar signos de distracción (como, por
ejemplo, mirar fuera del vehı́culo mediante un giro acusado de
la cabeza, lo cual no serı́a ya una detección frontal). Otra de las
ventajas es el hecho de detectar diferentes eventos de distrac-
ción, pues se corresponden directamente con la salida de los
detectores, es decir, en cuanto la cabeza no se capture frontal-
mente, es que el conductor está distraı́do.

Tamaño de los buffers y reglas de detección de la inaten-
ción (somnolencia y distracción). La información capturada
por el sistema se resume en los buffers CABEZA y OJOS de
la Figura 1. El objetivo es la detección de eventos de somnolen-
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(a) detección facial
(Markuš et al. (2014))

(b) puntos carac-
terı́sticos (Uřičář
et al. (2012))

(c) rotación región fa-
cial (Fernández et al.
(2015c))

(d) extracción región
ojos (Fernández et al.
(2015c))

(e) normalización
iluminación (Tan and
Triggs (2010))

(f) operador LBP
(Ojala et al. (2002))

(g) operador CS-LBP
(Heikkilä et al.
(2009))

(h) detección facial
(Markuš et al. (2014))

(i) puntos carac-
terı́sticos (Uřičář
et al. (2012))

(j) rotación región fa-
cial (Fernández et al.
(2015c))

(k) extracción región
ojos (Fernández et al.
(2015c))

(l) normalización
iluminación (Tan and
Triggs (2010))

(m) operador LBP
(Ojala et al. (2002))

(n) operador CS-LBP
(Heikkilä et al.
(2009))

Figura 8: Representación visual de los principales pasos para la detección del estado de los ojos

Tabla 4: Tasa detección facial para las dos ubicaciones de la cámara propues-
tas: 1) debajo del espejo retrovisor central y 2) en el salpicadero centrado al
conductor

Posición 1 (debajo es-
pejo)

Posición 2 (salpicade-
ro)

Detector facial
frontal(Markuš
et al. (2014))

86.88 % 96.46 %

cia y distracción de una manera robusta, pero también teniendo
en cuenta una baja tasa de falsos positivos (por ejemplo, que el
usuario compruebe los espejos retrovisores y el sistema detecte
esta situación como de distracción). Para establecer el tamaño
de los buffers, se realizaron: a) diversas pruebas preliminares,
b) encuestas a los usuarios en función de resultados interme-
dios y c) análisis del estado del arte. En este sentido, las tres
opciones arrojaron resultados muy similares, que se comentan
a continuación.

ubicación 1

posición
solar

ubicación 2

Figura 9: Ubicaciones seleccionadas para la instalación del dispositivo móvil.
Además, las pruebas realizadas incluyeron diferentes posiciones solares para
conseguir diferentes condiciones lumı́nicas. Las pruebas realizadas tuvieron lu-
gar tanto en verano como en invierno

Debe ser tenido en cuenta, que del estudio ‘100-Car Study’
cerca del 80 % de los accidentes y del 65 % de los casi-accidentes
involucraban algún tipo de inatención por parte del conductor
en los últimos 3 segundos antes del evento (Martin (2006)).
Además, según otro estudio, se deben detectar eventos de inaten-
ción en ventanas de 4 segundos (of Transportation (2016)). Par-
tiendo de estos datos, algunos autores han seguido estas apro-
ximaciones para ajustar las ventanas temporales de sus algorit-
mos a 3 (You et al. (2013), Berri et al. (2014)) y 4 (Mbouna
et al. (2013)) segundos respectivamente.

Tras realizar diversas pruebas y ajustes, se estableció el ta-
maño temporal de 4 segundos para la detección de eventos de
distracción y somnolencia. Esto supone el análisis de unos 40
frames (la aplicación se ejecuta a unos 10fps) y, por tanto, el
análisis de unos 40 elementos almacenados tanto para el buffer
CABEZA como para el de OJOS. Cada elemento almacenado
en los buffers tiene su timestamp para disparar los eventos de
detección de distracción y somnolencia teniendo en cuenta los
4 segundos antes comentados. Es necesario almacenar el times-
tamp porque el tiempo de ejecución del sistema completo varı́a
en función del flujo de ejecución (ver Figura 1). Cada vez que se
almacena un frame (elemento X) en los buffers, se contabiliza
el tiempo respecto a la última inserción en el buffer (elemento
X-1) y se anota dicho tiempo al elemento X-1. Estos tiempos
nos permiten computar después los estados del conductor para
disparar las reglas. Las reglas que disparan las detecciones son
bastante sencillas. Se estableció una para la somnolencia (ver
regla 1) y otra para la distracción (ver regla 2).

La regla para la detección de la somnolencia se basa en pro-
cesar los frames contenidos en el buffer OJOS. En caso de que
los frames almacenados en dicho buffer, etiquetados como ce-
rrado (CER), superen los 3 segundos, el conductor se considera
dormido. En caso contrario, se considera que está despierto. Pa-
ra la distracción, se considera que el conductor está distraı́do si
los frames etiquetados como izquierda (IZQ), derecha (DER) e
inatención (INA) para el buffer CABEZA, superan los 3 segun-
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Regla 1 Deteccion Somnolencia
OJOS

1: if tiempos(OJOS , [CER]) ≥ 3s then
2: Conductor dormido
3: else
4: Conductor despierto
5: end if

Tabla 5: Actividades a realizar por los conductores tanto para las pruebas con
el vehı́culo estacionado como para el vehı́culo en movimiento sobre recorrido
preestablecido

Eventos de distracción y somnolencia a realizar por los conductores

4A01 X: Cerrar los ojos, con X={4,5,6} seg
4A02 X: Tocar con la barbilla en el pecho, con X={4,5,6} seg
4A03 X: Tocar con la nuca en la espalda, con X={4,5,6} seg
4A04 X: Girar la cabeza hacia la derecha, con X={4,5,6} seg
4A05 X: Girar la cabeza hacia la izquierda, con X={4,5,6} seg

dos. La función tiempos(X, [Y]) devuelve el tiempo en el buffer
X para los estados contenidos en el array Y .

Regla 2 Deteccion Distraccion
CABEZA

1: if tiempos(CABEZA, [IZQ,DER, INA]) ≥ 3s then
2: Conductor distraido
3: else
4: Conductor atento
5: end if

En caso de que la aplicación se instale en un dispositivo con
mejores capacidades de cómputo, la métrica fps tendrá un valor
más elevado, y por tanto, se almacenarán más elementos en los
buffers para llegar a cubrir los 4 segundos antes comentados. En
caso de ser un dispositivo con menos recursos, se almacenarán
menos elementos en los buffers. Por pruebas realizadas, hasta
los 5 fps se obtienen unos resultados similares, pero para fps
menores, la aplicación no funciona correctamente.

5.2.1. Eventos de distracción y somnolencia con vehı́culo es-
tacionado

En parte, estas pruebas sirvieron para ‘ajustar’ ciertos as-
pectos de funcionamiento de la aplicación antes comentados:
a) posición de la cámara, b) tamaño de los buffers, y c) ajustes
más finos y precisos en la implementación de los algoritmos.
Las pruebas fueron realizadas con el vehı́culo estacionado. La
lista de actividades a realizar por los usuarios se puede ver en
la Tabla 5. Se trata de 5 eventos con 3 duraciones diferentes. A
modo de ejemplo, la actividad A01 4 consiste en cerrar los ojos
durante 4 segundos. Los resultados de estas prueba se recogen
en la subsección 5.2.3.

5.2.2. Eventos de distracción y somnolencia con vehı́culo en
movimiento

En la Figura 11 se puede ver el recorrido para las pruebas en
entorno controlado en movimiento. Para facilitar que los con-
ductores realizaran el mismo recorrido entre las distintas ite-

raciones, se dispusieron conos para delimitar el recorrido. Las
pruebas en movimiento se realizaron a una velocidad de 4km/h
durante todas las iteraciones y para todos los conductores. Para
ello, se dispuso del Skoda Fabia RS con cambio automático, en
el cual, introduciendo la marcha ‘D’, se inicia el movimiento
del vehı́culo manteniendo dicha velocidad constante siempre y
cuando no se altere mediante el acelerador o el freno. El he-
cho de establecer dicha velocidad no es otro que el de permitir,
para el recorrido seleccionado, reproducir por parte del conduc-
tor varios episodios de distracción y somnolencia con suficiente
tiempo, sin poner en riesgo la integridad del conductor debido a
la baja velocidad alcanzada. Además, el recorrido se realizó en
ambos sentidos. El hecho de capturar las imágenes a una ma-
yor velocidad no supone ningún cambio en las caracterı́sticas
de las mismas. Los tramos azules se corresponden con zonas en
las que está ‘permitido’ realizar las actividades de distracción
y somnolencia encomendadas (ver Figura 11). Las actividades
son las mismas que para el vehı́culo estacionado, y se corres-
ponden con las de la Tabla 5. Los resultados de estas prueba se
recogen en la subsección 5.2.3.

Figura 11: Ruta para las maniobras controladas realizadas en el experimento

5.2.3. Resultados para entorno real controlado
En este apartado se resumen los resultados de las pruebas

comentadas anteriormente en las subsecciones 5.2.1 y 5.2.2.
Como ya se ha comentado, las pruebas se realizaron con 16
personas, 3 vehı́culos diferentes y en 2 condiciones diferentes
(vehı́culo parado - 5.2.1 - y en movimiento - 5.2.2). Las pruebas
fueron realizadas a lo largo de un total 22 dı́as, con lo que di-
ferentes condiciones lumı́nicas fueron tenidas en cuenta al rea-
lizar las pruebas. Además las pruebas fueron realizadas en di-
ferentes estaciones, tanto en verano (a lo largo de los meses de
Agosto y Septiembre) y en invierno (a lo largo de los meses de
Enero y Febrero).



A. Fernández et al. / RIAI: Revista Iberoamericana de Automática e Informática industrial 00 (2017) 1–22 14

Figura 10: Posición (posición 2 - salpicadero) finalmente seleccionada para la ubicación del dispositivo móvil. De esta manera se consigue una detección facial más
robusta

Cada prueba (se denominará sesión para una mayor clari-
dad), consistió en realizar las 5 pruebas descritas en la Tabla 5
con las 3 duraciones diferentes (4,5 y 6 segundos). Es decir, ca-
da sesión involucró 15 actividades diferentes. Se realizaron un
total de 96 sesiones (16 personas, 3 vehı́culos y 2 tipos - vehı́cu-
lo estacionado y en movimiento), con una duración aproximada
para realizar todas las actividades de una sesión de 25 minutos.
Los resultados del sistema para clasificar cada una de estas 96
sesiones se pueden ver en las Tablas 6, 7, 8, las cuales se comen-
tan en detalle a continuación. De la Tabla 6 se puede extraer la
media de las 96 sesiones (µ = 93.11, σ = 1.6).

Como se puede apreciar, se obtienen resultados similares
para los eventos de somnolencia A02 y A03, puesto que la
mecánica de funcionamiento es la misma, es decir, en caso de
que no se puede obtener la pose del conductor (detección nega-
tiva en los algoritmos de detección facial), se comprueba si el
conductor está presente o no en el habitáculo. También se ob-
tienen resultados similares para la detección de los eventos de
distracción (A04 y A05), puesto que la cámara está posiciona-
da justo en frente del conductor y la pose respecto a la cámara
es la misma al realizar los eventos de distracción. Respecto al
cálculo del estado de los ojos, se obtienen resultados muy ro-
bustos, que pueden llegar a una tasa de acierto del 95.43 %. Sin
embargo, es en esta actividad donde se encuentran unas diferen-
cias significativas para los conductores que llevaban gafas en el
momento de realizar las pruebas. En la Tabla 7 se pueden ver
los resultados correspondientes a los 8 conductores (4 hombres
y 4 mujeres) con gafas y su tasa de detección en la actividad
A01. En la Tabla 8 se puede ven los resultados para los otro 8
conductores (4 hombres y 4 mujeres) sin gafas.

Para los conductores que no llevan gafas se produce una tasa
de detección media de 95.54 %, que puede llegar al 96.88 % si
la actividad tiene una duración de 6 segundos. Si la actividad
tiene una duración de 4 segundos la tasa de detección es de
94.42 %. Por el contrario, para los conductores que llevan gafas,
la tasa de detección media se decrementa, y se obtiene un valor
de 93.51 %, que puede llegar al 94.30 % si la duración de la
actividad es de 6 segundos. Si la duración de la actividad es de
4 segundos la tasa de detección es de 92.44 %.

No se encontraron diferencias significativas en caso de que
el conductor fuera un hombre o una mujer. En este sentido ca-
be comentar que las mujeres involucradas en el experimento
no presentaban maquillaje y el pelo estaba recogido, de mane-
ra que no presentaba ninguna posible oclusión en este aspec-

Tabla 6: Resumen de los resultados (tasa de acierto) para las pruebas en entorno
controlado. Se muestra la precisión al clasificar las 96 sesiones como eventos de
somnolencia o no (para A01/A02/A03) o de distracción o no (para A04/A05)

4 seg 5 seg 6 seg

A01 93.50 94.66 95.43
A02 91.25 92.80 93.61
A03 92.42 92.94 93.27
A04 92.06 92.66 93.37
A05 92.14 93.08 93.39

Tabla 7: Resumen de los resultados (tasa de acierto) para la Actividad del tipo
A01 X al clasificar el estado de los ojos para 8 conductores (4 hombres y 4
mujeres) con gafas

4 seg 5 seg 6 seg

A01 94.42 95.33 96.88

to. Tampoco se encontraron diferencias significativas tanto si el
vehı́culo estaba estacionado como en funcionamiento.

6. Discusión y conclusiones

La comparación mediante datasets y bases de datos dispo-
nibles para la comparación de los diferentes algoritmos, como
puede ser la base de datos CEW en este caso, permite una com-
paración ‘justa’ entre las diferentes aproximaciones. En este
sentido, de los resultados desprendidos tras la realización de
la validación de los módulos que componen el sistema con di-
ferentes bases de datos (ver Tablas 2, 3), se puede decir que
los diferentes módulos se comportan de forma robusta. La de-
tección de ausencia del conductor por medio de un marcador
es un método simple y efectivo para detectar si el conductor
está presente en el puesto de conducción. En lo que respecta
al cálculo del estado de los ojos, la base de datos utilizada pa-
ra entrenar y validar los algoritmos faciales es un aspecto muy

Tabla 8: Resumen de los resultados (tasa de acierto) para la Actividad del tipo
A01 X al clasificar el estado de los ojos para 8 conductores (4 hombres y 4
mujeres) sin gafas

4 seg 5 seg 6 seg

A01 92.44 93.79 94.30
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importante, pues aspectos como la pose, iluminación y resolu-
ción de las imágenes juegan un papel fundamental. De manera
especı́fica, y como se puede ver en Song et al. (2014), varias
aproximaciones basadas en LBP, LTP, Gabor, HOG que en la
base de datos ZJU (Pan et al. (2007)) obtienen una precisión
de 89.19, 91.39, 85.04, 90.90 pero en cambio evaluados con la
base de datos CEW obtienen 81.00, 83.59, 85.53, 90.35 respec-
tivamente, lo que supone un decremento considerable. Es por
ello que en la presente publicación se ha optado por emplear la
base de datos CEW (ver Figura 3 para visualizar ejemplos de
imágenes de dicha base de datos) para el cálculo del estado de
los ojos, obteniendo el segundo algoritmo más robusto, sólo por
detrás de una aproximación que presenta una carga computacio-
nal prácticamente 20 veces más. Además, mediante el empleo
de LBP uniforme y CS-LBP se consiguen vectores con dimen-
sionalidad relativamente baja, lo que conlleva una computación
más fácil (Jung et al. (2016)).

De los resultados obtenidos tras la ejecución de las prue-
bas en entorno real controlado, se puede deducir que se detecta
con bastante precisión los eventos de distracción y somnolen-
cia, obteniéndose los resultados más elevados para la detección
del estado de los ojos (A01). El hecho de que el conductor lle-
ve gafas en el momento de las pruebas ocasionó que la tasa de
reconocimiento se decrementara aproximadamente en un 2 %.
Por otro lado, se trata de una solución completamente autóno-
ma, apoyada por el módulo de detección de presencia, el cual se
puede llevar a cabo, bien por medio de técnicas de aprendizaje
automático (sin realizar ninguna modificación en el vehı́culo),
o por medio de un marcador que se situarı́a en el reposacabe-
zas del asiento; siendo esta alternativa más robusta. Por último,
comentar que tampoco hay excesivas diferencias en relación a
la duración del evento a detectar. Si bien es cierto que para los
eventos con una duración de 4 segundos la tasa es menor, se
achaca este decremento al instante temporal inicial y final mar-
cado para dichos eventos, pues los conductores tardaban más en
empezar a obedecer la orden dada (por ejemplo, cerrar los ojos)
que en finalizar la orden dada (por ejemplo, abrir los ojos).

Por otro lado, la posición de la cámara juega un papel fun-
damental, pues la detección facial es el punto principal sobre
el que pivota el resto del sistema. Esto es ası́ porque los algo-
ritmos de detección facial están entrenados con caras con una
determinada pose para poder ser detectadas de frente o de per-
fil. Ası́ pues, las caras capturadas en la imagen desde el interior
vehicular deben tener una apariencia similar a aquellas con las
que fueron entrenadas. Si la cámara se sitúa en el salpicadero
en frente del conductor, se puede incrementar la detección fa-
cial en, aproximadamente, 8 puntos porcentuales respecto a si
la cámara está en el espejo retrovisor (de un 86.88 % se puede
pasar a un 96.46 %), lo cual está en consonancia con otros tra-
bajos, que establecen que el salpicadero es el mejor lugar para
la ubicación de la cámara (Vicente et al. (2015); Abtahi et al.
(2014); López Romero (2016)).

El grado de detección facial logrado con la ubicación final
de la cámara y utilizando el algoritmo de detección facial antes
comentado, es superior al de todos los trabajos analizados (Hat-
tori et al. (2006); Sigari (2009); You et al. (2013); Flores et al.
(2010, 2011); Hong and Qin (2007); López Romero (2016)).

Puesto que el resto de la arquitectura de estos sistemas trabaja
sobre la detección de la cara del conductor, este es un factor
determinante.

Además, el Algoritmo de Viola & Jones es frecuentemente
usado por su facilidad de uso y por sus resultados más o menos
robustos. En los trabajos analizados (Hattori et al. (2006); Si-
gari (2009); You et al. (2013); Flores et al. (2010, 2011); Hong
and Qin (2007); López Romero (2016)) es usado como detector
facial, lo que puede conllevar alguna restricción en el procesa-
miento. Por ejemplo, en You et al. (2013), con el objetivo de
satisfacer los requisitos de ‘tiempo real’, se vieron obligados a
bajar la resolución a 320 × 240 pı́xeles, lo que no ocurre en el
sistema aquı́ propuesto.

Respecto a la detección del estado de los ojos, en You et al.
(2013) se obtiene una precisión del 92 % utilizando para su eva-
luación 1780 imágenes. En Sigari (2009) se obtiene una preci-
sión de 91.5 % evaluado con 817 imágenes. En la presente pu-
blicación se obtiene una precisión superior teniendo en cuenta
3000 imágenes (E.16). Flores et al. (2010) obtienen una tasa
de clasificación del 94 % sobre una base de datos de 500 ojos
cerrados y 1000 ojos abiertos. Si bien es una tasa bastante ele-
vada, dicha base de datos ya se encuentra procesada, es decir,
está compuesta por patches con imágenes de únicamente los
ojos, con lo que la parte de pre-procesamiento no se tiene en
cuenta.

En este sentido, en la alternativa aquı́ propuesta para detec-
tar el estado de los ojos (LBP RO) y (CS-LBP RO) no se lleva
a cabo una localización exhaustiva del ojo, es decir, es suficien-
te con detectar de forma más o menos precisa la región de los
ojos, lo que aumenta su robustez frente a otros métodos que
requieren localizar de forma especı́fica el ojo.

Como se ha comentado anteriormente, el hecho de que las
imágenes faciales presenten gafas, puede dificultar las tareas de
clasificación. En la Figura 12 se pueden observar un conjun-
to de imágenes que han sido clasificadas de forma errónea en
lo que corresponde al estado de los ojos debido a que las mis-
mas presentan diferentes condiciones lumı́nicas y la presencia
de gafas que dificulta las tareas de clasificación. Dichas imáge-
nes han sido extraı́das de la base de datos FERET (Phillips et al.
(2000)), también usada para comparación de algoritmos de pro-
cesamiento facial.

También comentar que se han tenido en cuenta diversos
estudios (Martin (2006); of Transportation (2016); You et al.
(2013); Berri et al. (2014); Mbouna et al. (2013)) para estable-
cer las ventanas temporales para la detección de los eventos de
somnolencia y distracción, llegando a sus mismas conclusiones.

6.1. Limitaciones del sistema propuesto

Existen básicamente dos limitaciones en el sistema propues-
to. El primero de ellos es que está orientado como sistema para
la detección tanto de la distracción como de la somnolencia en
condiciones diurnas. El sistema se deberı́a completar con los
algoritmos adecuados para contemplar condiciones nocturnas
para ofrecer un funcionamiento ininterrumpido.

Por otro lado, y relacionado con la detección de la distrac-
ción visual, el sistema utiliza lo que se conoce como una apro-



A. Fernández et al. / RIAI: Revista Iberoamericana de Automática e Informática industrial 00 (2017) 1–22 16

Figura 12: Imágenes clasificadas erróneamente ya que en todas ellas los individuos presentan los ojos abiertos y han sido clasificadas con los ojos cerrados

ximación coarse, lo que podrı́a suponer alguna limitación en al-
guna situación muy concreta. Por ejemplo, cuando el conductor
esté realizando una tarea secundaria que involucre intervención
visual, en la que presente una orientación en la cabeza detectada
por el algoritmo de tracking como de distracción, pero pudien-
do alternar de manera continua y constante la mirada entre la
carretera y el foco de atención de dicha tarea secundaria.

Trabajo futuro
La arquitectura aquı́ propuesta podrı́a completarse con las

limitaciones antes comentadas (funcionamiento en condiciones
nocturnas y detección precisa de la ubicación de los ojos para la
obtención del foco de atención y poder establecer hacia donde
está mirando el conductor) y con tres aspectos que contribuirı́an
a mejorar la robustez. En primer lugar, se podrı́a añadir al flujo
de ejecución de la arquitectura un algoritmo para la detección
de bostezos. Los bostezos aparecen como uno de los primeros
sı́ntomas de la somnolencia, con lo que su detección podrı́a des-
encadenar recomendaciones y advertencias al conductor. Tanto
para entrenar como para testear el grado de acierto del algo-
ritmo a implementar, se podrı́a hacer uso de la base de datos
propuesta por Abtahi et al. (2014), que contiene dos bases de
datos de vı́deo para la comparación de modelos y algoritmos en
la detección de bostezos.

En segundo lugar, se podrı́a proponer el uso de un algoritmo
de detección de gafas de sol en los conductores, pues en el caso
de que las lleve, es imposible la detección del estado de los ojos.
Por tanto, dicho algoritmo deberı́a ser aplicado previamente a
la detección del estado de los ojos y también antes de aplicar el
algoritmo de detección del foco de atención del conductor (en
caso de llevar a cabo su implementación).

Y en tercer lugar, el sistema se integrará con el GPS para
la obtención de la posición real con el objetivo de posicionar
el vehı́culo en un mapa. De esta manera, se podrı́a obtener si
el conductor está en un cruce. En tal situación, se podrı́a dife-
renciar si el conductor está distraı́do o si, por el contrario, se
está asegurando antes de cruzarlo.

English Summary

Automatic System to Detect Both Distraction and Drow-
siness in Drivers Using Robust Visual Features.

Abstract

According to the most recent studies published by the World
Health Organization (WHO) in 2013, it is estimated that 1.25

million people die as a result of traffic crashes. Many of them
are caused by what it is known as inattention, whose main con-
tributing factors are both distraction and drowsiness. Overall, it
is estimated that inattention causes between 25 % and 75 % of
the crashes and near-crashes. That is why this is a thoroughly
studied field by the research community, where solutions to
combat distraction and drowsiness, in particular, and inatten-
tion, in general, can be classified into three main categories,
and, where computer vision has clearly become a non-obtrusive
effective tool for the detection of both distraction and drowsi-
ness. The aim of this paper is to propose, build and validate an
architecture based on the analysis of visual characteristics by
using computer vision techniques and machine learning to de-
tect both distraction and drowsiness in drivers. Firstly, the mo-
dules have been tested with all its components independently
using several datasets. More specifically, the presence/absence
of the driver is detected with an accuracy of 100 %, 90.56 %,
88.96 % by using a marker positioned onto the headrest, the
LBP operator and the CS-LBP operator, respectively. Regar-
ding the eye closeness validation with CEW dataset, an accu-
racy of 93.39 % and 91.84 % is obtained using a new method
using both LBP (LBP RO) and CS-LBP (CS-LBP RO). After
performing several tests, the camera is positioned on the dash-
board, increasing the accuracy of face detection from 86.88 %
to 96.46 %. In connection with the tests performed in real-world
settings, 16 drivers were involved performing several activities
imitating different sings of sleepiness and distraction. Overall,
an accuracy of 93.11 % is obtained considering all activities and
all drivers.

Keywords:
Distraction and drowsiness detection Computer vision Percep-
tion and recognition Machine learning Monitoring and supervi-
sion
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Apéndice A. Detección distracción visual en condiciones
diurnas

En un trabajo previo recientemente publicado (Fernández
et al. (2016)) analizamos un total de 1500 publicaciones con el
objetivo de categorizar los diferentes métodos propuestos para
la detección de la distracción en general, y de la distracción
visual en particular, utilizando únicamente algoritmos de vi-
sión por computador. De acuerdo a dicha publicación y en lo
que respecta a la distracción visual, existen principalmente dos
aproximaciones.

La primera de ellas es la que se conoce como coarse, y se
basa principalmente en asumir que el foco de atención del con-
ductor (hacia dónde dirige la mirada) se puede aproximar utili-
zando la orientación de la cabeza. En la segunda aproximación,
que se conoce como fine, los investigadores consideran tanto la
orientación de la cabeza como la orientación de los ojos para
obtener un foco de atención más preciso.

Cada una de las aproximaciones anteriores presenta ven-
tajas e inconvenientes. En lo que respecta a la primera de las
aproximaciones, se ha demostrado que la orientación de la ca-
beza es un indicador robusto del foco de atención del conduc-
tor (Murphy-Chutorian and Trivedi (2010)), y ambas medidas
están estrechamente ligadas (Hammoud et al. (2005)).

Sin embargo, el conductor, en algunas ocasiones y sobre
todo cuando lleva a cabo alguna tarea secundaria que requie-
re involucración manual o visual (por ejemplo buscar algo en
la guantera del vehı́culo) es común que posicione su cabeza en
una posición intermedia entre las dos situaciones que requieren
su atención (en este caso, la guantera y la carretera) y median-
te continuos y constantes movimientos oculares lleva a cabo
la inspección visual de ambas tareas. En esta situación, un al-
goritmo de tracking facial reconocerı́a esta situación como de
distracción visual al basarse únicamente en la posición de la ca-
beza. Por lo tanto, en una situación ideal, se deberı́an considerar
tanto la posición de la cabeza como la posición de los ojos.

Sin embargo, el hecho de obtener la posición de los ojos en
todo momento no es una tarea fácil (Song et al. (2013)), debido
principalmente a aspectos como: a) las expresiones faciales, b)
oclusiones (por ejemplo si el conductor lleva gafas o gafas de
sol, o parpadeos), c) pose (por ejemplo puede ser posible que no
sea posible recoger la posición de los dos ojos en una posición
de perfil), d) diferentes condiciones de la imagen y su calidad
(iluminación o baja calidad de la imagen, entre otros). Es por
ello que, para lidiar con estos aspectos antes comentados, se
instalen diversas cámaras distribuidas por el habitáculo.

A medida que aumenta el número de cámaras, es posible
obtener mayor información. Sin embargo, esta información habrı́a
que fusionarla (se obtienen datos de cada una de las cámaras)
para obtener unos resultados finales. Además, estos sistemas
son difı́ciles de configurar, requieren de calibración periódi-
ca para comprobar el estado de las cámaras, pues pequeños
desajustes pueden ocasionar problemas (Ahlstrom and Dukic
(2010)), y pueden presentarse como intrusivos al conductor.
Además, existen muchas situaciones en las que es imposible
obtener la posición exacta de los ojos debido a las condiciones
propias del entorno vehicular: a) reflejos en las gafas, b) parpa-

deos, c) pose muy acusada del conductor (por ejemplo si pre-
senta su cabeza mirando hacia el techo o el suelo del vehı́culo
es imposible recoger la información de sus ojos - ambas posi-
ciones posibles con un conductor dormido), d) diferentes con-
diciones de iluminación (Fernández et al. (2016)).

Sin embargo, y con el objeto de profundizar en algoritmos
para la detección de los ojos en condiciones no controladas, se
hicieron pruebas con dos algoritmos recientemente propuestos
para la detección de los ojos. En este sentido, uno de los algo-
ritmos que mejor se ha comportado en vista de los resultados
obtenidos de las diversas publicaciones analizadas (Song et al.
(2013)) es el algoritmo ASEF (Average of synthetic exact fil-
ters), el cual destaca por tener una carga computacional bastan-
te baja, aspecto fundamental para su integración en un entorno
embebido, propuesto en Bolme et al. (2009).

Es por ello que se realizaron pruebas preliminares a partir
de su implementación en C++ que permite una integración di-
recta con OpenCV. También se experimentó con el algoritmo
propuesto en Timm and Barth (2011) para la detección de los
ojos, pues por los resultados mostrados en el mismo, son más
que prometedores. Además, el algoritmo destaca, como en el
caso anterior, por su baja carga computacional. Es por ello que
también se realizaron pruebas preliminares a partir de su im-
plementación en C++ que permite una integración directa con
OpenCV. En ambos casos, los resultados preliminares (utilizan-
do imágenes con los ojos abiertos de la base de datos CEW) no
fueron buenos, no considerándose adecuado para lidiar con las
condiciones de iluminación y pose en los entornos vehiculares.
En este sentido, los resultados fueron peores cuando:

Las condiciones lumı́nicas afectaban la imagen

La cara presentaba una pose acusada

Las caras presentaban gafas

Además, comentar que ambos algoritmos (Timm and Barth
(2011); Bolme et al. (2009)) fueron usados como etapa de pre-
procesamiento para el alineamiento facial, con el objetivo de
obtener el ángulo de inclinación obtenido a partir de la posición
de los ojos. Tras realizar pruebas con diferentes bases de datos
faciales, se comprobó experimentalmente que es más robusto
utilizar un detector de landmarks faciales (Uřičář et al. (2012)),
el cual usamos finalmente en la etapa de pre-procesamiento.

Para más información en este punto, se recomienda leer el
Apéndice Pre-procesamiento facial para obtener el estado de
los ojos. Es por ello que, finalmente, en la presente publicación,
se ha optado por utilizar la primera aproximación (coarse), al
requerir una solución más compacta, más fácil de instalar y con-
figurar, sin perder de vista los algoritmos para la detección de
los ojos, con vistas a una futura integración en la arquitectura.

Finalmente y por completar la información presentada, la
detección de distracción visual en condiciones nocturnas se rea-
liza, generalmente, de forma más precisa, pues los sistemas de
iluminación infrarroja hacen que la pupila adquiera un brillo ca-
racterı́stico que posibilita una fácil localización de los ojos. De
dı́a, dichos sistemas se ven perjudicados por la luz infrarroja
solar (Fernández et al. (2016)).
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Apéndice B. Pre-procesamiento facial para obtener el es-
tado de los ojos

Es necesario realizar un pre-procesamiento facial antes de
extraer las caracterı́sticas de la región facial (en este caso, apli-
car el operador LBP/CS-LBP) para obtener el estado de los
ojos. Con el objetivo de lidiar con el escalado, rotación, pose
e inexactitudes del algoritmo de detección facial, se propuso
en Fernández et al. (2015c) un algoritmo para normalizar la
región facial (Algoritmo 3). Los principales pasos se comen-
tan a continuación. Una vez que la cara ha sido detectada, el
siguiente punto radica en aplicar un detector robusto de carac-
terı́sticas faciales basado en ‘Modelos de Partes Deformables’
(DPM) propuesto por Uřičář et al. (2012). La salida del detec-
tor se corresponde con estimaciones de localizaciones para un
conjunto de puntos caracterı́sticos en la imagen: esquinas de los
ojos, esquinas de la boca y nariz. A continuación, se aplica un
algoritmo para que las caras sean rotadas y alineadas de manera
que los ojos siempre se encuentren en las mismas coordenadas
en la imagen final. Para ello, con el objetivo de calcular el ángu-
lo de desviación de la cara, se calcula una recta de regresión
que utiliza los cuatro puntos de los ojos. Por último, se calcula
la región facial por encima y por debajo de los ojos, para que
únicamente información relevante se procese en las etapas si-
guientes del algoritmo. Para más detalles de este algoritmo, se
recomienda la lectura de una publicación previa, donde se com-
prueba que este algoritmo de normalización incrementa la tasa
de reconocimiento significativamente Fernández et al. (2015c).
De esta manera, se consigue extraer la región facial normalizada
alrededor de los ojos de manera totalmente automatizada para
posteriormente extraer el vector de caracterı́sticas mediante el
operador correspondiente.

Algoritmo 3 Normalización facial del ROI
eyes distance r, eye line r, size

1: Se localizan 8 puntos faciales. Se calcula recta de regresión
basada en los 4 puntos de los ojos. El ángulo α de desvia-
ción es calculado y la imagen se rota teniendo en cuenta
dicho ángulo para alinear las imágenes

2: La distancia Euclı́dea d0 se calcula entre los ojos en la ima-
gen rotada

3: La distancia entre los ojos en la imagen redimensionada se
calcula según la fórmula dt = size.w ∗ eyes distance r

4: El ratio r se calcula como r = d0/dt

5: La anchura w0 and la altura h0 de la región alrededor de los
ojos se calcula como w0 = r ∗ size.w y h0 = r ∗ size.h

6: Las coordenadas de las esquinas de la región facial en la
imagen rotada se calculan como xl = xe − w0/2, yt = ye −
h0/eye line r, xr = xl + w0 y yb = yt + h0, donde xl es la
coordenada x del borde izquierdo, xe es la coordenada x
del punto medio entre los ojos, yt es la coordenada y del
borde superior, ye es la coordenada y de los ojos, xr es la
coordenada x del borde derecho e yb es la coordenada y del
borde inferior. Este ROI es extraı́do de la imagen

7: return ROI

Para establecer dicha región, los parámetros de entrada al

algoritmo que se han usado son los siguientes: eyes distance r
= 0.7, eye line r = 2, size = 80x36 pı́xeles, que de manera gráfi-
ca se pueden ver en la Figura B.13.

size.w

eye line size.h
eye_line_r

eyes_distance_r

α

Figura B.13: Representación visual del algoritmo de pre-procesamiento de la
región facial mostrando los parámetros de entrada del mismo

Apéndice C. Operadores LBP y CS-LBP

Formalmente, el operador LBP toma la siguiente forma:

LBP (xc, yc) =

7∑

p=0

2ps(gp − gc) (C.1)

donde p recorre los 8 vecinos alrededor del pixel central c,
gc y gp son los valores del nivel de gris en c y p respectivamente
y

s(x) =

{
1, if x ≥ 0
0, otherwise (C.2)

Este operador fue extendido para usar vecindarios de dife-
rentes tamaños Ojala et al. (2002), posibilitando lidiar con tex-
turas a diferentes escalas. Este hecho se denota mediante (P,R),
donde P representa el número de vecinos y R representa el radio
para el vecindario. Cuando los puntos no se corresponden con
posiciones enteras, el valor de intensidad para un determinado
punto es bilinealmente interpolado. A esta implementación se
le conoce como LBP (LBPP,R):

LBPP,R (xc, yc) =

P−1∑

p=0

2ps(gp − gc) (C.3)

Otra extensión al operador original es lo que se conoce co-
mo patrones uniformes Ojala et al. (2002). Un patrón LBP es
uniforme si contiene, como máximo, dos transiciones de 0 a 1
(o viceversa) visto como un buffer circular de bits. Por ejemplo,
00000000, 00011110 and 10000011 son los tres patrones uni-
formes. La uniformidad de los patrones es un hecho importante,
pues codifica información como esquinas y bordes. A pesar de
que sólo 58 de los 256 patrones (para un vecindario de 8) son
uniformes, alrededor del 90 % de los patrones observados son
uniformes Ojala et al. (2002). Para identificar a los patrones uni-
formes, se utiliza la siguiente notación: LBPu2

P,R. Es por ello que
los patrones uniformes se pueden considerar un método efecti-
vo para reducir la dimensionalidad de los datos. Otras extensio-
nes al operador original, también propuestas en la mencionada
publicación, se corresponden con: 1) los patrones invariantes a



A. Fernández et al. / RIAI: Revista Iberoamericana de Automática e Informática industrial 00 (2017) 1–22 19

la rotación, los cuales adquieren la siguiente notación: LBPri
P,R

y representan un total de 36 del total de 256 patrones para un
vecindario de 8 pı́xeles; 2) la conjunción de patrones uniformes
e invariantes a la rotación: LBPriu2

P,R y representan un total de 10
del total de los 256.

Se realizaron pruebas preliminares teniendo en cuenta estos
tipos (LBPu2

P,R,LBPri
P,R,LBPriu2

P,R ) para diferentes valores de P y
R. Según las publicaciones analizadas y la experiencia previa
en otras publicaciones (Fernández et al. (2015c); Villan et al.
(2016); Losada et al. (2013)) P = {8, 16} y R = {1, 2, 3}.

Tras analizar dichas pruebas, se llega a la conclusión de que
los valores con mayor tasa de reconocimiento son los patrones
uniformes LBPu2

P,R con un número de vecinos de P = 8 y un
radio de R = 2.

Respecto al operador CS-LBP, formalmente toma la siguien-
te formulación:

CS − LBPP,R (xc, yc) =

(P/2)−1∑

p=0

2ps(gp − gp+(P/2)) (C.4)

Con este operador también se realizaron pruebas prelimi-
nares, obteniendo los mejores resultados, como en el caso del
operador LBP con un número de vecinos de P = 8 y un radio
de R = 2.

Una vez se han definidas las caracterı́sticas de ambos opera-
dores, el siguiente paso consiste en dividir la imagen en m regio-
nes {R0, ....,Rm−1} y para cada una de esas regiones, se construye
el histograma a partir de la imagen LBP generada tras aplicar
el operador seleccionado. El número de divisiones juega, por
tanto, un papel importante en la longitud final del histograma
generado. Escoger este número de divisiones no es tampoco ta-
rea fácil y se requieren diversas pruebas para establecer dicho
número.

En lo que se refiere a la tarea de detección de ausencia del
conductor mediante LBP y CS-LBP el número de divisiones
que mejores resultados arrojó fueron de 5 × 5. Para la tarea de
detección del estado de los ojos, el número de divisiones óptimo
fue de 6 × 3.

Apéndice D. Comparación entre los algoritmos de Viola &
Jones y PICO

En relación a las necesidades computacionales, el algoritmo
de PICO presenta unas prestaciones mucho superiores. En rela-
ción a la precisión en dicha detección, en la propia publicación
de PICO, comparan su algoritmo con el algoritmo de Viola &
Jones. Para ello, hacen uso de la base de datos FDDB (Jain and
Learned-Miller (2010)), que contiene 5171 imágenes de caras
adquiridas en diferentes condiciones y su uso es común para la
comparación de algoritmos de detección facial.

La comparación puede verse en las Figuras D.14,D.15, don-
de se representan, las curvas ROC discretas y continuas, respec-
tivamente. Como se puede observar, el método de PICO presen-
ta mejores resultados.

Si bien en la presente publicación no se realizaron prue-
bas cuantitativas para obtener de manera precisa la diferencia

entre ambos algoritmos, de manera cualitativa sı́ que se puede
concluir que el algoritmo de PICO presenta mejores resultados.
Este hecho unido a que la carga computacional del algoritmo
PICO es mucho inferior, lo hace mucho más interesante para su
inclusión en sistemas con reducidas capacidades de cómputo.

Figura D.14: Comparacion de las curvas ROC discretas tanto para los métodos
de PICO y de Viola & Jones empleando la base de datos FDDB

Figura D.15: Comparacion de las curvas ROC contı́nuas tanto para los métodos
de PICO y de Viola & Jones empleando la base de datos FDDB

Apéndice E. Entrenamiento con SVM

Las Máquinas de Soporte Vectorial (SVMs, por sus siglas
en inglés) representan un método de aprendizaje automático
muy popular para tareas de clasificación, regresión y otras de
aprendizaje Chang and Lin (2011), es también una poderosa
herramienta para tareas relacionadas con la extracción de infor-
mación de la región facial.

La SVM construye un hiperplano o conjunto de hiperpla-
nos en un espacio de dimensionalidad muy alta (o incluso in-
finita) que, de forma óptima (hiperplano que tenga la máxima
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distancia - margen - con los puntos que estén más cerca de él
mismo), separe a los puntos de una clase de la de otra Vap-
nik (1998). Dado una equivalencia no lineal Φ que transforma
los datos a uno con mayor dimensionalidad, los kernels presen-
tan la siguiente formulación K(xi, x j) = Φ(xi) · Φ(x j), siendo
{(xi, yi), i = 1, ...., l} un conjunto de datos de entrenamiento eti-
quetados, donde xi ∈ Rn, yi ∈ {1,−1}.

A pesar de que se están proponiendo nuevos kernels Shan
et al. (2009), los más populares son: a) lineal, b) polinomial, y
c) función de base radial (RBF, por sus siglas en inglés) (Hsu
et al. (2003)).

Para trabajar con las SVMs, se hizo uso de la librerı́a LIBSVM
(Chang and Lin (2011)). A continuación, y como está sugerido
en Hsu et al. (2003), se llevaron a cabo los siguientes pasos:

1. Transformar los datos de entrada al formato de la librerı́a.
2. Realizar un escalado de los datos.
3. Experimentar con diferentes kernels y seleccionar el que

mejores resultados arroje.
4. Realizar validación cruzada y lo que se conoce como

grid-search para establecer los parámetros de la SVM.
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Figura E.16: Grid-search sobre los parámetros C y γ mediante el empleo de
la técnica de cross-validation para el operador LBP sobre la región de los ojos
utilizando el kernel de tipo RBF correspondiente a la SVM para la detección
del estado de los ojos

Para el escalado de los datos de entrada se hicieron prue-
bas con dos rangos de datos recomendados (Hsu et al. (2003)):
[−1,+1] y [0,+1], obteniendo mejores resultados con el inter-
valo [−1,+1], con lo que se estableció dicho intervalo de esca-
lado. Tras realizar diversas pruebas con los tres kernels antes
comentados (lineal, polinomial y RBF), se seleccionó éste últi-
mo por presentar mejores resultados. Una vez seleccionado, se
realizó lo que se conoce como cross-validation y grid-search
para establecer los mejores parámetros en dicho kernel, los cua-
les se gobiernan principalmente mediante dos parámetros: C y
γ.

El hecho de identificar estos dos parámetros (C, γ) es con
el objetivo de que el clasificador pueda predecir con robustez
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Best log2(C) = 1  log2(gamma) = -5  accuracy = 91.8425%

C = 2  gamma = 0.03125
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Figura E.17: Grid-search sobre los parámetros C y γ mediante el empleo de la
técnica de cross-validation para el operador CS-LBP sobre la región de los ojos
utilizando el kernel de tipo RBF correspondiente a la SVM para la detección
del estado de los ojos

los datos desconocidos (por ejemplo, los datos de entrenamien-
to). De manera más especı́fica, se llevó a cabo el proceso de
grid-search de los parámetros C y γ usando cross-validation.
Es decir, se cogen pares de valores de (C, γ) y para cada uno de
ellos se realiza cross-validation. Al final del proceso, el par de
valores que mejores resultados obtiene es el que se selecciona.
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Figura E.18: Grid-search sobre los parámetros C y γ mediante el empleo de
la técnica de cross-validation para el operador LBP sobre la ROI utilizando el
kernel de tipo RBF correspondiente a la SVM para la detección de ausencia del
conductor

Para evidenciar de manera visual este procedimiento, mos-
tramos, en las Figuras E.16 y E.17 los resultados tras las diver-
sas ejecuciones en lo que al cálculo del estado de los ojos se
refiere. En la Figura E.16 se puede ver que el mejor resultado
obtenido es de 93.39 % y se corresponde a aplicar el operador
LBP sobre la región de los ojos.

En la Figura E.17 se puede ver que el mejor resultado es de
91.84 % y se corresponde a aplicar el operador CS-LBP sobre
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la región de los ojos. Además, en relación a la detección de la
ausencia del conductor utilizando tanto LBP como CS-LBP y
SVM, en las Figuras E.18 y E.19 se muestran los resultados
utilizando el mismo procedimiento antes comentado.

En la Figura E.18 se puede ver que el mejor resultado obte-
nido es de 90.56 % y se corresponde a aplicar el operador LBP
sobre el ROI establecido para la detección automática de la pre-
sencia del conductor. En la Figura E.19 se puede ver que el me-
jor resultado obtenido es de 88.96 % y se corresponde a aplicar
el operador CS-LBP sobre el ROI establecido.
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Figura E.19: Grid-search sobre los parámetros C y γ mediante el empleo de la
técnica de cross-validation para el operador CS-LBP sobre la ROI utilizando el
kernel de tipo RBF correspondiente a la SVM para la detección de ausencia del
conductor
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de Automática e Informática Industrial RIAI 8 (3), 216–228.

Forsman, P. M., Vila, B. J., Short, R. A., Mott, C. G., Van Dongen, H. P., 2013.
Efficient driver drowsiness detection at moderate levels of drowsiness. Ac-
cident Analysis & Prevention 50, 341–350.
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